Microbiome and Resistome Studies of the Lithuanian Baltic Sea Coast and the Curonian Lagoon Waters and Sediments
Abstract
:1. Introduction
2. Results
2.1. Bacterial Richness and General Community Composition on Phylum and Class Level
2.2. Correlation Between the Ten Most Abundant Classes of Bacteria and Environmental Parameters
2.3. Profiles of Environmental Antibiotic Resistomes in Water and Sediment Samples of the Curonian Lagoon and Lithuanian Baltic Sea Coast
2.3.1. Extended Profiles of Environmental ARGs, MGEs, MDRs, and Others
2.3.2. Detection of Veterinary and Clinical Importance ARGs and MDRs
3. Discussion
3.1. Dominance and Variation of Bacterial Phyla and Classes
3.2. Antibiotic Resistance Genes
4. Materials and Methods
4.1. Study Area and Sample Collection
4.2. DNA Extraction and Preparation
4.3. Microbiome Analysis
4.4. High-Throughput Quantitative PCR Analysis
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, Present and Future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.T.; Santos, L. Antibiotics in the Aquatic Environments: A Review of the European Scenario. Environ. Int. 2016, 94, 736–757. [Google Scholar] [CrossRef] [PubMed]
- Arsène, M.M.J.; Davares, A.K.L.; Viktorovna, P.I.; Andreevna, S.L.; Sarra, S.; Khelifi, I.; Sergueïevna, D.M. The Public Health Issue of Antibiotic Residues in Food and Feed: Causes, Consequences, and Potential Solutions. Vet. World 2022, 15, 662. [Google Scholar] [CrossRef]
- Sosa-Hernández, J.E.; Rodas-Zuluaga, L.I.; López-Pacheco, I.Y.; Melchor-Martínez, E.M.; Aghalari, Z.; Limón, D.S.; Iqbal, H.M.N.; Parra-Saldívar, R. Sources of Antibiotics Pollutants in the Aquatic Environment under SARS-CoV-2 Pandemic Situation. Case Stud. Chem. Environ. Eng. 2021, 4, 100127. [Google Scholar] [CrossRef]
- Suzdalev, S. Antibiotikai Ir Kitos Farmacinės Medžiagos Mus Supančioje Aplinkoje: Ką Apie Tai Žinome? In Proceedings of the Nuotolinė Konferencija, Antimikrobinis Atsparumas COVID-19 Infekcijos Kontekste, Kaunas, Lietuvos, 18 November 2020. [Google Scholar]
- Kuroda, K.; Li, C.; Dhangar, K.; Kumar, M. Predicted Occurrence, Ecotoxicological Risk and Environmentally Acquired Resistance of Antiviral Drugs Associated with COVID-19 in Environmental Waters. Sci. Total Environ. 2021, 776, 145740. [Google Scholar] [CrossRef]
- Wright, G.D. The Antibiotic Resistome: The Nexus of Chemical and Genetic Diversity. Nat. Rev. Microbiol. 2007, 5, 175–186. [Google Scholar] [CrossRef]
- Zhuang, M.; Achmon, Y.; Cao, Y.; Liang, X.; Chen, L.; Wang, H.; Siame, B.A.; Leung, K.Y. Distribution of Antibiotic Resistance Genes in the Environment. Environ. Pollut. 2021, 285, 117402. [Google Scholar] [CrossRef]
- Merk, H.; Diaz Högberg, L.; Plachouras, D.; Suetens, C.; Monnet, D.L. Assessing the Health Burden of Infections with Antibiotic-Resistant Bacteria in the EU/EEA, 2016–2020; ECDC: Stockholm, Sweden, 2022. [Google Scholar] [CrossRef]
- Wang, F.H.; Qiao, M.; Su, J.Q.; Chen, Z.; Zhou, X.; Zhu, Y.G. High Throughput Profiling of Antibiotic Resistance Genes in Urban Park Soils with Reclaimed Water Irrigation. Environ. Sci. Technol. 2014, 48, 9079–9085. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Chen, H.; Li, N.; Wang, T.; Liang, W. The Spread of Antibiotic Resistance Genes In Vivo Model. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 3348695. [Google Scholar] [CrossRef]
