Isatin Bis-Imidathiazole Hybrids Identified as FtsZ Inhibitors with On-Target Activity Against Staphylococcus aureus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
2.3. In Vitro Antimicrobial Study
2.4. Molecular Dynamics Simulations
2.5. Combined Effect with Derivative 11 and Colistin
2.6. In Vitro Antibiofilm Evaluation
3. Conclusions
4. Materials and Methods
4.1. Chemistry
- Synthesis of New Compounds 3–20
4.2. Microbial Strains and Growth Conditions
4.3. Compounds and Reference Drugs
4.4. Antimicrobial Activity
4.5. Antibiofilm Activity
4.6. Cell Viability and Proliferation Assay
4.7. Hemolytic Assay
4.8. Statistical Analysis
4.9. Computational Details
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Murugaiyan, J.; Kumar, P.A.; Rao, G.S.; Iskandar, K.; Hawser, S.; Hays, J.P.; Mohsen, Y.; Adukkadukkam, S.; Awuah, W.A.; Jose, R.A.M.; et al. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics 2022, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.S.; Vollmer, W.; Goodall, E.C.A.; Capon, R.J.; Henderson, I.R.; Blaskovich, M.A.T. A Review of Antibacterial Candidates with New Modes of Action. ACS Infect. Dis. 2024, 10, 3440–3474. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.P.J.; Wucher, B.R.; Nadell, C.D.; Foster, K.R. Bacterial Defences: Mechanisms, Evolution and Antimicrobial Resistance. Nat. Rev. Microbiol. 2023, 21, 519–534. [Google Scholar] [CrossRef]
- Hurley, K.A.; Santos, T.M.A.; Nepomuceno, G.M.; Huynh, V.; Shaw, J.T.; Weibel, D.B. Targeting the Bacterial Division Protein FtsZ. J. Med. Chem. 2016, 59, 6975–6998. [Google Scholar] [CrossRef]
- Tripathy, S.; Sahu, S.K. FtsZ Inhibitors as a New Genera of Antibacterial Agents. Bioorg. Chem. 2019, 91, 103169. [Google Scholar] [CrossRef]
- Carro, L. Recent Progress in the Development of Small-Molecule FtsZ Inhibitors as Chemical Tools for the Development of Novel Antibiotics. Antibiotics 2019, 8, 217. [Google Scholar] [CrossRef]
- Casiraghi, A.; Suigo, L.; Valoti, E.; Straniero, V. Targeting Bacterial Cell Division: A Binding Site-Centered Approach to the Most Promising Inhibitors of the Essential Protein FtsZ. Antibiotics 2020, 9, 69. [Google Scholar] [CrossRef]
- Ma, S.; Ma, S. The Development of FtsZ Inhibitors as Potential Antibacterial Agents. ChemMedChem 2012, 7, 1161–1172. [Google Scholar] [CrossRef]
- Zhong, D.-X.; She, M.-T.; Guo, X.-C.; Zheng, B.-X.; Huang, X.-H.; Zhang, Y.-H.; Ser, H.-L.; Wong, W.-L.; Sun, N.; Lu, Y.-J. Design and Synthesis of Quinolinium-Based Derivatives Targeting FtsZ for Antibacterial Evaluation and Mechanistic Study. Eur. J. Med. Chem. 2022, 236, 114360. [Google Scholar] [CrossRef]
- Lian, Z.-M.; Sun, J.; Zhu, H.-L. Design, Synthesis and Antibacterial Activity of Isatin Derivatives as FtsZ Inhibitors. J. Mol. Struct. 2016, 1117, 8–16. [Google Scholar] [CrossRef]
