N-Alkane Assimilation by Pseudomonas aeruginosa and Its Interactions with Virulence and Antibiotic Resistance
Abstract
:1. Introduction
2. Overview of the Species P. aeruginosa
3. Components of the N-Alkane Hydroxylase System in P. aeruginosa
4. P. aeruginosa Isolates with an Ability to Degrade Medium-Chain N-Alkanes
5. Interactions Between Microbial Ecology and N-Alkane Assimilation by P. aeruginosa
6. Interactions Between N-Alkane Assimilation and Antibiotic Resistance
Strain | Increased MICs Against Antibiotics Including b | Reported Resistance Mechanisms | References |
---|---|---|---|
K1261 | CAR, FEP, CIP, TET, CHL | Increased expression of mexAB–oprM, mutation in mexR | [86,88] |
K1262 | CAR, FEP, CIP, TET, CHL | Increased expression of mexAB–oprM, mutation in mexR | [86,88] |
Po10 | AMP, KAN | Antibiotics pumped out by multidrug efflux systems | [93] |
Po14 | AMP, KAN | Antibiotics pumped out by multidrug efflux systems | [93] |
RR1 | CIP, NOR, CAZ, ERY, CHL | Expression of multidrug resistance efflux pump systems | [46] |
CECT119 | CIP, NOR, STR, ERY, CHL | Expression of multidrug resistance efflux pump systems | [46] |
ATCC21472 | CAZ, ERY, TET, CHL | Expression of multidrug resistance efflux pump systems | [46] |
K1542 | NOR, ERY | Increased expression of mexCD-oprJ induced by n-hexane | [94] |
Country | Location | Sample Type | Strain | Reported Resistance b | Ref. |
---|---|---|---|---|---|
France | Neuves Maisons | HC-impacted soil c | EML1321 | TIC, TIM | [66] |
France | Neuves Maisons | HC-impacted soil | EML1322 | TIC, TIM, IPM | [66] |
Hungary | Ópusztaszer | HC-polluted groundwater | P43 | PIP, CAZ, FEP, IPM, GEN | [65] |
Hungary | Nagyszénás | HC-polluted groundwater | P69 | PIP, CAZ, IPM | [65] |
Nigeria | South Nigeria | Crude oil-polluted site | 01 | CAZ | [98] |
Nigeria | Niger delta | Crude oil-polluted effluent | T2 | GEN, AMK | [95] |
Nigeria | Ado | Diesel-polluted soil | SGHB7 | CAZ | [99] |
Nigeria | Lagos | Diesel generator site soil | LP6 | GEN | [100] |
7. Relationships Between Pathogenicity and N-Alkane Assimilation
7.1. Virulence Determinants of Human, Animal, and Environmental P. aeruginosa Isolates
7.2. The Impact of Rhamnolipids and Cell Surface Hydrophobicity on Hydrocarbon Assimilation and Virulence
7.3. The Diverse Effects of Efflux Pumps and Their Overproduction
7.4. The Role of Biofilms in N-Alkane Assimilation and Pathogenesis
7.5. Other Related Characteristics of P. aeruginosa Isolates
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilton, N.; Lyon-Marion, B.A.; Kamath, R.; McVey, K.; Pennell, K.D.; Robbat, A. Remediation of heavy hydrocarbon impacted soil using biopolymer and polystyrene foam beads. J. Hazard. Mater. 2018, 349, 153–159. [Google Scholar] [CrossRef] [PubMed]
- MOL Group Integrated Annual Reports (2012–2023). Available online: https://molgroup.info/en/investor-relations/publications (accessed on 15 September 2024).
- Koroma, S.; Arato, A.; Godio, A. Analyzing geophysical signature of a hydrocarbon-contaminated soil using geoelectrical surveys. Environ. Earth Sci. 2015, 74, 2937–2948. [Google Scholar] [CrossRef]
- Sam, K.; Zabbey, N.; Onyena, A.P. Implementing contaminated land remediation in Nigeria: Insights from the Ogoni remediation project. Land Use Policy 2022, 115, 106051. [Google Scholar] [CrossRef]
- Usuda, H.; Hishida, M.; Kelley, E.G.; Yamamura, Y.; Nagao, M.; Saito, K. Interleaflet coupling of n-alkane incorporated bilayers. Phys. Chem. Chem. Phys. 2020, 22, 5418–5426. [Google Scholar] [CrossRef]
- Misuraca, L.; LoRicco, J.; Oger, P.; Peters, J.; Demé, B. Incorporation and localisation of alkanes in a protomembrane model by neutron diffraction. Biochim. Biophys. Acta (BBA) Biomembr. 2023, 1865, 184119. [Google Scholar] [CrossRef]
- Hlioui, L.; Zouari, R.; Mohamed, D.B.; Saied, M.Z.; Ketata, J.; Nabli, F.; Sassi, S.B. N-hexane neuropathy: From addiction to disability. Eur. Psychiatry 2023, 66, S665. [Google Scholar]
- Van Thriel, C.; Boyes, W.K. Neurotoxicity of organic solvents: An update on mechanisms and effects. In Advances in Neurotoxicology; Academic Press: Cambridge, MA, USA, 2022; Volume 7, pp. 133–201. [Google Scholar] [CrossRef]
- Lock, E.A.; Zhang, J.; Checkoway, H. Solvents and Parkinson disease: A systematic review of toxicological and epidemiological evidence. Toxicol. Appl. Pharmacol. 2012, 266, 345–355. [Google Scholar] [CrossRef]
- Okoh, A.I. Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnol. Mol. Biol. Rev. 2006, 1, 38–50. [Google Scholar]
- Van Beilen, J.B.; Witholt, B. Alkane degradation by Pseudomonads. In Pseudomonas; Ramos, J.L., Ed.; Kluwer Acadamic/Plenum Publishers: New York, NY, USA, 2004; Volume 3, pp. 397–423. [Google Scholar]
