Cefiderocol-Based Regimen for Acinetobacter NDM-1 Outbreak
Abstract
:1. Introduction
2. Results
2.1. Demographic and Clinical Characteristics
2.2. Colonization and Infection Course
2.3. Antimicrobial Susceptibility
3. Discussion
4. Methods
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, D.; Nielsen, T.B.; Bonomo, R.A.; Pantapalangkoor, P.; Luna, B.; Spellberg, B. Clinical and pathophysiological overview of Acinetobacter infections: A century of challenges. Clin. Microbiol. Rev. 2017, 30, 409–447. [Google Scholar] [CrossRef]
- Harding, C.M.; Hennon, S.W.; Feldman, M.F. Uncovering the mechanisms of Acinetobacter baumannii virulence. In Nature Reviews Microbiology; Nature Publishing Group: London, UK, 2018; Volume 16, pp. 91–102. [Google Scholar]
- Bonnin, R.A.; Poirel, L.; Nordmann, P. New Delhi metallo-β-lactamase-producing Acinetobacter baumannii: A novel paradigm for spreading antibiotic resistance genes. Future Microbiol. 2014, 9, 33–41. [Google Scholar] [CrossRef]
- Revathi, G.; Siu, L.K.; Lu, P.L.; Huang, L.Y. First report of NDM-1-producing Acinetobacter baumannii in East Africa. Int. J. Infect. Dis. 2013, 17, e1255–e1258. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.S.; Toleman, M.A.; Weeks, J.L.; Howe, R.A.; Walsh, T.R.; Kumarasamy, K.K. Plasmid carriage of blaNDM-1in clinical Acinetobacter baumannii isolates from India. Antimicrob. Agents Chemother. 2014, 58, 4211–4213. [Google Scholar] [CrossRef]
- Adler, A.; Ghosh, H.; Gross, A.; Rechavi, A.; Lasnoy, M.; Assous, M.V.; Geffen, Y.; Darawsha, B.; Wiener-Well, Y.; Alony, A.; et al. Clinical and molecular features of NDM-producing Acinetobacter baumannii in a multicenter study in Israel. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 52. [Google Scholar] [CrossRef]
- Skoura, L.; Protonotariou, E.; Al-Rashed, N.; Bindayna, K.M.; Shahid, M.; Saeed, N.K.; Darwish, A.; Joji, R.M.; Al-Mahmeed, A. Prevalence of Carbapenemases in Carbapenem-Resistant Acinetobacter baumannii Isolates from the Kingdom of Bahrain. Antibiotics 2023, 12, 1198. [Google Scholar] [CrossRef]
- Jung, S.Y.; Lee, S.H.; Lee, S.Y.; Yang, S.; Noh, H.; Chung, E.K.; Lee, J.I. Antimicrobials for the treatment of drug-resistant Acinetobacter baumannii pneumonia in critically ill patients: A systemic review and Bayesian network meta-analysis. Crit. Care 2017, 21, 319. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J.; Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Last updated 31 December 2022. Available online: https://www.idsociety.org/practice-guideline/amr-guidance/ (accessed on 31 May 2024).