- Lai, F.Y.; Muziasari, W.; Virta, M.; Wiberg, K.; Ahrens, L. Profiles of Environmental Antibiotic Resistomes in the Urban Aquatic Recipients of Sweden Using High-Throughput Quantitative PCR Analysis. Environ. Pollut. 2021, 287, 117651. [Google Scholar] [CrossRef]
- Hatosy, S.M.; Martiny, A.C. The Ocean as a Global Reservoir of Antibiotic Resistance Genes. Appl. Environ. Microbiol. 2015, 81, 7593–7599. [Google Scholar] [CrossRef] [PubMed]
- Tamminen, M.; Karkman, A.; Lõhmus, A.; Muziasari, W.I.; Takasu, H.; Wada, S.; Suzuki, S.; Virta, M. Tetracycline Resistance Genes Persist at Aquaculture Farms in the Absence of Selection Pressure. Environ. Sci. Technol. 2011, 45, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Muziasari, W.I.; Pitkänen, L.K.; Sørum, H.; Stedtfeld, R.D.; Tiedje, J.M.; Virta, M. The Resistome of Farmed Fish Feces Contributes to the Enrichment of Antibiotic Resistance Genes in Sediments below Baltic Sea Fish Farms. Front. Microbiol. 2017, 7, 2137. [Google Scholar] [CrossRef]
- Muziasari, W.I.; Managaki, S.; Pärnänen, K.; Karkman, A.; Lyra, C.; Tamminen, M.; Suzuki, S.; Virta, M. Sulphonamide and Trimethoprim Resistance Genes Persist in Sediments at Baltic Sea Aquaculture Farms but Are Not Detected in the Surrounding Environment. PLoS ONE 2014, 9, e92702. [Google Scholar] [CrossRef] [PubMed]
- Muziasari, W.I.; Pärnänen, K.; Johnson, T.A.; Lyra, C.; Karkman, A.; Stedtfeld, R.D.; Tamminen, M.; Tiedje, J.M.; Virta, M. Aquaculture Changes the Profile of Antibiotic Resistance and Mobile Genetic Element Associated Genes in Baltic Sea Sediments. FEMS Microbiol. Ecol. 2016, 92, fiw052. [Google Scholar] [CrossRef]
- Umgiesser, G.; Ferrarin, C.; Cucco, A.; De Pascalis, F.; Bellafiore, D.; Ghezzo, M.; Bajo, M. Comparative Hydrodynamics of 10 Mediterranean Lagoons by Means of Numerical Modeling. J. Geophys. Res. Ocean. 2014, 119, 2212–2226. [Google Scholar] [CrossRef]
- Li, S.; Gao, H.; Zhang, H.; Wei, G.; Shu, Q.; Li, R.; Jin, S.; Na, G.; Shi, Y. The Fate of Antibiotic Resistance Genes in the Coastal Lagoon with Multiple Functional Zones. J. Environ. Sci. 2023, 128, 93–106. [Google Scholar] [CrossRef]
- Zhou, S.Y.D.; Yang, K.; Neilson, R.; Li, H.; Li, H.Z.; Zhou, Y.Y.; Liu, J.; Su, J.Q.; Huang, F.Y. Long-Term Seawall Barriers Lead to the Formation of an Urban Coastal Lagoon with Increased Antibiotic Resistome. J. Environ. Manag. 2024, 351, 119721. [Google Scholar] [CrossRef]
- Gasiūnaitė, Z.R.; Daunys, D.; Olenin, S.; Razinkovas, A. The Curonian Lagoon; Springer: Berlin/Heidelberg, Germany, 2008; pp. 197–215. [Google Scholar]
- Gyraite, G.; Kataržytė, M.; Overlingė, D.; Vaičiūtė, D.; Jonikaitė, E.; Schernewski, G. Skip the Dip—Avoid the Risk? Integrated Microbiological Water Quality Assessment in the South-Eastern Baltic Sea Coastal Waters. Water 2020, 12, 3146. [Google Scholar] [CrossRef]
- Liu, M.; Li, Q.; Sun, H.; Jia, S.; He, X.; Li, M.; Zhang, X.X.; Ye, L. Impact of Salinity on Antibiotic Resistance Genes in Wastewater Treatment Bioreactors. Chem. Eng. J. 2018, 338, 557–563. [Google Scholar] [CrossRef]