- Shu, V.A.; Eni, D.B.; Ntie-Kang, F. A Survey of Isatin Hybrids and Their Biological Properties. Mol. Divers. 2024. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F.; Azad, I.; Asif, M.; Shukla, D.; Husain, A.; Khan, A.R.; Saquib, M.; Nasibullah, M. Isatin Conjugates as Antibacterial Agents: A Brief Review. Med. Chem. 2023, 19, 413–430. [Google Scholar] [CrossRef] [PubMed]
- Nath, P.; Mukherjee, A.; Mukherjee, S.; Banerjee, S.; Das, S.; Banerjee, S. Isatin: A Scaffold with Immense Biodiversity. Mini-Rev. Med. Chem. 2021, 21, 1096–1112. [Google Scholar] [CrossRef]
- Bonvicini, F.; Locatelli, A.; Morigi, R.; Leoni, A.; Gentilomi, G.A. Isatin Bis-Indole and Bis-Imidazothiazole Hybrids: Synthesis and Antimicrobial Activity. Molecules 2022, 27, 5781. [Google Scholar] [CrossRef]
- Paira, P.; Hazra, A.; Kumar, S.; Paira, R.; Sahu, K.B.; Naskar, S.; Saha, P.; Mondal, S.; Maity, A.; Banerjee, S.; et al. Efficient Synthesis of 3,3-Diheteroaromatic Oxindole Analogues and Their In Vitro Evaluation for Spermicidal Potential. Bioorg. Med. Chem. Lett. 2009, 19, 4786–4789. [Google Scholar] [CrossRef]
- Kamal, A.; Srikanth, Y.V.V.; Khan, M.N.A.; Shaik, T.B.; Ashraf, M. Synthesis of 3,3-Diindolyl Oxyindoles Efficiently Catalysed by FeCl3 and Their In Vitro Evaluation for Anticancer Activity. Bioorg. Med. Chem. Lett. 2010, 20, 5229–5231. [Google Scholar] [CrossRef]
- Sæbø, I.; Bjørås, M.; Franzyk, H.; Helgesen, E.; Booth, J. Optimization of the Hemolysis Assay for the Assessment of Cytotoxicity. Int. J. Mol. Sci. 2023, 24, 2914. [Google Scholar] [CrossRef]
- Pradhan, P.; Margolin, W.; Beuria, T.K. Targeting the Achilles Heel of FtsZ: The Interdomain Cleft. Front. Microbiol. 2021, 12, 732796. [Google Scholar] [CrossRef]
- Andreani, A.; Rambaldi, M.; Carloni, P.; Greci, L.; Stipa, P. Imidazo [2,1- b ]Thiazole Carbamates and Acylureas as Potential Insect Control Agents. J. Heterocycl. Chem. 1989, 26, 525–529. [Google Scholar] [CrossRef]
- Richardson, M. 6-Chloroimidazo[2,1-b]Thiazole and Its 5-Substituted Derivatives. US3632816A, 4 January 1972. [Google Scholar]
- Chafeev, M.; Chowdhury, S.; Fraser, R.; Fu, J.; Hou, D.; Kamboj, R.; Liu, S.; Sun, S.; Sun, J.; Sviridov, S.; et al. Oxindole Compounds and Their Uses as Therapeutic Agents—XENON PHARMACEUTICALS. WO2006/113864 A2, October 2006. [Google Scholar]
- Singh, A.; Raghuwanshi, K.; Patel, V.K.; Jain, D.K.; Veerasamy, R.; Dixit, A.; Rajak, H. Assessment of 5-Substituted Isatin as Surface Recognition Group: Design, Synthesis, and Antiproliferative Evaluation of Hydroxamates as Novel Histone Deacetylase Inhibitors. Pharm. Chem. J. 2017, 51, 366–374. [Google Scholar] [CrossRef]
- Wu, Z.; Fang, X.; Leng, Y.; Yao, H.; Lin, A. Indium-mediated Palladium-catalyzed Allylic Alkylation of Isatins with Alkynes. Adv. Synth. Catal. 2018, 360, 1289–1295. [Google Scholar] [CrossRef]