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Kaye, K.S.; Shorr, A.F.; Wunderink, R.G.; Du, B.; Poirier, G.E.; Rana, K.; Miller, A.; Lewis, D.; Chen, L.; Reinhart, H.; et al. Efficacy and safety of sulbactam–durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii–calcoaceticus complex: A multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect. Dis. 2023, 23, 1072–1084. [Google Scholar]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Karaba, S.M.; Hirsch, E.B.; Heil, E.L. In a Pinch: Cefiderocol for CRAB Infections. Antimicrob. Agents Chemother. 2022, 66, e00065-22. [Google Scholar] [CrossRef]
- Pascale, R.; Pasquini, Z.; Bartoletti, M.; Caiazzo, L.; Fornaro, G.; Bussini, L.; Volpato, F.; Marchionni, E.; Rinaldi, M.; Trapani, F.; et al. Cefiderocol treatment for carbapenem-resistant Acinetobacter baumannii infection in the ICU during the COVID-19 pandemic: A multicentre cohort study. JAC Antimicrob. Resist. 2021, 3, dlab174. [Google Scholar] [CrossRef]
- Thatrimontrichai, A.; Apisarnthanarak, A. Active surveillance culture program in asymptomatic patients as a strategy to control multidrug-resistant gram-negative organisms: What should be considered? J. Formos. Med. Assoc. 2020, 119, 1581–1585. [Google Scholar] [CrossRef]
- An, J.H.; Kim, Y.H.; Moon, J.E.; Jeong, J.H.; Kim, S.H.; Kang, S.J.; Park, K.H.; Jung, S.I.; Jang, H.C. Active surveillance for carbapenem-resistant Acinetobacter baumannii in a medical intensive care unit: Can it predict and reduce subsequent infections and the use of colistin? Am. J. Infect. Control 2017, 45, 667–672. [Google Scholar] [CrossRef]
- Seifert, H.; Dijkshoorn, L.; Gerner-Smidt, P.; Pelzer, N.; Tjernberg, I.; Vaneechoutte, M. Distribution of Acinetobacter species on human skin: Comparison of phenotypic and genotypic identification methods. J. Clin. Microbiol. 1997, 35, 2819–2825. [Google Scholar] [CrossRef]
- Apisarnthanarak, A.; Warren, D.K. Screening for carbapenem-resistant Acinetobacter baumannii colonization sites: An implication for combination of horizontal and vertical approaches. Clin. Infect. Dis. 2013, 56, 1057–1059. [Google Scholar] [CrossRef]
- Nutman, A.; Lerner, A.; Schwartz, D.; Carmeli, Y. Evaluation of carriage and environmental contamination by carbapenemresistant Acinetobacter baumannii. Clin. Microbiol. Infect. 2016, 22, 949.e5–949.e7. [Google Scholar] [CrossRef]
- Poirel, L.; Nordmann, P. Carbapenem resistance in Acinetobacter baumannii: Mechanisms and epidemiology. In Clinical Microbiology and Infection; Blackwell Publishing Ltd.: Oxford, UK, 2006; Volume 12, pp. 826–836. [Google Scholar]
- Lukovic, B.; Kabic, J.; Dragicevic, M.; Kuljanin, S.; Dimkic, I.; Jovcic, B.; Gajic, I. Genetic Basis of Antimicrobial Resistance, Virulence Features and Phylogenomics of Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates. Infection 2024. [Google Scholar] [CrossRef] [PubMed]
- Pavithra, J.Y.W.; Jason, S.; Pogue, M.; Wu, J.Y.; Srinivas, Á.P.; Pogue, J.M. Cefiderocol: A Novel Agent for the Management of Multidrug-Resistant Gram-Negative Organisms. Infect. Dis. Ther. 2024, 9, 17–40. [Google Scholar] [CrossRef]
- Hoellinger, B.; Simand, C.; Jeannot, K.; Garijo, C.; Cristinar, M.; Reisz, F.; Danion, F.; Ursenbach, A.; Lefebvre, N.; Boyer, P.; et al. Real-world clinical outcome of cefiderocol for treatment of multidrug-resistant non-fermenting, gram negative bacilli infections: A case series. Clin. Microbiol. Infect. 2023, 29, 393–395. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version May 2023. Available online: https://clsi.org/meetings/ast/breakpoints-in-use-toolkit/ (accessed on 25 February 2024).
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.0. 2023. Available online: http://www.eucast.org (accessed on 25 February 2024).
