Pharmacokinetics of Vancomycin in Healthy Korean Volunteers and Monte Carlo Simulations to Explore Optimal Dosage Regimens in Patients with Normal Renal Function
Abstract
:1. Introduction
2. Results
2.1. Participants
2.2. Population Pharmacokinetic Analysis
2.3. Comparing Noncompartmental Analysis and Population Pharmacokinetics Results
2.4. Dosage Simulation
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Study Design
4.3. Drug Assay
4.4. Population Pharmacokinetic Analysis
4.5. Noncompartmental Analysis
4.6. Dosage Simulation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasanpour, A.H.; Sepidarkish, M.; Mollalo, A.; Ardekani, A.; Almukhtar, M.; Mechaal, A.; Hosseini, S.R.; Bayani, M.; Javanian, M.; Rostami, A. The global prevalence of methicillin-resistant Staphylococcus aureus colonization in residents of elderly care centers: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control. 2023, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Yoon, E.J.; Kim, D.; Jeong, S.H.; Won, E.J.; Shin, J.H.; Kim, S.H.; Shin, J.H.; Shin, K.S.; Kim, Y.A.; et al. Antimicrobial resistance of major clinical pathogens in South Korea, May 2016 to April 2017: First one-year report from Kor-GLASS. Eurosurveillance 2018, 23, 1800047. [Google Scholar] [CrossRef] [PubMed]
- Ju, G.; Zhang, Y.; Ye, C.; Liu, Q.; Sun, H.; Zhang, Z.; Huang, X.; Jiang, Y.; Huang, Q. Comparative effectiveness and safety of six antibiotics in treating MRSA infections: A network meta-analysis. Int. J. Infect. Dis. 2024, 146, 107109. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health-Syst. Pharm. 2020, 77, 835–864. [Google Scholar] [CrossRef]
- Jung, Y.; Lee, D.H.; Kim, H.S. Prospective Cohort Study of Population Pharmacokinetics and Pharmacodynamic Target Attainment of Vancomycin in Adults on Extracorporeal Membrane Oxygenation. Antimicrob. Agents Chemother. 2021, 65, 10–1128. [Google Scholar] [CrossRef]
- Hodiamont, C.J.; Juffermans, N.P.; Berends, S.E.; van Vessem, D.J.; Hakkens, N.; Mathot, R.A.A.; de Jong, M.D.; van Hest, R.M. Impact of a vancomycin loading dose on the achievement of target vancomycin exposure in the first 24 h and on the accompanying risk of nephrotoxicity in critically ill patients. J. Antimicrob. Chemother. 2021, 76, 2941–2949. [Google Scholar] [CrossRef]
- Chen, M.; Lee, C.; Gnyra, M.; Wong, M. Vancomycin area under the curve/minimum inhibitory concentration and trough level concordance-evaluation on an urban health unit. Ther. Adv. Infect. Dis. 2022, 9, 20499361221140368. [Google Scholar] [CrossRef]
- Sahraei, Z.; Saffaei, A.; Alavi Darazam, I.; Salamzadeh, J.; Shabani, M.; Shokouhi, S.; Sarvmeili, N.; Hajiesmaeili, M.; Zangi, M. Evaluation of vancomycin pharmacokinetics in patients with augmented renal clearances: A randomized clinical trial. Front. Pharmacol. 2022, 13, 1041152. [Google Scholar] [CrossRef]
- Tazerouni, H.; Labbani-Motlagh, Z.; Amini, S.; Shahrami, B.; Sajjadi-Jazi, S.M.; Afhami, S.; Gholami, K.; Sadeghi, K. Population pharmacokinetics of vancomycin in patients with diabetic foot infection: A comparison of five models. J. Diabetes Metab. Disord. 2023, 22, 1385–1390. [Google Scholar] [CrossRef]
- Du Bois, D.; Du Bois, E.F. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 1989, 5, 303–311, discussion 312–303. [Google Scholar]
- Wetzels, J.F.; Kiemeney, L.A.; Swinkels, D.W.; Willems, H.L.; den Heijer, M. Age-and gender-specific reference values of estimated GFR in Caucasians: The Nijmegen Biomedical Study. Kidney Int. 2007, 72, 632–637. [Google Scholar] [CrossRef] [PubMed]
- van den Brand, J.A.; van Boekel, G.A.; Willems, H.L.; Kiemeney, L.A.; den Heijer, M.; Wetzels, J.F. Introduction of the CKD-EPI equation to estimate glomerular filtration rate in a Caucasian population. Nephrol. Dial. Transplant. 2011, 26, 3176–3181. [Google Scholar] [CrossRef] [PubMed]