- Lackey, K.; Besterman, J.M.; Fletcher, W.; Leitner, P.; Morton, B.; Sternbach, D.D. Rigid Analogs of Camptothecin as DNA Topoisomerase I Inhibitors. J. Med. Chem. 1995, 38, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Camille, A.; Maginnity, P.M. Maginnity Derivatives of O-, m- and p-Aminobenzotrifluoride. Chestnut Hill Mass Contribution from the Department of Chemistry of Boston College. J. Am. Chem. Soc. 1951, 73, 3579–3580. [Google Scholar]
- Polychronopoulos, P.; Magiatis, P.; Skaltsounis, A.-L.; Myrianthopoulos, V.; Mikros, E.; Tarricone, A.; Musacchio, A.; Roe, S.M.; Pearl, L.; Leost, M.; et al. Structural Basis for the Synthesis of Indirubins as Potent and Selective Inhibitors of Glycogen Synthase Kinase-3 and Cyclin-Dependent Kinases. J. Med. Chem. 2004, 47, 935–946. [Google Scholar] [CrossRef]
- Bonvicini, F.; Manet, I.; Belluti, F.; Gobbi, S.; Rampa, A.; Gentilomi, G.A.; Bisi, A. Targeting the Bacterial Membrane with a New Polycyclic Privileged Structure: A Powerful Tool To Face Staphylococcus aureus Infections. ACS Infect. Dis. 2019, 5, 1524–1534. [Google Scholar] [CrossRef]
- Bonvicini, F.; Belluti, F.; Bisi, A.; Gobbi, S.; Manet, I.; Gentilomi, G.A. Improved Eradication Efficacy of a Combination of Newly Identified Antimicrobial Agents in C. albicans and S. aureus Mixed-Species Biofilm. Res. Microbiol. 2021, 172, 103873. [Google Scholar] [CrossRef] [PubMed]
- Baloyi, I.T.; Adeosun, I.J.; Bonvicini, F.; Cosa, S. Biofilm Reduction, in-Vitro Cytotoxicity and Computational Drug-Likeness of Selected Phytochemicals to Combat Multidrug-Resistant Bacteria. Sci. Afr. 2023, 21, e01814. [Google Scholar] [CrossRef]
- Matsui, T.; Yamane, J.; Mogi, N.; Yamaguchi, H.; Takemoto, H.; Yao, M.; Tanaka, I. Structural Reorganization of the Bacterial Cell-Division Protein FtsZ from Staphylococcus aureus. Acta Crystallogr. D Biol. Crystallogr. 2012, 68, 1175–1188. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from Ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Bayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P.A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. J. Phys. Chem. 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Ben-Shalom, I.Y.; Berryman, J.T.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E.; Cisneros, G.A.; Cruzeiro, V.W.D.; et al. Amber; University of California: San Francisco, CA, USA, 2024. [Google Scholar]
- Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.Py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
Compound | S. aureus | E. coli | C. albicans | Vero |
---|---|---|---|---|
6k 1 | 43.4 ± 5.6 | 102.7 ± 2.4 | 104.1 ± 1.9 | 70.9 ± 5.6 |
6m 1 | 48.1 ± 11.4 | 88.6 ± 6.2 | 81.5 ± 2.0 | 90.7 ± 1.2 |
3 | 104.3 ± 8.5 | 97.0 ± 1.8 | 100.7 ± 3.6 | 90.3 ± 4.2 |