- Desmoulin, A.; Sababadichetty, L.; Kamus, L.; Daniel, M.; Feletti, L.; Allou, N.; Potron, A.; Leroy, A.-G.; Jaffar-Bandjee, M.-C.; Belmonte, O.; et al. Adaptive resistance to cefiderocol in carbapenem-resistant Acinetobacter baumannii (CRAB): Microbiological and clinical issues. Heliyon 2024, 10, e30365. [Google Scholar] [CrossRef]
- Nakamura, R.; Ito-Horiyama, T.; Takemura, M.; Toba, S.; Matsumoto, S.; Ikehara, T.; Tsuji, M.; Sato, T.; Yamano, Y. In vivo pharmacodynamic study of cefiderocol, a novel parenteral siderophore cephalosporin, in murine thigh and lung infection models. Antimicrob. Agents Chemother. 2019, 63, e02031-18. [Google Scholar] [CrossRef]
- Ito, A.; Kohira, N.; Bouchillon, S.K.; West, J.; Rittenhouse, S.; Sader, H.S.; Rhomberg, P.R.; Jones, R.N.; Yoshizawa, H.; Nakamura, R.; et al. In vitro antimicrobial activity of S-649266, a catechol-substituted siderophore cephalosporin, when tested against non-fermenting Gram-negative bacteria. J. Antimicrob. Chemother. 2016, 71, 670–677. [Google Scholar] [CrossRef]
- Hackel, M.A.; Tsuji, M.; Yamano, Y.; Echols, R.; Karlowsky, J.A.; Sahma, D.F. In vitro activity of the siderophore cephalosporin, cefiderocol, against a recent collection of clinically relevant gram-negative Bacilli from North America and Europe, including carbapenem-nonsusceptible isolates (SIDERO-WT-2014 study). Antimicrob. Agents Chemother. 2017, 61, e00093-17. [Google Scholar] [CrossRef]
- Dobias, J.; Dénervaud-Tendon, V.; Poirel, L.; Nordmann, P. Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant Gram-negative pathogens. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 2319–2327. [Google Scholar] [CrossRef]
- Ito, A.; Sato, T.; Ota, M.; Takemura, M.; Nishikawa, T.; Toba, S.; Kohira, N.; Miyagawa, S.; Ishibashi, N.; Matsumoto, S.; et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against gram-negative bacteria. Antimicrob. Agents Chemother. 2018, 62, e01454. [Google Scholar] [CrossRef]
- Choby, J.E.; Ozturk, T.; Satola, S.W.; Jacob, J.T.; Weiss, D.S. Widespread cefiderocol heteroresistance in carbapenem-resistant Gram-negative pathogens. Lancet Infect. Dis. 2021, 21, 597–598. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Rousaki, M.; Kritsotakis, E.I. Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics 2022, 11, 723. [Google Scholar] [CrossRef] [PubMed]
- Seifert, H.; Müller, C.; Stefanik, D.; Higgins, P.G.; Wohlfarth, E.; Kresken, M. In Vitro Activity of Cefiderocol against a Global Collection of Carbapenem-Resistant Acinetobacter baumannii Isolates. Antibiotics 2023, 12, 1172. [Google Scholar] [CrossRef]
- Ni, W.; Wang, Y.; Ma, X.; He, Y.; Zhao, J.; Guan, J.; Li, Y.; Gao, Z. In vitro and in vivo efficacy of cefiderocol plus tigecycline, colistin, or meropenem against carbapenem-resistant Acinetobacter baumannii. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 1451–1457. [Google Scholar] [CrossRef]