- Norman, R.S.; Moeller, P.; McDonald, T.J.; Morris, P.J. Effect of Pyocyanin on a Crude-Oil-Degrading Microbial Community. Appl. Environ. Microbiol. 2004, 70, 4004–4011. [Google Scholar] [CrossRef]
- Hamamura, N.; Fukui, M.; Ward, D.M.; Inskeep, W.P. Assessing Soil Microbial Populations Responding to Crude-Oil Amendment at Different Temperatures Using Phylogenetic, Functional Gene (alkB) and Physiological Analyses. Environ. Sci. Technol. 2008, 42, 7580–7586. [Google Scholar] [CrossRef]
- Norman, R.S.; Frontera-Suau, R.; Morris, P.J. Variability in Pseudomonas aeruginosa Lipopolysaccharide Expression during Crude Oil Degradation. Appl. Environ. Microbiol. 2002, 68, 5096–5103. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Nie, Y.; Chi, C.-Q.; Tang, Y.-Q.; Li, Y.; Wang, X.-B.; Liu, Z.-S.; Yang, Y.; Zhou, J.; Wu, X.-L. Crude oil as a microbial seed bank with unexpected functional potentials. Sci. Rep. 2015, 5, 16057. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, M.A.; Wolfgang, M.C. The changing landscape of the cystic fibrosis lung environment: From the perspective of Pseudomonas aeruginosa. Curr. Opin. Pharmacol. 2022, 65, 102262. [Google Scholar] [CrossRef] [PubMed]
- Libisch, B.; Balogh, B.; Füzi, M. Identification of Two Multidrug-Resistant Pseudomonas aeruginosa Clonal Lineages with a Countrywide Distribution in Hungary. Curr. Microbiol. 2008, 58, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Rojo, F.; Martínez, J.L. Oil Degraders as Pathogens. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3293–3303. [Google Scholar]
- Sun, W.; Li, J.; Jiang, L.; Sun, Z.; Fu, M.; Peng, X. Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation. Appl. Microbiol. Biotechnol. 2015, 99, 8751–8764. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Xin, Y.; Huang, T.; Liu, J. Petroleum pollution affects soil chemistry and reshapes the diversity and networks of microbial communities. Ecotoxicol. Environ. Saf. 2022, 246, 114129. [Google Scholar] [CrossRef]
- Hu, F.; Wang, P.; Li, Y.; Ling, J.; Ruan, Y.; Yu, J.; Zhang, L. Bioremediation of environmental organic pollutants by Pseudomonas aeruginosa: Mechanisms, methods and challenges. Environ. Res. 2023, 239, 117211. [Google Scholar] [CrossRef]
- Song, Y.J.; Zhao, N.L.; Dai, D.R.; Bao, R. Prospects of Pseudomonas in Microbial Fuel, Bioremediation, and Sustainability. ChemSusChem 2024, e202401324. [Google Scholar] [CrossRef]
- Berg, G.; Eberl, L.; Hartmann, A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol. 2005, 7, 1673–1685. [Google Scholar] [CrossRef]
- Lebaron, P.; Cournoyer, B.; Lemarchand, K.; Nazaret, S.; Servais, P. Environmental and human pathogenic microorganisms. In Environmental Microbiology: Fundamentals and Applications; Springer: Dordrecht, The Netherlands, 2015; pp. 619–658. [Google Scholar]
- Gómez-Gómez, B.; Volkow-Fernández, P.; Cornejo-Juárez, P. Bloodstream Infections Caused by Waterborne Bacteria. Curr. Treat. Options Infect. Dis. 2020, 12, 332–348. [Google Scholar] [CrossRef]
- Libisch, B.; Muzslay, M.; Gacs, M.; Minárovits, J.; Knausz, M.; Watine, J.; Ternák, G.; Kenéz, E.; Kustos, I.; Rókusz, L.; et al. Molecular Epidemiology of VIM-4 Metallo-β-Lactamase-Producing Pseudomonas sp. Isolates in Hungary. Antimicrob. Agents Chemother. 2006, 50, 4220–4223. [Google Scholar] [CrossRef] [PubMed]
- Anzai, Y.; Kim, H.; Park, J.Y.; Wakabayashi, H.; Oyaizu, H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol. Microbiol. 2000, 50, 1563–1589. [Google Scholar] [CrossRef]
- Libisch, B. Molecular Typing Methods for the Genus Pseudomonas. In Molecular Typing in Bacterial Infections. Infectious Disease; De Filippis, I., McKee, M., Eds.; Humana Press: Totowa, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Libisch, B.; Villányi, I.; Füzy, A.; Horváth, N.; Biró, B. Identification and characterisation of bacterial strains capable to degrade aircraft de-icing fluids at four degrees. J. Biotechnol. 2010, 150, 259. [Google Scholar] [CrossRef]
- Libisch, B.; French, H.K.; Hartnik, T.; Anton, A.; Biró, B. Laboratory-scale evaluation of a combined soil amendment for the enhanced biodegradation of propylene glycol-based aircraft de-icing fluids. Environ. Technol. 2011, 33, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.J.; Kuzel, T.M.; Shafikhani, S.H. Pseudomonas aeruginosa: Infections, animal modeling, and therapeutics. Cells 2023, 12, 199. [Google Scholar] [CrossRef]
- Klockgether, J.; Cramer, N.; Wiehlmann, L.; Davenport, C.F.; Tümmler, B. Pseudomonas aeruginosa Genomic Structure and Diversity. Front. Microbiol. 2011, 2, 150. [Google Scholar] [CrossRef]