- Delanaye, P.; Glassock, R.J.; Pottel, H.; Rule, A.D. An Age-Calibrated Definition of Chronic Kidney Disease: Rationale and Benefits. Clin. Biochem. Rev. 2016, 37, 17–26. [Google Scholar] [PubMed]
- Colin, P.J.; Allegaert, K.; Thomson, A.H.; Touw, D.J.; Dolton, M.; de Hoog, M.; Roberts, J.A.; Adane, E.D.; Yamamoto, M.; Santos-Buelga, D.; et al. Vancomycin Pharmacokinetics Throughout Life: Results from a Pooled Population Analysis and Evaluation of Current Dosing Recommendations. Clin. Pharmacokinet. 2019, 58, 767–780. [Google Scholar] [CrossRef]
- Aljutayli, A.; Marsot, A.; Nekka, F. An Update on Population Pharmacokinetic Analyses of Vancomycin, Part I: In Adults. Clin. Pharmacokinet. 2020, 59, 671–698. [Google Scholar] [CrossRef]
- Lin, W.W.; Wu, W.; Jiao, Z.; Lin, R.F.; Jiang, C.Z.; Huang, P.F.; Liu, Y.W.; Wang, C.L. Population pharmacokinetics of vancomycin in adult Chinese patients with post-craniotomy meningitis and its application in individualised dosage regimens. Eur. J. Clin. Pharmacol. 2016, 72, 29–37. [Google Scholar] [CrossRef]
- Li, X.; Wu, Y.; Sun, S.; Zhao, Z.; Wang, Q. Population Pharmacokinetics of Vancomycin in Postoperative Neurosurgical Patients and the Application in Dosing Recommendation. J. Pharm. Sci. 2016, 105, 3425–3431. [Google Scholar] [CrossRef]
- Jarkowski, A., 3rd; Forrest, A.; Sweeney, R.P.; Tan, W.; Segal, B.H.; Almyroudis, N.; Wang, E.S.; Wetzler, M. Characterization of vancomycin pharmacokinetics in the adult acute myeloid leukemia population. J. Oncol. Pharm. Pr. 2012, 18, 91–96. [Google Scholar] [CrossRef]
- Mali, N.B.; Deshpande, S.P.; Wandalkar, P.P.; Gupta, V.A.; Karnik, N.D.; Gogtay, N.J.; Nataraj, G.; Mehta, P.R.; Thatte, U. Single-dose and Steady-state Pharmacokinetics of Vancomycin in Critically Ill Patients Admitted to Medical Intensive Care Unit of India. Indian J. Crit. Care Med. 2019, 23, 513–517. [Google Scholar] [CrossRef]
- Elder, K.; Hill, D.M.; Hickerson, W.L. Characterization of variables for potential impact on vancomycin pharmacokinetics in thermal or inhalation injury. Burns 2018, 44, 658–664. [Google Scholar] [CrossRef]
- He, J.; Yang, Z.T.; Qian, X.; Zhao, B.; Mao, E.Q.; Chen, E.Z.; Bian, X.L. A higher dose of vancomycin is needed in critically ill patients with augmented renal clearance. Transl. Androl. Urol. 2020, 9, 2166–2171. [Google Scholar] [CrossRef] [PubMed]
- Tesfamariam, N.S.; Aboelezz, A.; Mahmoud, S.H. The Impact of Augmented Renal Clearance on Vancomycin Pharmacokinetics and Pharmacodynamics in Critically Ill Patients. J. Clin. Med. 2024, 13, 2317. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; He, N.; Zhang, Y.; Wang, C.; Zhai, S.; Zhang, C. Population Pharmacokinetic Modeling and Dose Optimization of Vancomycin in Chinese Patients with Augmented Renal Clearance. Antibiotics 2021, 10, 1238. [Google Scholar] [CrossRef]
- Vu, D.H.; Nguyen, D.A.; Delattre, I.K.; Ho, T.T.; Do, H.G.; Pham, H.N.; Dao, X.C.; Tran, N.T.; Nguyen, G.B.; Van Bambeke, F.; et al. Determination of optimal loading and maintenance doses for continuous infusion of vancomycin in critically ill patients: Population pharmacokinetic modelling and simulations for improved dosing schemes. Int. J. Antimicrob. Agents 2019, 54, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Cockcroft, D.W.; Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F.; Chronic Kidney Disease Epidemiology, C. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine-and Cystatin C-Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Bae, K.S. NonCompart: Noncompartmental Analysis for Pharmacokinetic Data, Version 0.7.0; published 15 November 2023. Available online: https://cran.r-project.org/web/packages/NonCompart/index.html (accessed on 11 June 2024).