- Findlay, J.; Poirel, L.; Bouvier, M.; Nordmann, P. In vitro activity of sulbactam-durlobactam against carbapenem-resistant Acinetobacter baumannii and mechanisms of resistance. J. Glob. Antimicrob. Resist. 2022, 30, 445450. [Google Scholar] [CrossRef] [PubMed]
- Principe, L.; Di Bella, S.; Conti, J.; Perilli, M.; Piccirilli, A.; Mussini, C.; Decort, G. Acinetobacter baumannii Resistance to Sulbactam/Durlobactam: A Systematic Review. Antibiotics 2022, 11, 1793. [Google Scholar] [CrossRef] [PubMed]
- Oliva, A.; Liguori, L.; Covino, S.; Petrucci, F.; Cogliati-Dezza, F.; Curtolo, A.; Savelloni, G.; Comi, M.; Sacco, F.; Ceccarelli, G.; et al. Clinical effectiveness of cefiderocol for the treatment of bloodstream infections due to carbapenem-resistant Acinetobacter baumannii during the COVID-19 era: A single center, observational study. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Miltgen, G.; Bour, M.; Allyn, J.; Allou, N.; Vedani, T.; Vuillemenot, J.B.; Triponney, P.; Martinet, O.; Lugagne, N.; Benoit-Cattin, T.; et al. Molecular and epidemiological investigation of a colistin-resistant OXA-23-/NDM-1-producing Acinetobacter baumannii outbreak in the Southwest Indian Ocean Area. Int. J. Antimicrob. Agents 2021, 58, 106402. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.C.; Chen, J.H.K.; Chau, P.H.; So, S.Y.C.; AuYeung, C.H.Y.; Yuen, L.L.H.; Chan, V.W.M.; Lam, G.K.M.; Chiu, K.H.Y.; Ho, P.L.; et al. Gastrointestinal Colonization of Carbapenem-Resistant Acinetobacter baumannii: What Is the Implication for Infection Control? Antibiotics 2022, 11, 1297. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I.; et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019, 39, 10–39. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kazemian, H.; Karami-Zarandi, M.; Heidari, H.; Ghanavati, R.; Khoshnood, S. Antimicrobial combination effects against multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa strains: A cross-sectional study. Health Sci. Rep. 2024, 7, e2061. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tumbarello, M.; Raffaelli, F.; Giannella, M.; Mantengoli, E.; Mularoni, A.; Venditti, M.; De Rosa, F.G.; Sarmati, L.; Bassetti, M.; Brindicci, G.; et al. Ceftazidime-Avibactam Use for Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae Infections: A Retrospective Observational Multicenter Study. Clin. Infect. Dis. 2021, 73, 1664–1676. [Google Scholar] [CrossRef] [PubMed]
- Tiseo, G.; Brigante, G.; Giacobbe, D.R.; Maraolo, A.E.; Gona, F.; Falcone, M.; Giannella, M.; Grossi, P.; Pea, F.; Rossolini, G.M.; et al. Diagnosis and management of infections caused by multidrug-resistant bacteria: Guideline endorsed by the Italian Society of Infection and Tropical Diseases (SIMIT), the Italian Society of Anti-Infective Therapy (SITA), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Association of Clinical Microbiologists (AMCLI) and the Italian Society of Microbiology (SIM). Int. J. Antimicrob. Agents 2022, 60, 106611. [Google Scholar] [PubMed]