- Grace, A.; Sahu, R.; Owen, D.R.; Dennis, V.A. Pseudomonas aeruginosa reference strains PAO1 and PA14: A genomic, phenotypic, and therapeutic review. Front. Microbiol. 2022, 13, 1023523. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, D.; Gomila, M.; Bennasar, A.; Lalucat, J.; García-Valdés, E. Genome Analysis of Environmental and Clinical P. aeruginosa Isolates from Sequence Type-1146. PLoS ONE 2014, 9, e107754. [Google Scholar] [CrossRef]
- Ozer, E.A.; Allen, J.P.; Hauser, A.R. Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt. BMC Genom. 2014, 15, 1–17. [Google Scholar] [CrossRef]
- Kung, V.L.; Ozer, E.A.; Hauser, A.R. The Accessory Genome of Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 2010, 74, 621–641. [Google Scholar] [CrossRef] [PubMed]
- Wolfgang, M.C.; Kulasekara, B.R.; Liang, X.; Boyd, D.; Wu, K.; Yang, Q.; Miyada, C.G.; Lory, S. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2003, 100, 8484–8489. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, T.; Hébraud, M.; Dapkevicius, M.L.N.E.; Maltez, L.; Pereira, J.E.; Capita, R.; Alonso-Calleja, C.; Igrejas, G.; Poeta, P. Genomic and Metabolic Characteristics of the Pathogenicity in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2021, 22, 12892. [Google Scholar] [CrossRef]
- Ji, Y.; Mao, G.; Wang, Y.; Bartlam, M. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. Front. Microbiol. 2013, 4, 58. [Google Scholar] [CrossRef]
- Libisch, B.; Michaelson, L.V.; Lewis, M.J.; Shewry, P.R.; Napier, J.A. Chimeras of Δ6-Fatty Acid and Δ8-Sphingolipid Desaturases. Biochem. Biophys. Res. Commun. 2000, 279, 779–785. [Google Scholar] [CrossRef]
- Fenibo, E.O.; Selvarajan, R.; Abia, A.L.K.; Matambo, T. Medium-chain alkane biodegradation and its link to some unifying attributes of alkB genes diversity. Sci. Total Environ. 2023, 877, 162951. [Google Scholar] [CrossRef]
- Hagelueken, G.; Wiehlmann, L.; Adams, T.M.; Kolmar, H.; Heinz, D.W.; Tümmler, B.; Schubert, W.-D. Crystal structure of the electron transfer complex rubredoxin–rubredoxin reductase of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2007, 104, 12276–12281. [Google Scholar] [CrossRef]
- Ivanova, A.A.; Sazonova, O.I.; Zvonarev, A.N.; Delegan, Y.A.; Streletskii, R.A.; Shishkina, L.A.; Bogun, A.G.; Vetrova, A.A. Genome analysis and physiology of Pseudomonas sp. strain OVF7 degrading naphthalene and n-dodecane. Microorganisms 2023, 11, 2058. [Google Scholar] [CrossRef] [PubMed]
- Smits, T.H.; Witholt, B.; van Beilen, J.B. Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa. Antonie Van Leeuwenhoek 2003, 84, 193–200. [Google Scholar] [CrossRef]
- Hemamali, E.H.; Weerasinghe, L.P.; Tanaka, H.; Kurisu, G.; Perera, I.C. LcaR: A regulatory switch from Pseudomonas aeruginosa for bioengineering alkane degrading bacteria. Biodegradation 2022, 33, 117–133. [Google Scholar] [CrossRef]
- Alonso, A.; Rojo, F.; Martínez, J.L. Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environ. Microbiol. 1999, 1, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.L.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000, 406, 959–964. [Google Scholar] [CrossRef] [PubMed]
- van Beilen, J.B.; Panke, S.; Lucchini, S.; Franchini, A.G.; Röthlisberger, M.; Witholt, B. Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: Evolution and regulation of the alk genes. Microbiology 2001, 147, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.L.; Hyman, M.R. Propane and n-Butane Oxidation by Pseudomonas putida GPo1. Appl. Environ. Microbiol. 2006, 72, 950–952. [Google Scholar] [CrossRef]
- Rojo, F. Specificity at the End of the Tunnel: Understanding Substrate Length Discrimination by the AlkB Alkane Hydroxylase. J. Bacteriol. 2005, 187, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Perfumo, A.; Banat, I.M.; Canganella, F.; Marchant, R. Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl. Microbiol. Biotechnol. 2006, 72, 132–138. [Google Scholar] [CrossRef]
- Koshlaf, E.; Ball, A.S. Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiol. 2017, 3, 25–49. [Google Scholar] [CrossRef]
- Lee, E.G.-H.; Walden, C.C. Biosynthesis of Pyocyanine by a Paraffin Hydrocarbon-oxidizing Strain of Pseudomonas aeruginosa. Appl. Microbiol. 1969, 17, 520–523. [Google Scholar] [CrossRef]
- Salgado-Brito, R.; Neria, M.; Mesta-Howard, A.M.; Cedillo, F.D.; Wang, E.T. Oxidation of solid paraffin (C11−40) by Pseudomonas aeruginosa MGP-1. Ann. Microbiol. 2007, 57, 321–328. [Google Scholar] [CrossRef]
- Das, K.; Mukherjee, A.K. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour. Technol. 2007, 98, 1339–1345. [Google Scholar] [CrossRef]
- Thavasi, R.; Jayalakshmi, S.; Balasubramanian, T.; Banat, I.M. Effects of salinity, temperature, pH and crude oil concentration on biodegradation of crude oil by Pseudomonas aeruginosa. J. Biol. Environ. Sci. 2007, 1, 51–57. [Google Scholar]