4 | 98.7 ± 0.8 | 99.0 ± 2.9 | 124.6 ± 6.3 | 116.5 ± 4.0 |
5 | 28.8 ± 6.2 | 98.9 ± 1.4 | 102.3 ± 1.5 | 43.5 ± 3.3 |
6 | 101.1 ± 10.1 | 98.7 ± 0.9 | 101.4 ± 1.9 | 38.2 ± 1.5 |
7 | 76.9 ± 1.5 | 106.3 ± 2.1 | 81.1 ± 0.7 | 88.2 ± 1.9 |
8 | 97.9 ± 2.8 | 99.8 ± 2.6 | 64.2 ± 4.3 | 75.2 ± 2.5 |
9 | 80.2 ± 2.6 | 98.3 ± 2.5 | 63.7 ± 1.2 | 98.2 ± 1.5 |
10 | 87.7 ± 2.5 | 94.3 ± 2.7 | 59.6 ± 0.4 | 78.8 ± 5.5 |
11 | 1.4 ± 0.9 | 107.9 ± 2.4 | 108.5 ± 8.5 | 21.13 ± 3.3 |
12 | 110.4 ± 12.8 | 96.6 ± 1.0 | 118.1 ± 0.2 | 56.1 ± 1.1 |
13 | 92.0 ± 4.0 | 96.2 ± 4.0 | 113.7 ± 0.7 | 56.8 ± 0.1 |
14 | 106.8 ± 3.9 | 99.0 ± 0.4 | 115.5 ± 1.2 | 103.6 ± 1.9 |
15 | 33.9 ± 3.3 | 69.5 ± 1.8 | 60.7 ± 1.7 | 100.6 ± 1.5 |
16 | 69.1 ± 4.3 | 69.2 ± 0.9 | 60.3 ± 1.1 | 93.3 ± 1.9 |
17 | 148.8 ± 3.8 | 104.0 ± 1.6 | 131.7 ± 3.9 | 103.1 ± 1.0 |
18 | 100.9 ± 3.1 | 108.7 ± 3.5 | 97.1 ± 0.9 | 93.1 ± 2.9 |
19 | 148.3 ± 4.8 | 95.2 ± 2.6 | 131.2 ± 7.5 | 98.9 ± 2.6 |
20 | 103.9 ± 4.0 | 98.0 ± 1.3 | 108.1 ± 2.7 | 100.6 ± 2.4 |
Compound | IC50 | CC50 | SI 1 |
---|---|---|---|
5 | 75.6 [69.0–82.8] | 115.8 [83.3–161.1] | 1.5 |
11 | 13.8 [12.5–15.2] | 63.3 [58.9–68.0] | 4.6 |
15 | 90.06 [84.6–95.97] | >100 | n.d. 2 |
GMN 3 | 4.0 [3.97–4.05] | n.d. | n.d. |
AMP 3 | 2.56 [2.59–2.72] | n.d. | n.d. |
DOX 3 | n.d. | 70.6 [64.8–77.0] | n.d. |
∆G | ∆H | ∆S | VDW | EEl | EGB | ESURF | |
---|---|---|---|---|---|---|---|
Interdomain cleft | −13.0 | −28.5 | 15.5 | −51.8 | −2.6 | 32.1 | −6.1 |
GTP-binding pocket | 9.4 | −25.8 | 35.2 | −41.8 | −4.8 | 25.9 | −5.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morigi, R.; Esposito, D.; Calvaresi, M.; Marforio, T.D.; Gentilomi, G.A.; Bonvicini, F.; Locatelli, A. Isatin Bis-Imidathiazole Hybrids Identified as FtsZ Inhibitors with On-Target Activity Against Staphylococcus aureus. Antibiotics 2024, 13, 992. https://doi.org/10.3390/antibiotics13100992
Morigi R, Esposito D, Calvaresi M, Marforio TD, Gentilomi GA, Bonvicini F, Locatelli A. Isatin Bis-Imidathiazole Hybrids Identified as FtsZ Inhibitors with On-Target Activity Against Staphylococcus aureus. Antibiotics. 2024; 13(10):992. https://doi.org/10.3390/antibiotics13100992
Chicago/Turabian StyleMorigi, Rita, Daniele Esposito, Matteo Calvaresi, Tainah Dorina Marforio, Giovanna Angela Gentilomi, Francesca Bonvicini, and Alessandra Locatelli. 2024. "Isatin Bis-Imidathiazole Hybrids Identified as FtsZ Inhibitors with On-Target Activity Against Staphylococcus aureus" Antibiotics 13, no. 10: 992. https://doi.org/10.3390/antibiotics13100992
APA StyleMorigi, R., Esposito, D., Calvaresi, M., Marforio, T. D., Gentilomi, G. A., Bonvicini, F., & Locatelli, A. (2024). Isatin Bis-Imidathiazole Hybrids Identified as FtsZ Inhibitors with On-Target Activity Against Staphylococcus aureus. Antibiotics, 13(10), 992. https://doi.org/10.3390/antibiotics13100992