- Siegel, J.D.; Rhinehart, E.; Jackson, M.; Chiarello, L. Healthcare Infection Control Practices Advisory Committee. Management of multidrug-resistant organisms in health care settings, 2006. Am. J. Infect. Control 2007, 35 (Suppl. 2), S165–S193. [Google Scholar] [CrossRef] [PubMed]
- Werner, G.; Layer, F.; Weber, R.E.; Neumann, B.; Kresken, M. Re: How to: ECOFFs-the why, the how and the don’ts of EUCAST epidemiological cutoff values. Clin. Microbiol. Infect. 2022, 28, 1028–1029. [Google Scholar] [CrossRef] [PubMed]
Tot | Infection | Colonized | p Value | |
---|---|---|---|---|
Patients, number (%) | 38 | 13 (34%) | 25 (66%) | |
Age(y) median (IQR) | 68 (55–74) | 67 (56–77) | 67 (57–76) | 1.000 |
Male (N, %) | 25 (66%) | 8 (62%) | 17 (68%) | 0.730 |
Immunosuppressed (N, %)
| 14 (40%) | 7 (54%) | 7 (28%) | |
6 (16%) | 5 (40%) | 1 (4%) | 0.162 | |
3 (8%) | 1 (8%) | 2 (8%) | 0.021 | |
3 (8%) | 1 (8%) | 2 (8%) | 1.000 | |
1 (3%) | 1 (4%) | 1.000 | ||
2 (5%) | 2 (8%) | |||
1 (3%) | 1 (4%) | |||
1 (3%) | 1 (8%) | |||
1 (3%) | 1 (4%) | |||
Prior surgery | 7(18%) | 2 (15%) | 5 (20%) | 1.000 |
Charlson, median (IQR) | 4 (2–5) | 4 (2–5) | 4 (2–5) | 1.000 |
Previous antibacterials (N, %) | 31 (82%) | 11 (85%) | 20 (80%) | 1.000 |
ICU days, median (IQR) | 16 (7–21) | 21 (15–30) | 14 (4–18) | 0.391 |
In-hospital stay (median days) | 94 (32–98) | 94 (32–101) | 92 (23–91) | 0.433 |
Reason of in-hospital admission (N, %)
| ||||
6 (16%) | 2 (15%) | 4 (16%) | 1.000 | |
7 (18%) | 4 (31%) | 3 (12%) | 0.202 | |
3 (8%) | 3 (12%) | |||
14 (36%) | 5 (40%) | 9 (36%) | 1.000 | |
3 (8%) | 1 (8%) | 2 (8%) | 1.000 | |
4 (10%) | 1(8%) | 3 (12%) | 1.000 | |
1 (3%) | 1 (4%) | |||
Isolation site (N, %) rectal swab urine upper respiratory tract BAL multiple colonization sites other | ||||
16 (42%) | 3 (23%) | 13(52%) | 0.175 | |
4 (11%) | 4 (16%) | |||
6 (16%) | 2 (15%) | 4 (16%) | 1.000 | |
1 (3%) | 1 (8%) | |||
2 (13%) | 1 (8%) | 1 (4%) | 1.000 | |
3 (8%) | 3 (12%) | |||
Positive blood culture (N, %) peripheral vein central vein | 11 (29%) | 11 (85%) | ||
8 (21%) | 8 (73%) | |||
3 (8%) | 3 (27%) | |||
Ventilator-associated pneumoniae (N, %) | 1 (3%) | 1 (8%) | ||
Time from first positive swab to infection days, median (IQR) | 8 (7–13) | 8 (7–13) | ||
Time from admission to first positive swab, median (IQR) | 15 (6–28) | 19 (5–23) | 14 (5–31) | 0.445 |
Time from admission to infection, median (IQR) | 21 (6–27) | 21 (6–27) | ||
Septic shock (N, %) | 6 (16%) | 6 (46%) | ||
SOFA, median (IQR) | 7 (6–9) | 7 (6–9) | ||
Antimicrobial Therapy (N, %) | ||||
colistin | 11 (30%) | 11 (85%) | ||
cefiderocol | 12 (32%) | 12 (92%) | ||