- Hong, J.H.; Kim, J.; Choi, O.K.; Cho, K.-S.; Ryu, H.W. Characterization of a diesel-degrading bacterium, Pseudomonas aeruginosa IU5, isolated from oil-contaminated soil in Korea. World J. Microbiol. Biotechnol. 2005, 21, 381–384. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, Y.; Zhao, Y.; Li, M.; Zhu, Z. Physiological, phylogenetic and functional identification of crude oil-degrading microbial populations. Environ. Eng. Manag. J. 2018, 17, 2635–2644. [Google Scholar] [CrossRef]
- Gai, Z.; Zhang, Z.; Wang, X.; Tao, F.; Tang, H.; Xu, P. Genome sequence of Pseudomonas aeruginosa DQ8, an efficient degrader of n-alkanes and polycyclic aromatic hydrocarbons. J. Bacteriol. 2012, 194, 6304–6305. [Google Scholar] [CrossRef]
- Vives-Flórez, M.; Garnica, D. Comparison of virulence between clinical and environmental Pseudomonas aeruginosa isolates. Int. Microbiol. 2006, 9, 247–252. [Google Scholar]
- de Oliveira, H.L.; Dias, G.M.; Neves, B.C. Genome sequence of Pseudomonas aeruginosa PA1-Petro—A role model of environmental adaptation and a potential biotechnological tool. Heliyon 2022, 8, e11566. [Google Scholar] [CrossRef]
- Brown, L.M.; Gunasekera, T.S.; Ruiz, O.N. Draft Genome Sequence of Pseudomonas aeruginosa ATCC 33988, a Bacterium Highly Adapted to Fuel-Polluted Environments. Genome Announc. 2014, 2, e01113–e01114. [Google Scholar] [CrossRef]
- Zhao, F.; Wu, Y.; Wang, Q.; Zheng, M.; Cui, Q. Glycerol or crude glycerol as substrates make Pseudomonas aeruginosa achieve anaerobic production of rhamnolipids. Microb. Cell Factories 2021, 20, 185. [Google Scholar] [CrossRef]
- Palomino, R.A.; Romero, G.; González-Valdez, A.; Soberón-Chávez, G.; Gutiérrez, S.M.; Merino, F.A. Presencia de genes rhlAB, rhlR y rhlC en Pseudomonas aeruginosa nativas sobreproductoras de ramnolípidos. Rev. Peru. Biol. 2017, 24, 293–302. [Google Scholar] [CrossRef]
- Kaszab, E.; Kriszt, B.; Atzél, B.; Szabó, G.; Szabó, I.; Harkai, P.; Szoboszlay, S. The occurrence of multidrug-resistant Pseudomonas aeruginosa on hydrocarbon-contaminated sites. Microb. Ecol. 2010, 59, 37–45. [Google Scholar] [CrossRef]
- Youenou, B.; Brothier, E.; Nazaret, S. Diversity among strains of Pseudomonas aeruginosa from manure and soil, evaluated by multiple locus variable number tandem repeat analysis and antibiotic resistance profiles. Res. Microbiol. 2014, 165, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Belhaj, A.; Desnoues, N.; Elmerich, C. Alkane biodegradation in Pseudomonas aeruginosa strains isolated from a polluted zone: Identification of alkB and alkB-related genes. Res. Microbiol. 2002, 153, 339–344. [Google Scholar] [CrossRef]
- Van Beilen, J.B.; Li, Z.; Duetz, W.A.; Smits, T.H.; Witholt, B. Diversity of Alkane Hydroxylase Systems in the Environment. Oil Gas Sci. Technol. Rev. D’ifp Energ. Nouv. 2003, 58, 427–440. [Google Scholar] [CrossRef]
- Foght, J.M.; Westlake, D.W.S.; Johnson, W.M.; Ridgway, H.F. Environmental gasoline-utilizing isolates and clinical isolates of Pseudomonas aeruginosa are taxonomically indistinguishable by chemotaxonomic and molecular techniques. Microbiology 1996, 142, 2333–2340. [Google Scholar] [CrossRef]
- Abdellatief, T.M.M.; Ershov, M.A.; Savelenko, V.D.; Kapustin, V.M.; Makhova, U.A.; Klimov, N.A.; Chernysheva, E.A.; Aboul-Fotouh, T.M.; Abdelkareem, M.A.; Mustafa, A.; et al. Advanced Progress and Prospects for Producing High-Octane Gasoline Fuel toward Market Development: State-of-the-Art and Outlook. Energy Fuels 2023, 37, 18266–18290. [Google Scholar] [CrossRef]
- Dawson, L.A.; Mayes, R.W.; Elston, D.A.; Smart, T.S. Root hydrocarbons as potential markers for determining species composition. Plant Cell Environ. 2000, 23, 743–750. [Google Scholar] [CrossRef]
- Smits, T.H.M.; Balada, S.B.; Witholt, B.; van Beilen, J.B. Functional Analysis of Alkane Hydroxylases from Gram-Negative and Gram-Positive Bacteria. J. Bacteriol. 2002, 184, 1733–1742. [Google Scholar] [CrossRef]
- Shen, K.; Sayeed, S.; Antalis, P.; Gladitz, J.; Ahmed, A.; Dice, B.; Janto, B.; Dopico, R.; Keefe, R.; Hayes, J.; et al. Extensive Genomic Plasticity in Pseudomonas aeruginosa Revealed by Identification and Distribution Studies of Novel Genes among Clinical Isolates. Infect. Immun. 2006, 74, 5272–5283. [Google Scholar] [CrossRef]
- Staijen, I.E.; Marcionelli, R.; Witholt, B. The P alkBFGHJKL Promoter Is under Carbon Catabolite Repression Control in Pseudomonas oleovorans but Not in Escherichia coli alk+ Recombinants. J. Bacteriol. 1999, 181, 1610–1616. [Google Scholar] [CrossRef]
- Van Eyk, J.; Bartels, T.J. Paraffin oxidation in Pseudomonas aeruginosa I. Induction of paraffin oxidation. J. Bacteriol. 1968, 96, 706–712. [Google Scholar] [CrossRef]
- Canosa, I.; Sánchez-Romero, J.M.; Yuste, L.; Rojo, F. A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway. Mol. Microbiol. 2000, 35, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Janssen, D.B.; Witholt, B. Physiological changes and alk gene instability in Pseudomonas oleovorans during induction and expression of alk genes. J. Bacteriol. 1996, 178, 5508–5512. [Google Scholar] [CrossRef] [PubMed]