- Sabtu, N.; Enoch, D.A.; Brown, N.M. Antibiotic Resistance: What, Why, Where, When and How? Br. Med. Bull. 2015, 116, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Overlingė, D.; Kataržytė, M.; Vaičiūtė, D.; Gyraite, G.; Gečaitė, I.; Jonikaitė, E.; Mazur-Marzec, H. Are There Concerns Regarding CHAB in Coastal Bathing Waters Affected by Freshwater-Brackish Continuum? Mar. Pollut. Bull. 2020, 159, 111500. [Google Scholar] [CrossRef]
- Vaz-Moreira, I.; Nunes, O.C.; Manaia, C.M. Bacterial Diversity and Antibiotic Resistance in Water Habitats: Searching the Links with the Human Microbiome. FEMS Microbiol. Rev. 2014, 38, 761–778. [Google Scholar] [CrossRef]
- Kim, M.J.; Kang, D.; Lee, G.D.; Kim, K.; Kim, J.; Shin, J.H.; Lee, S. Interplays between Cyanobacterial Blooms and Antibiotic Resistance Genes. Environ. Int. 2023, 181, 108268. [Google Scholar] [CrossRef]
- Moskot, M.; Kotlarska, E.; Jakóbkiewicz-Banecka, J.; Gabig-Cimińska, M.; Fari, K.; Wegrzyn, G.; Wróbel, B. Metal and Antibiotic Resistance of Bacteria Isolated from the Baltic Sea. Int. Microbiol. 2012, 15, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Laas, P.; Simm, J.; Lips, I.; Metsis, M. Spatial Variability of Winter Bacterioplankton Community Composition in the Gulf of Finland (the Baltic Sea). J. Mar. Syst. 2014, 129, 127–134. [Google Scholar] [CrossRef]
- Orellana, L.H.; Ben Francis, T.; Ferraro, M.; Hehemann, J.H.; Fuchs, B.M.; Amann, R.I. Verrucomicrobiota Are Specialist Consumers of Sulfated Methyl Pentoses during Diatom Blooms. ISME J. 2021, 16, 630–641. [Google Scholar] [CrossRef]
- Macdonald, J.F.H.; Pérez-García, P.; Schneider, Y.K.H.; Blümke, P.; Indenbirken, D.; Andersen, J.H.; Krohn, I.; Streit, W.R. Community Dynamics and Metagenomic Analyses Reveal Bacteroidota’s Role in Widespread Enzymatic Fucus vesiculosus Cell Wall Degradation. Sci. Rep. 2024, 14, 10237. [Google Scholar] [CrossRef]
- Pu, H.; Yuan, Y.; Qin, L.; Liu, X. PH Drives Differences in Bacterial Community β-Diversity in Hydrologically Connected Lake Sediments. Microorganisms 2023, 11, 676. [Google Scholar] [CrossRef]
- Sun, Q.L.; Xu, K.; Cao, L.; Du, Z.; Wang, M.; Sun, L. Nitrogen and Sulfur Cycling Driven by Campylobacterota in the Sediment–Water Interface of Deep-Sea Cold Seep: A Case in the South China Sea. mBio 2023, 14, e0011723. [Google Scholar] [CrossRef]
- Pitkänen, T. Review of Campylobacter Spp. in Drinking and Environmental Waters. J. Microbiol. Methods 2013, 95, 39–47. [Google Scholar] [CrossRef]
- Kalvaitienė, G.; Vaičiūtė, D.; Bučas, M.; Gyraitė, G.; Kataržytė, M. Macrophytes and Their Wrack as a Habitat for Faecal Indicator Bacteria and Vibrio in Coastal Marine Environments. Mar. Pollut. Bull. 2023, 194, 115325. [Google Scholar] [CrossRef] [PubMed]
- Kalvaitienė, G.; Picazo Espinosa, R.; Vaičiūtė, D.; Kataržytė, M. Diverse Sources of Fecal Contamination in Macroalgae Wrack-Affected Environment Adjacent to River Outflow along the Baltic Sea Coast. Environ. Pollut. 2024, 357, 124429. [Google Scholar] [CrossRef] [PubMed]
- Zilius, M.; Giordani, G.; Petkuviene, J.; Lubiene, I.; Ruginis, T.; Bartoli, M. Phosphorus Mobility under Short-Term Anoxic Conditions in Two Shallow Eutrophic Coastal Systems (Curonian and Sacca Di Goro Lagoons). Estuar. Coast. Shelf Sci. 2015, 164, 134–146. [Google Scholar] [CrossRef]