ampicillin/sulbactam | 2 (5%) | 2 (15%) | ||
other | 5 (13%) | 5 (40%) | ||
CRRT (N, %) | 2 (5%) | 2 (15%) | ||
Antibacterial days, median (IQR) | 9 (6–14) | 12 (6–12) | ||
Clinical outcome (N, %) | ||||
Clinical response at 48 h (N, %) | ||||
None | 3 (23%) | 3 (23%) | ||
Partial response | 6 (46%) | 6 (46%) | ||
Complete | 3 (23%) | 3 (23%) | ||
Clinical response at 7 days (N, %) | ||||
None | 1 (8%) | 1 (8%) | ||
Partial response | 1 (8%) | 1 (8%) | ||
Resolution | 10 (77%) | 10 (77%) | ||
Microbiological cure (N, %) | 9 (24%) | 9 (70%) | ||
Time from antibiotic start to first negative blood culture (N, %) | 3 (1–4) | 3 (1–4) | ||
Outcome (death) (N, %) | 5 (13%) | 4 (30%) | 1 (4%) | 0.004 |
N° | Disc Diffusion (mm) | Microdilution.1 (MIC µg/mL) | Microdilution.2 (MIC µg/mL) | Colistin (MIC µg/mL) |
---|---|---|---|---|
1 | 15 | 4 | 8 | 0.5 |
2 | 16 | 4 | 4 | ≤0.5 |
3 | 16 | 4 | 8 | 0.5 |
4 | 19 | 4 | 8 | 1 |
5 | 15 | 8 | 2 | ≤0.5 |
6 | 16 | 8 | 8 | 0.5 |
7 | 16 | 4 | 4 | 1 |
8 | 15 | 4 | 4 | 1 |
9 | 0 | >32 | 32 | 1 |
10 | 16 | 16 | 16 | 0.5 |
11 | 19 | 8 | 2 | 1 |
12 | 16 | 4 | 2 | 0.5 |
N° | Disc Diffusion (mm) | Micro-Dilution.1 (MIC µg/mL) | Micro-Dilution.2 (MIC µg/mL) | Negative Blood Culture (hours) | Clinical Response, Complete (days) |
---|---|---|---|---|---|
1 | 15 | 4 | 8 | 48 | Partial response at 7 days |
2 | 16 | 4 | 4 | 24 | 2 |
3 | 16 | 4 | 8 | 72 | 2 |
4 | 19 | 4 | 8 | Nd | 7 |
5 | 15 | 8 | 2 | 72 | 7 |
6 | 16 | 8 | 8 | 48 | Dead |
7 | 16 | 4 | 4 | VAP | 7 |
8 | 15 | 4 | 4 | 72 | 2 |
9 | 0 | >32 | 32 | Nd | 7 |
10 | 16 | 16 | 16 | 96 | 7 |
11 | 19 | 8 | 2 | Osteomyelitis | Nd |
12 | 16 | 4 | 2 | 72 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Travi, G.; Peracchi, F.; Merli, M.; Lo Re, N.; Matarazzo, E.; Tartaglione, L.; Bielli, A.; Casalicchio, G.; Crippa, F.; Vismara, C.S.; et al. Cefiderocol-Based Regimen for Acinetobacter NDM-1 Outbreak. Antibiotics 2024, 13, 770. https://doi.org/10.3390/antibiotics13080770
Travi G, Peracchi F, Merli M, Lo Re N, Matarazzo E, Tartaglione L, Bielli A, Casalicchio G, Crippa F, Vismara CS, et al. Cefiderocol-Based Regimen for Acinetobacter NDM-1 Outbreak. Antibiotics. 2024; 13(8):770. https://doi.org/10.3390/antibiotics13080770
Chicago/Turabian StyleTravi, Giovanna, Francesco Peracchi, Marco Merli, Noemi Lo Re, Elisa Matarazzo, Livia Tartaglione, Alessandra Bielli, Giorgia Casalicchio, Fulvio Crippa, Chiara S. Vismara, and et al. 2024. "Cefiderocol-Based Regimen for Acinetobacter NDM-1 Outbreak" Antibiotics 13, no. 8: 770. https://doi.org/10.3390/antibiotics13080770
APA StyleTravi, G., Peracchi, F., Merli, M., Lo Re, N., Matarazzo, E., Tartaglione, L., Bielli, A., Casalicchio, G., Crippa, F., Vismara, C. S., & Puoti, M. (2024). Cefiderocol-Based Regimen for Acinetobacter NDM-1 Outbreak. Antibiotics, 13(8), 770. https://doi.org/10.3390/antibiotics13080770