- Landa MV, R.; De Anda, V.; Waldram, G.; Rohwer, R.; Angelova, A.; Gutierrez, T.; Baker, B.J. Novel hydrocarbon-degradation pathways in uncultured bacteria in industrial-impacted ocean waters. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Eslami, P.; Hajfarajollah, H.; Bazsefidpar, S. Recent advancements in the production of rhamnolipid biosurfactants by Pseudomonas aeruginosa. RSC Adv. 2020, 10, 34014–34032. [Google Scholar] [CrossRef] [PubMed]
- de Vasconcelos, G.M.D.; Mulinari, J.; Nazareth, T.C.; Rodrigues, É.F.; Maniglia, B.C.; de Andrade, C.J. Biosurfactants: A green and sustainable remediation alternative. In Rhizobiont in Bioremediation of Hazardous Waste; Kumar, V., Prasad, R., Kumar, M., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Al-Tahhan, R.A.; Sandrin, T.R.; Bodour, A.A.; Maier, R.M. Rhamnolipid-Induced Removal of Lipopolysaccharide from Pseudomonas aeruginosa: Effect on Cell Surface Properties and Interaction with Hydrophobic Substrates. Appl. Environ. Microbiol. 2000, 66, 3262–3268. [Google Scholar] [CrossRef]
- Sotirova, A.V.; Spasova, D.I.; Galabova, D.N.; Karpenko, E.; Shulga, A. Rhamnolipid–Biosurfactant Permeabilizing Effects on Gram-Positive and Gram-Negative Bacterial Strains. Curr. Microbiol. 2008, 56, 639–644. [Google Scholar] [CrossRef]
- Dinkla, I.J.T.; Gabor, E.M.; Janssen, D.B. Effects of Iron Limitation on the Degradation of Toluene by Pseudomonas Strains Carrying the TOL (pWWO) Plasmid. Appl. Environ. Microbiol. 2001, 67, 3406–3412. [Google Scholar] [CrossRef]
- Haas, D.; Défago, G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 2005, 3, 307–319. [Google Scholar] [CrossRef]
- Staijen, I.E.; Witholt, B. Synthesis of alkane hydroxylase of Pseudomonas oleovorans increases the iron requirement of alk bacterial strains. Biotechnol. Bioeng. 1998, 57, 228–237. [Google Scholar] [CrossRef]
- Li, X.-Z.; Poole, K. Organic solvent-tolerant mutants of Pseudomonas aeruginosa display multiple antibiotic resistance. Can. J. Microbiol. 1999, 45, 18–22. [Google Scholar] [CrossRef]
- Peng, R.; Ai, L.; Mei, F. An Overview of the Role of Membrane Proteins in Microbial Solvents Tolerance. Protein Pept. Lett. 2023, 30, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Z.; Zhang, L.; Poole, K. Role of the Multidrug Efflux Systems of Pseudomonas aeruginosa in Organic Solvent Tolerance. J. Bacteriol. 1998, 180, 2987–2991. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.; Ferreira, B.S.; Cabral JM, S. Solvent tolerance in bacteria: Role of efflux pumps and cross-resistance with antibiotics. Int. J. Antimicrob. Agents 2003, 22, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Libisch, B.; Poirel, L.; Lepsanovic, Z.; Mirovic, V.; Balogh, B.; Pászti, J.; Hunyadi, Z.; Dobák, A.; Füzi, M.; Nordmann, P. Identification of PER-1 extended-spectrum β-lactamase producing Pseudomonas aeruginosa clinical isolates of the international clonal complex CC11 from Hungary and Serbia. FEMS Immunol. Med. Microbiol. 2008, 54, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Gunasekera, T.S.; Bowen, L.L.; Zhou, C.E.; Howard-Byerly, S.C.; Foley, W.S.; Striebich, R.C.; Dugan, L.C.; Ruiz, O.N. Transcriptomic Analyses Elucidate Adaptive Differences of Closely Related Strains of Pseudomonas aeruginosa in Fuel. Appl. Environ. Microbiol. 2017, 83, e03249. [Google Scholar] [CrossRef]
- Asthana, S.; Rusin, P.; Gerba, C.P. Influence of hydrocarbons on the virulence and antibiotic sensitivity associated with Pseudomonas aeruginosa. Int. J. Environ. Health Res. 1997, 7, 277–288. [Google Scholar] [CrossRef]
- Stancu, M.M.; Grifoll, M. Multidrug resistance in hydrocarbon-tolerant Gram-positive and Gram-negative bacteria. J. Gen. Appl. Microbiol. 2011, 57, 1–18. [Google Scholar] [CrossRef]
- Fraud, S.; Campigotto, A.J.; Chen, Z.; Poole, K. MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: Involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob. Agents Chemother. 2008, 52, 4478–4482. [Google Scholar] [CrossRef]
- Okoh, A.I. Biodegradation of Bonny light crude oil in soil microcosm by some bacterial strains isolated from crude oil flow stations saver pits in Nigeria. Afr. J. Biotechnol. 2003, 2, 104–108. [Google Scholar] [CrossRef]
- Furneri, P.M.; Garozzo, A.; Musumarra, M.P.; Scuderi, A.C.; Russo, A.; Bonfiglio, G. Effects on adhesiveness and hydrophobicity of sub-inhibitory concentrations of netilmicin. Int. J. Antimicrob. Agents 2003, 22, 164–167. [Google Scholar] [CrossRef]