- Giner-Lamia, J.; Huerta-Cepas, J. Exploring the Sediment-Associated Microbiota of the Mar Menor Coastal Lagoon. Front. Mar. Sci. 2024, 11, 1319961. [Google Scholar] [CrossRef]
- Hug, L.A.; Castelle, C.J.; Wrighton, K.C.; Thomas, B.C.; Sharon, I.; Frischkorn, K.R.; Williams, K.H.; Tringe, S.G.; Banfield, J.F. Community Genomic Analyses Constrain the Distribution of Metabolic Traits across the Chloroflexi Phylum and Indicate Roles in Sediment Carbon Cycling. Microbiome 2013, 1, 22. [Google Scholar] [CrossRef]
- Godinho, O.; Devos, D.P.; Quinteira, S.; Lage, O.M. The Influence of the Phylum Planctomycetota in the Environmental Resistome. Res. Microbiol. 2024, 175, 104196. [Google Scholar] [CrossRef]
- Zhang, A.N.; Gaston, J.M.; Dai, C.L.; Zhao, S.; Poyet, M.; Groussin, M.; Yin, X.; Li, L.G.; van Loosdrecht, M.C.M.; Topp, E.; et al. An Omics-Based Framework for Assessing the Health Risk of Antimicrobial Resistance Genes. Nat. Commun. 2021, 12, 4765. [Google Scholar] [CrossRef]
- Clark, N.C.; Olsvik, Ø.; Swenson, J.M.; Spiegel, C.A.; Tenover, F.C. Detection of a Streptomycin/Spectinomycin Adenylyltransferase Gene (AadA) in Enterococcus Faecalis. Antimicrob. Agents Chemother. 1999, 43, 157. [Google Scholar] [CrossRef]
- Sha, Y.; Lin, N.; Zhang, G.; Zhang, Y.; Zhao, J.; Lu, J.; Zhu, T.; Zhang, X.; Li, Q.; Zhang, H.; et al. Identification and Characterization of a Novel Chromosomal Aminoglycoside 3′-O-Phosphotransferase, APH(3′)-Id, from Kluyvera Intermedia DW18 Isolated from the Sewage of an Animal Farm. Front. Microbiol. 2023, 14, 1224464. [Google Scholar] [CrossRef]
- Stanton, I.C.; Murray, A.K.; Zhang, L.; Snape, J.; Gaze, W.H. Evolution of Antibiotic Resistance at Low Antibiotic Concentrations Including Selection below the Minimal Selective Concentration. Commun. Biol. 2020, 3, 467. [Google Scholar] [CrossRef] [PubMed]
- Ounissi, H.; Courvalin, P. Nucleotide Sequence of the Gene EreA Encoding the Erythromycin Esterase in Escherichia Coli. Gene 1985, 35, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Bonomo, R.A. β-Lactamases: A Focus on Current Challenges. Cold Spring Harb. Perspect. Med. 2017, 7, a025239. [Google Scholar] [CrossRef] [PubMed]
- Catalano, A.; Iacopetta, D.; Ceramella, J.; Scumaci, D.; Giuzio, F.; Saturnino, C.; Aquaro, S.; Rosano, C.; Sinicropi, M.S. Multidrug Resistance (MDR): A Widespread Phenomenon in Pharmacological Therapies. Molecules 2022, 27, 616. [Google Scholar] [CrossRef] [PubMed]
- Remeikaitė-Nikienė, N.; Garnaga-Budrė, G.; Lujanienė, G.; Jokšas, K.; Stankevičius, A.; Malejevas, V.; Barisevičiūtė, R. Distribution of metals and extent of contamination in sediments from the south-eastern Baltic Sea (Lithuanian zone). Oceanologia 2018, 60, 193–206. [Google Scholar] [CrossRef]
- Wang, R.; Van Dorp, L.; Shaw, L.P.; Bradley, P.; Wang, Q.; Wang, X.; Jin, L.; Zhang, Q.; Liu, Y.; Rieux, A.; et al. The Global Distribution and Spread of the Mobilized Colistin Resistance Gene Mcr-1. Nat. Commun. 2018, 9, 1179. [Google Scholar] [CrossRef]