Parameters | Mean (CV%) | Median (1Q–3Q) |
---|---|---|
Demographic characteristics | ||
Age, years | 35.9 (29.4) | 38.5 (31.5–43.3) |
Height, cm | 170 (4.16) | 172 (164–175) |
Weight, kg | 70.0 (18.0) | 69.5 (60.7–78.2) |
Body surface area, m2 | 1.81 (10.1) | 1.80 (1.70–1.92) |
Body mass index, kg/m2 | 24.0 (13.4) | 23.3 (21.4–26.5) |
Laboratory characteristics | ||
Protein, g/dL | 7.53 (6.00) | 7.45 (7.30–7.55) |
Albumin, g/dL | 4.80 (3.97) | 4.80 (4.68–5.00) |
Cystatin C, mg/dL | 0.717 (21.1) | 0.720 (0.595–0.805) |
Creatinine, mg/dL | 0.866 (22.2) | 0.895 (0.753–1.01) |
Blood urea nitrogen, mg/dL | 13.4 (23.9) | 12.8 (11.1–14.5) |
Alanine aminotransferase, U/L | 14.5 (39.7) | 12.0 (10.0–20.0) |
Aspartate aminotransferase, U/L | 18.0 (21.6) | 18.5 (17.0–20.5) |
Gamma-glutamyl transferase, U/L | 20.8 (61.8) | 15.5 (14.0–22.0) |
Renal functions | ||
CLCR, CG (mL/min) a | 117 (29.1) | 113 (102–124) |
CLCR, normalised CG (mL/min/1.73 m2) b | 112 (27.1) | 106 (102–116) |
eGFR, MDRD (mL/min/1.73 m2) c | 98.3 (21.9) | 96.9 (84.9–104) |
eGFR, CKD-EPICR (mL/min/1.73 m2) d | 109 (13.5) | 110 (98.7–116) |
eGFR, CKD-EPICR-CYS (mL/min/1.73 m2) e | 118 (13.0) | 120 (111–125) |
eGFR, adjusted MDRD (mL/min) f | 102 (22.6) | 99.1 (93.3–110) |
eGFR, adjusted CKD-EPICR (mL/min) f | 113 (14.9) | 113 (104–121) |
eGFR, adjusted CKD-EPICR-CYS (mL/min) f | 123 (14.9) | 129 (115–134) |
Parameter | Estimates | RSE (%) [Shrinkage, %] | Bootstrap Median (95% CI) |
---|---|---|---|
Structural model | |||
CL = θ1 × (WT/69.45) θ2 × (AGE/38.5) θ3 | |||
θ1 (L/h) | 8.83 | 3.16 | 8.78 (8.14–9.6) |
θ2 | 1.28 | 8.13 | 1.30 (0.955–1.58) |
θ3 | −0.377 | 19.2 | −0.376 (−0.584–−0.129) |
V1 = θ4 | |||
θ4 (L) | 12.9 | 26.4 | 12.8 (3.94–19.6) |
Q = θ5 × (WT/69.45) θ6 | |||
θ5 (L/h) | 20.2 | 10.0 | 20.4 (16.8–28.2) |
θ6 | 2.38 | 17.6 | 2.31 (1.36–3.35) |
V2 = θ7 × (BSA/1.80) θ8 | |||
θ7 (L) | 27.4 | 4.17 | 27.8 (25.0–31.0) |
θ8 | 3.09 | 11.7 | 3.13 (1.79–3.73) |
Interindividual variability | |||
CL (%) | 7.98 | 18.3 [9.92] | 6.90 (1.65–9.52) |
V1 (%) | 47.4 f | [16.6] | |
Residual variability | |||
Proportional error (%) | 6.94 | 9.21 [13.3] | 6.79 (5.22–8.02) |
Parameters | Unit | Mean (CV%) | Median (IQR) |