- Fonseca, A.; Sousa, J. Effect of antibiotic-induced morphological changes on surface properties, motility and adhesion of nosocomial Pseudomonas aeruginosa strains under different physiological states. J. Appl. Microbiol. 2007, 103, 1828–1837. [Google Scholar] [CrossRef] [PubMed]
- Omoniyi, O.A.O.; Abegunrin, R.O. Evaluation of Native Bacterial Consortium from Crude Oil-Impacted Tropical Environment for Integration into Bioremediation Process. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1291–1302. [Google Scholar] [CrossRef]
- Anuoluwa, I.A.; Anuoluwa, B.S.; Ololade, Z.S.; Ekundayo, E.A.; Ekanem, U.E. Antibiotics susceptibility and hydrocarbon degradative ability of bacteria isolated from diesel-contaminated soil. Adv. Environ. Health Sci. Toxicol. 2024, 1, 33–41. [Google Scholar]
- Obayori, O.S.; Ilori, M.O.; Adebusoye, S.A.; Oyetibo, G.O.; Amund, O.O. Pyrene-degradation potentials of Pseudomonas species isolated from polluted tropical soils. World J. Microbiol. Biotechnol. 2008, 24, 2639–2646. [Google Scholar] [CrossRef]
- Serwecińska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Maurya, A.P.; Rajkumari, J.; Pandey, P. Enrichment of antibiotic resistance genes (ARGs) in polyaromatic hydrocarbon–contaminated soils: A major challenge for environmental health. Environ. Sci. Pollut. Res. 2021, 28, 12178–12189. [Google Scholar] [CrossRef]
- Wong, M.H.; Minkina, T.; Vasilchenko, N.; Sushkova, S.; Delegan, Y.; Ranjan, A.; Saxena, P.; Tarigholizadeh, S.; Dudnikova, T.; Barbashev, A.; et al. Assessment of antibiotic resistance genes in soils polluted by chemical and technogenic ways with poly-aromatic hydrocarbons and heavy metals. Environ. Res. 2024, 252, 118949. [Google Scholar] [CrossRef]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; A Bonomo, R. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin. Infect. Dis. 2024, ciae403. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Wise, M.G.; Hackel, M.A.; Six, D.A.; Uehara, T.; Daigle, D.M.; Pevear, D.C.; Moeck, G.; Sahm, D.F. Cefepime–taniborbactam activity against antimicrobial-resistant clinical isolates of Enterobacterales and Pseudomonas aeruginosa: GEARS global surveillance programme 2018–2022. J. Antimicrob. Chemother. 2024, dkae329. [Google Scholar] [CrossRef]
- Svedholm, E.; Bruce, B.; Parcell, B.J.; Coote, P.J. Repurposing Mitomycin C in Combination with Pentamidine or Gentamicin to Treat Infections with Multi-Drug-Resistant (MDR) Pseudomonas aeruginosa. Antibiotics 2024, 13, 177. [Google Scholar] [CrossRef]
- Simpson, E.; Sarwar, H.; Jack, I.; Lowry, D. Evaluation of the Potential of Chitosan Nanoparticles as a Delivery Vehicle for Gentamicin for the Treatment of Osteomyelitis. Antibiotics 2024, 13, 208. [Google Scholar] [CrossRef] [PubMed]
- Bārzdiņa, A.; Plotniece, A.; Sobolev, A.; Pajuste, K.; Bandere, D.; Brangule, A. From Polymeric Nanoformulations to Polyphenols—Strategies for Enhancing the Efficacy and Drug Delivery of Gentamicin. Antibiotics 2024, 13, 305. [Google Scholar] [CrossRef] [PubMed]
- Donkor, G.Y.; Anderson, G.M.; Stadler, M.; Tawiah, P.O.; Orellano, C.D.; Edwards, K.A.; Dahl, J.U. A novel ruthenium-silver based antimicrobial potentiates aminoglycoside activity against Pseudomonas aeruginosa. mSphere 2023, 8, e00190. [Google Scholar] [CrossRef]
- Rossi, E.; La Rosa, R.; Bartell, J.A.; Marvig, R.L.; Haagensen, J.A.J.; Sommer, L.M.; Molin, S.; Johansen, H.K. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 2021, 19, 331–342. [Google Scholar] [CrossRef]
- Szmolka, A.; Libisch, B.; Pászti, J.; Füzi, M.; Emődy, L.; Nagy, B. Virulence and antimicrobial resistance determinants of human pathogenic and commensal strains of Pseudomonas aeruginosa. Acta Microbiol. Immunol. Hung. 2009, 56, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Chong, H.; Li, Q. Microbial production of rhamnolipids: Opportunities, challenges and strategies. Microb. Cell Factories 2017, 16, 1–12. [Google Scholar] [CrossRef]
- Smith, R.S.; Iglewski, B.H. P. aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol. 2003, 6, 56–60. [Google Scholar] [CrossRef]
- Xu, Q.; Kang, D.; Meyer, M.D.; Pennington, C.L.; Gopal, C.; Schertzer, J.W.; Kirienko, N.V. Cytotoxic rhamnolipid micelles drive acute virulence in Pseudomonas aeruginosa. Infect. Immun. 2024, 92, e0040723. [Google Scholar] [CrossRef]
- Das, T.; Manoharan, A.; Whiteley, G.; Glasbey, T.; Manos, J. Pseudomonas aeruginosa biofilms and infections: Roles of extracellular molecules. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms; Yadav, M.K., Singh, B.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 29–46. [Google Scholar]
- Köhler, T.; Guanella, R.; Carlet, J.; van Delden, C. Quorum sensing-dependent virulence during Pseudomonas aeruginosa colonisation and pneumonia in mechanically ventilated patients. Thorax 2010, 65, 703–710. [Google Scholar] [CrossRef]