- Ruzauskas, M.; Vaskeviciute, L. Detection of the Mcr-1 Gene in Escherichia Coli Prevalent in the Migratory Bird Species Larus Argentatus. J. Antimicrob. Chemother. 2016, 71, 2333–2334. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Hu, H.W.; Yan, H.; Wang, J.T.; Lam, S.K.; Chen, Q.L.; Chen, D.; He, J.Z. Salinity as a Predominant Factor Modulating the Distribution Patterns of Antibiotic Resistance Genes in Ocean and River Beach Soils. Sci. Total Environ. 2019, 668, 193–203. [Google Scholar] [CrossRef]
- Xu, Y.; You, G.; Yin, J.; Zhang, M.; Peng, D.; Xu, J.; Yang, S.; Hou, J. Salt Tolerance Evolution Facilitates Antibiotic Resistome in Soil Microbiota: Evidences from Dissemination Evaluation, Hosts Identification and Co-Occurrence Exploration. Environ. Pollut. 2023, 317, 120830. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Y.; Wu, J.; Wang, J.; Zhang, C.; Wu, J. Fate of Land-Based Antibiotic Resistance Genes in Marginal-Sea Sediment: Territorial Differentiation and Corresponding Drivers. Chemosphere 2022, 288, 132540. [Google Scholar] [CrossRef]
- Teufel, M.; Sobetzko, P. Reducing Costs for DNA and RNA Sequencing by Sample Pooling Using a Metagenomic Approach. BMC Genom. 2022, 23, 613. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Babraham Bioinformatics—FastQC A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 19 September 2024).
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glöckner, F.O. SILVA: A Comprehensive Online Resource for Quality Checked and Aligned Ribosomal RNA Sequence Data Compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef]
- Pedregosa FABIANPEDREGOSA, F.; Michel, V.; Grisel OLIVIERGRISEL, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Vanderplas, J.; Cournapeau, D.; Pedregosa, F.; Varoquaux, G.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Robeson, M.S.; O’Rourke, D.R.; Kaehler, B.D.; Ziemski, M.; Dillon, M.R.; Foster, J.T.; Bokulich, N.A. RESCRIPt: Reproducible Sequence Taxonomy Reference Database Management. PLoS Comput. Biol. 2021, 17, e1009581. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing Taxonomic Classification of Marker-Gene Amplicon Sequences with QIIME 2’s Q2-Feature-Classifier Plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyraitė, G.; Kataržytė, M.; Espinosa, R.P.; Kalvaitienė, G.; Lastauskienė, E. Microbiome and Resistome Studies of the Lithuanian Baltic Sea Coast and the Curonian Lagoon Waters and Sediments. Antibiotics 2024, 13, 1013. https://doi.org/10.3390/antibiotics13111013
Gyraitė G, Kataržytė M, Espinosa RP, Kalvaitienė G, Lastauskienė E. Microbiome and Resistome Studies of the Lithuanian Baltic Sea Coast and the Curonian Lagoon Waters and Sediments. Antibiotics. 2024; 13(11):1013. https://doi.org/10.3390/antibiotics13111013
Chicago/Turabian StyleGyraitė, Greta, Marija Kataržytė, Rafael Picazo Espinosa, Greta Kalvaitienė, and Eglė Lastauskienė. 2024. "Microbiome and Resistome Studies of the Lithuanian Baltic Sea Coast and the Curonian Lagoon Waters and Sediments" Antibiotics 13, no. 11: 1013. https://doi.org/10.3390/antibiotics13111013
APA StyleGyraitė, G., Kataržytė, M., Espinosa, R. P., Kalvaitienė, G., & Lastauskienė, E. (2024). Microbiome and Resistome Studies of the Lithuanian Baltic Sea Coast and the Curonian Lagoon Waters and Sediments. Antibiotics, 13(11), 1013. https://doi.org/10.3390/antibiotics13111013