---|---|---|---|
NCA results | |||
Cmax | mg/L | 23.4 (34.4) | 20.8 (17.0–27.1) |
Clast | h | 4.68 (33.9) | 4.65 (3.13–5.90) |
Tlast | mg/L | 7.99 (1.93) | 7.99 (7.88–8.10) |
AUClast | mg·h/L | 78.7 (28.2) | 73.6 (58.5–90.4) |
AUCinf | mg·h/L | 106 (30.5) | 97.1 (76.1–140) |
AUMClast | mg·h2/L | 289 (26.7) | 279 (217–341) |
AUMCinf | mg·h2/L | 667 (40.0) | 587 (464–807) |
MRTinf | h | 5.12 (18.9) | 4.98 (4.46–5.60) |
CLNCA | L/h/kg | 0.146 (19.8) | 0.135 (0.128–0.160) |
VzZNCA | L/kg | 0.793 (15.4) | 0.806 (0.701–0.873) |
VssNCA | L/kg | 0.730 (15.7) | 0.714 (0.650–0.802) |
t1/2λz | h | 3.87 (21.3) | 3.58 (3.34–4.25) |
Population PK results | |||
CL | L/h/kg | 0.135 (17.0) | 0.131 (0.117–0.144) |
VC | L/kg | 0.211 (48.0) | 0.163 (0.144–0.251) |
Vss | L/kg | 0.611 (16.5) | 0.593 (0.565–0.650) |
AUCtau | mg·h/L | 113 (28.9) | 111 (81.9–137) |
t1/2α | h | 0.270 (42.7) | 0.259 (0.177–0.300) |
t1/2β | h | 3.88 (12.5) | 3.84 (3.63–4.26) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.K.; Kim, D.; Kang, G.; Zang, D.Y.; Lee, D.-H. Pharmacokinetics of Vancomycin in Healthy Korean Volunteers and Monte Carlo Simulations to Explore Optimal Dosage Regimens in Patients with Normal Renal Function. Antibiotics 2024, 13, 993. https://doi.org/10.3390/antibiotics13100993
Kim YK, Kim D, Kang G, Zang DY, Lee D-H. Pharmacokinetics of Vancomycin in Healthy Korean Volunteers and Monte Carlo Simulations to Explore Optimal Dosage Regimens in Patients with Normal Renal Function. Antibiotics. 2024; 13(10):993. https://doi.org/10.3390/antibiotics13100993
Chicago/Turabian StyleKim, Yong Kyun, Doee Kim, Gaeun Kang, Dae Young Zang, and Dong-Hwan Lee. 2024. "Pharmacokinetics of Vancomycin in Healthy Korean Volunteers and Monte Carlo Simulations to Explore Optimal Dosage Regimens in Patients with Normal Renal Function" Antibiotics 13, no. 10: 993. https://doi.org/10.3390/antibiotics13100993
APA StyleKim, Y. K., Kim, D., Kang, G., Zang, D. Y., & Lee, D. -H. (2024). Pharmacokinetics of Vancomycin in Healthy Korean Volunteers and Monte Carlo Simulations to Explore Optimal Dosage Regimens in Patients with Normal Renal Function. Antibiotics, 13(10), 993. https://doi.org/10.3390/antibiotics13100993