- Azimi, S.; Thomas, J.; Cleland, S.E.; Curtis, J.E.; Goldberg, J.B.; Diggle, S.P. O-Specific Antigen-Dependent Surface Hydrophobicity Mediates Aggregate Assembly Type in Pseudomonas aeruginosa. mBio 2021, 12, e0086021. [Google Scholar] [CrossRef]
- Azimi, S.; Lewin, G.R.; Whiteley, M. The biogeography of infection revisited. Nat. Rev. Microbiol. 2022, 20, 579–592. [Google Scholar] [CrossRef] [PubMed]
- Slomiany, A.; Murty, V.L.N.; Aono, M.; Snyder, C.E.; Herp, A.; Slomiany, B.L. Lipid composition of tracheaobronchial secretions from normal individuals and patients with cystic fibrosis. Biochim. Biophys. Acta 1982, 710, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Galabert, C.; Jacquot, J.; Zahm, J.; Puchelle, E. Relationships between the lipid content and the rheological properties of airway secretions in cystic fibrosis. Clin. Chim. Acta 1987, 164, 139–149. [Google Scholar] [CrossRef]
- Ballard, S.T.; Parker, J.C.; Hamm, C.R. Restoration of mucociliary transport in the fluid-depletedtrachea by surface-active instillates. Am. J. Respir. Cell Mol. Biol. 2006, 34, 500–504. [Google Scholar] [CrossRef]
- Das, T. Pseudomonas aeruginosa Secreted Biomolecules and Their Diverse Functions in Biofilm Formation and Virulence. In Pseudomonas Aeruginosa—Biofilm Formation, Infections and Treatments, 1st ed.; Das, T., Ed.; InTechOpen Limited: London, UK, 2021; pp. 55–73. [Google Scholar]
- Rahman, K.; Rahman, T.J.; Kourkoutas, Y.; Petsas, I.; Marchant, R.; Banat, I. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour. Technol. 2003, 90, 159–168. [Google Scholar] [CrossRef]
- Wongsa, P.; Tanaka, M.; Ueno, A.; Hasanuzzaman, M.; Yumoto, I.; Okuyama, H. Isolation and Characterization of Novel Strains of Pseudomonas aeruginosa and Serratia marcescens Possessing High Efficiency to Degrade Gasoline, Kerosene, Diesel Oil, and Lubricating Oil. Curr. Microbiol. 2004, 49, 415–422. [Google Scholar] [CrossRef]
- Ueno, A.; Hasanuzzaman, M.; Yumoto, I.; Okuyama, H. Verification of Degradation of n-Alkanes in Diesel Oil by Pseudomonas aeruginosa Strain WatG in Soil Microcosms. Curr. Microbiol. 2006, 52, 182–185. [Google Scholar] [CrossRef]
- Gunasekera, T.S.; Striebich, R.C.; Mueller, S.S.; Strobel, E.M.; Ruiz, O.N. Transcriptional Profiling Suggests that Multiple Metabolic Adaptations are Required for Effective Proliferation of Pseudomonas aeruginosa in Jet Fuel. Environ. Sci. Technol. 2013, 47, 13449–13458. [Google Scholar] [CrossRef] [PubMed]
- Vaillancourt, M.; Limsuwannarot, S.P.; Bresee, C.; Poopalarajah, R.; Jorth, P. Pseudomonas aeruginosa mexR and mexEF antibiotic efflux pump variants exhibit increased virulence. Antibiotics 2021, 10, 1164. [Google Scholar] [CrossRef]
- Oliver, A.; Rojo-Molinero, E.; Arca-Suarez, J.; Beşli, Y.; Bogaerts, P.; Cantón, R.; Cimen, C.; Croughs, P.D.; Denis, O.; Giske, C.G.; et al. Pseudomonas aeruginosa antimicrobial susceptibility profiles, resistance mechanisms and international clonal lineages: Update from ESGARS-ESCMID/ISARPAE Group. Clin. Microbiol. Infect. 2023, 30, 469–480. [Google Scholar] [CrossRef]
- Hirakata, Y.; Srikumar, R.; Poole, K.; Gotoh, N.; Suematsu, T.; Kohno, S.; Kamihira, S.; Hancock, R.E.; Speert, D.P. Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J. Exp. Med. 2002, 196, 109–118. [Google Scholar] [CrossRef]
- Hirakata, Y.; Kondo, A.; Hoshino, K.; Yano, H.; Arai, K.; Hirotani, A.; Kunishima, H.; Yamamoto, N.; Hatta, M.; Kitagawa, M.; et al. Efflux pump inhibitors reduce the invasiveness of Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2009, 34, 343–346. [Google Scholar] [CrossRef]
- Sendra, E.; Fernández-Muñoz, A.; Zamorano, L.; Oliver, A.; Horcajada, J.P.; Juan, C.; Gómez-Zorrilla, S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: A microbiological and clinical perspective. Infection 2024, 52, 1235–1268. [Google Scholar] [CrossRef]
- Alav, I.; Sutton, J.M.; Rahman, K.M. Role of bacterial efflux pumps in biofilm formation. J. Antimicrob. Chemother. 2018, 73, 2003–2020. [Google Scholar] [CrossRef]
- Wang, W.-Q.; Feng, X.-C.; Shi, H.-T.; Wang, Y.-M.; Jiang, C.-Y.; Xiao, Z.-J.; Xu, Y.-J.; Zhang, X.; Yuan, Y.; Ren, N.-Q. Biofilm inhibition based on controlling the transmembrane transport and extracellular accumulation of quorum sensing signals. Environ. Res. 2023, 221, 115218. [Google Scholar] [CrossRef]
- Xu, A.; Wang, D.; Ding, Y.; Zheng, Y.; Wang, B.; Wei, Q.; Wang, S.; Yang, L.; Ma, L.Z. Integrated Comparative Genomic Analysis and Phenotypic Profiling of Pseudomonas aeruginosa Isolates from Crude Oil. Front. Microbiol. 2020, 11, 519. [Google Scholar] [CrossRef]
- Häußler, S.; Ziegler, I.; Löttel, A.; Götz, F.V.; Rohde, M.; Wehmhöhner, D.; Saravanamuthu, S.; Tümmler, B.; Steinmetz, I. Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J. Med. Microbiol. 2003, 52, 295–301. [Google Scholar] [CrossRef]
- Whitney, J.C.; Colvin, K.M.; Marmont, L.S.; Robinson, H.; Parsek, M.R.; Howell, P.L. Structure of the cytoplasmic region of PelD, a degenerate diguanylate cyclase receptor that regulates exopolysaccharide production in Pseudomonas aeruginosa. J. Biol. Chem. 2012, 287, 23582–23593. [Google Scholar] [CrossRef]
- Dasgupta, D.; Ghosh, R.; Sengupta, T.K. Biofilm-mediated enhanced crude oil degradation by newly isolated pseudomonas species. ISRN Biotechnol. 2013, 2013, 250749. [Google Scholar] [CrossRef]
- Brown, L.; McComb, J.; Vangsness; Bowen, L.; Mueller, S.; Balster, L.; Bleckmann, C. Community dynamics and phylogenetics of bacteria fouling Jet A and JP-8 aviation fuel. Int. Biodeterior. Biodegrad. 2010, 64, 253–261. [Google Scholar] [CrossRef]
- Rauch, M.E.; Graef, H.W.; Rozenzhak, S.M.; Jones, S.E.; Bleckmann, C.A.; Kruger, R.L.; Naik, R.R.; Stone, M.O. Characterization of microbial contamination in United States Air Force aviation fuel tanks. J. Ind. Microbiol. Biotechnol. 2006, 33, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Balmuri, S.R.; Phandanouvong-Lozano, V.; House, S.D.; Yang, J.C.; Niepa, T.H. Mucoid Coating Provides a Growth Advantage to Pseudomonas aeruginosa at Oil–Water Interfaces. ACS Appl. Bio Mater. 2022, 5, 1868–1878. [Google Scholar] [CrossRef] [PubMed]
- Gloag, E.S.; German, G.K.; Stoodley, P.; Wozniak, D.J. Viscoelastic properties of Pseudomonas aeruginosa variant biofilms. Sci. Rep. 2018, 8, 9691. [Google Scholar] [CrossRef] [PubMed]
- Schalk, I.J. Metal trafficking via siderophores in Gram-negative bacteria: Specificities and characteristics of the pyoverdine pathway. J. Inorg. Biochem. 2008, 102, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Lamont, I.L.; Beare, P.A.; Ochsner, U.; Vasil, A.I.; Vasil, M.L. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2002, 99, 7072–7077. [Google Scholar] [CrossRef] [PubMed]
- Sadikot, R.T.; Blackwell, T.S.; Christman, J.W.; Prince, A.S. Pathogen–Host Interactions in Pseudomonas aeruginosa Pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 1209–1223. [Google Scholar] [CrossRef]
- Schalk, I.J.; Guillon, L. Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: Implications for metal homeostasis. Environ. Microbiol. 2013, 15, 1661–1673. [Google Scholar] [CrossRef]
- Dell’Anno, F.; Vitale, G.A.; Buonocore, C.; Vitale, L.; Palma Esposito, F.; Coppola, D.; Della Sala, G.; Tedesco, P.; de Pascale, D. Novel insights on pyoverdine: From biosynthesis to biotechnological application. Int. J. Mol. Sci. 2022, 23, 11507. [Google Scholar] [CrossRef]
- Jorth, P.; McLean, K.; Ratjen, A.; Secor, P.R.; Bautista, G.E.; Ravishankar, S.; Rezayat, A.; Garudathri, J.; Harrison, J.J.; Harwood, R.A.; et al. Evolved Aztreonam Resistance Is Multifactorial and Can Produce Hypervirulence in Pseudomonas aeruginosa. mBio 2017, 8, 00517-17. [Google Scholar] [CrossRef]
- Mahey, N.; Tambat, R.; Kalia, R.; Ingavale, R.; Kodesia, A.; Chandal, N.; Kapoor, S.; Verma, D.K.; Thakur, K.G.; Jachak, S.; et al. Pyrrole-based inhibitors of RND-type efflux pumps reverse antibiotic resistance and display anti-virulence potential. PLoS Pathog. 2024, 20, e1012121. [Google Scholar] [CrossRef]
- Sánchez-Jiménez, A.; Llamas, M.A.; Marcos-Torres, F.J. Transcriptional Regulators Controlling Virulence in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2023, 24, 11895. [Google Scholar] [CrossRef] [PubMed]
- Libisch, B.; Watine, J.; Balogh, B.; Gacs, M.; Muzslay, M.; Szabó, G.; Füzi, M. Molecular typing indicates an important role for two international clonal complexes in dissemination of VIM-producing Pseudomonas aeruginosa clinical isolates in Hungary. Res. Microbiol. 2008, 159, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.L. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc. R. Soc. B Biol. Sci. 2009, 276, 2521–2530. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Libisch, B. N-Alkane Assimilation by Pseudomonas aeruginosa and Its Interactions with Virulence and Antibiotic Resistance. Antibiotics 2024, 13, 1028. https://doi.org/10.3390/antibiotics13111028
Libisch B. N-Alkane Assimilation by Pseudomonas aeruginosa and Its Interactions with Virulence and Antibiotic Resistance. Antibiotics. 2024; 13(11):1028. https://doi.org/10.3390/antibiotics13111028
Chicago/Turabian StyleLibisch, Balázs. 2024. "N-Alkane Assimilation by Pseudomonas aeruginosa and Its Interactions with Virulence and Antibiotic Resistance" Antibiotics 13, no. 11: 1028. https://doi.org/10.3390/antibiotics13111028
APA StyleLibisch, B. (2024). N-Alkane Assimilation by Pseudomonas aeruginosa and Its Interactions with Virulence and Antibiotic Resistance. Antibiotics, 13(11), 1028. https://doi.org/10.3390/antibiotics13111028