Antioxidant: Antimycobacterial and Antibiofilm Activities of Acetone Extract and Subfraction Artemisia afra Jacq. ex Willd. Against Mycobacterium smegmatis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Analysis
2.2. Antioxidant Activity
2.3. Cytotoxicity
2.4. Antimycobacterial Activity
2.5. Bioassay-Guided Fractionation
2.6. Growth Curves
2.7. Antibiofilm Activity
2.8. LC-MS Assessment of Extracts
2.9. Molecular Docking
3. Materials and Methods
3.1. Plant Collection
3.2. Plant Extraction
3.3. Phytochemical Screening
3.4. Antioxidant Activity of Acetone Extract
3.5. Antimycobacterial Screening
3.5.1. Bacterial Culture and Maintenance
3.5.2. Bioautography Assay
3.5.3. Broth Microdilution Assay
3.5.4. Bioassay-Guided Fractionation Using Column Chromatography
3.5.5. Growth Curve of M. smegmatis After Extract Treatment
3.6. Evaluation of Plant Extract Cytotoxicity
3.6.1. Cell Culture and Maintenance
3.6.2. Differentiation Induction
3.6.3. Cytotoxicity Test
3.7. Screening of Antibiofilm Activity
3.7.1. Cell Attachment Inhibition
3.7.2. Inhibition of the Preformed Biofilm
3.7.3. Crystal Violet Staining Assay
3.8. LC-MS Analysis
3.9. In Silico Studies
3.9.1. Preparation of Protein Receptors and Ligands
3.9.2. Molecular Docking
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reddy, D.S.; Kongot, M.; Kumar, A. Coumarin hybrid derivatives as promising leads to treat tuberculosis: Recent developments and critical aspects of structural design to exhibit anti-tubercular activity. Tuberculosis 2021, 127, 102050. [Google Scholar] [CrossRef]
- Mello, F.C.; Silva, D.R.; Dalcolmo, M.P. Tuberculosis: Where are we? J. Bras. Pneumol. 2018, 44, 82. [Google Scholar] [CrossRef]
- Ahmad, S. Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection. Clin. Dev. Immunol. 2011, 2011, 814943. [Google Scholar] [CrossRef] [PubMed]
- Ramadwa, T.E.; Awouafack, M.D.; Sonopo, M.S.; Eloff, J.N. Antibacterial and antimycobacterial activity of crude extracts, fractions, and isolated compounds from leaves of sneezewood, Ptaeroxylon obliquum (Rutaceae). Nat. Prod. Commun. 2019, 14, 1–7. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Verma, D.; Mudgal, B.; Chaudhary, P.; Mahakur, B.; Mitra, D.; Pant, K.; Mohapatra, P.K.D.; Thapliyal, A.; Janmeda, P. Medicinal plant of Uttarakhand (India) and their benefits in the treatment of tuberculosis: Current perspectives. Glob. J. Biosci. Biotechnol. 2020, 9, 75–85. [Google Scholar]
- Rossini, N.D.O.; Dias, M.V.B. Mutations and insights into the molecular mechanisms of resistance of Mycobacterium tuberculosis to first line. Genet. Mol. Biol. 2023, 46, e20220261. [Google Scholar] [CrossRef]
- Dzoyem, J.P.; Kuete, V.; McGaw, L.J.; Eloff, J.N. The 15-lipoxygenase inhibitory, antioxidant, antimycobacterial activity and cytotoxicity of fourteen ethnomedicinally used African spices and culinary herbs. J. Ethnopharmacol. 2014, 156, 1–8. [Google Scholar] [CrossRef]
- Fyhrquist, P.; Laakso, I.; Marco, S.G.; Julkunen-Tiitto, R.; Hiltunen, R. Antimycobacterial activity of ellagitannin and ellagic acid derivate rich crude extracts and fractions of five selected species of Terminalia used for treatment of infectious diseases in African traditional medicine. S. Afr. J. Bot. 2014, 90, 1–16. [Google Scholar] [CrossRef]
- Gong, W.; Liang, Y.; Wu, X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum. Vaccines Immunother. 2018, 14, 1697–1716. [Google Scholar] [CrossRef]
- Rahman, T.; Khandakar, A.; Kadir, M.A.; Islam, K.R.; Islam, K.F.; Mazhar, R.; Hamid, T.; Islam, M.T.; Kashem, S.; Mahbub, Z.B.; et al. Reliable tuberculosis detection using chest X-ray with deep learning, segmentation, and visualization. IEEE Access 2020, 8, 191586–191601. [Google Scholar] [CrossRef]
- Ranjitha, J.; Rajan, A.; Shankar, V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J. Infect. Public Health 2020, 13, 1255–1264. [Google Scholar] [CrossRef]
- Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herb. Med. Pharm. 2018, 7, 1–7. [Google Scholar] [CrossRef]
- Pacyga, K.; Pacyga, P.; Topola, E.; Viscardi, S.; Duda-Madej, A. Bioactive Compounds from Plant Origin as Natural Antimicrobial Agents for the Treatment of Wound Infections. Int. J. Mol. Sci. 2024, 25, 2100. [Google Scholar] [CrossRef]
- Nielsen, T.R.; Kuete, V.; Jäger, A.K.; Meyer, J.J.M.; Lall, N. Antimicrobial activity of selected South African medicinal plants. BMC Complement. Altern. Med. 2012, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- du Toit, A.; van der Kooy, F. Artemisia afra, a controversial herbal remedy or a treasure trove of new drugs. J. Ethnopharmacol. 2019, 244, 112127. [Google Scholar] [CrossRef] [PubMed]
- Motshudi, M.C.; Olaokun, O.O.; Mkolo, N.M. Evaluation of GC× GC-TOF-MS untargeted metabolomics, cytotoxicity and antimicrobial activity of leaf extracts of Artemisia afra (Jacq.) purchased from three local vendors. J. King Saud Univ.-Sci. 2021, 33, 101422. [Google Scholar] [CrossRef]
- Liu, N.Q.; Van der Kooy, F.; Verpoorte, R. Artemisia afra: A potential flagship for African medicinal plants. S. Afr. J. Bot. 2009, 75, 185–195. [Google Scholar] [CrossRef]
- Semenya, S.S.; Potgieter, M.J.; Erasmus, L.J.C. Species used by Bapedi Traditional Healers for the treatment of sexually transmitted diseases, Limpopo Province. S. Afr. J. Bot. 2012, 79, 210–211. [Google Scholar] [CrossRef]
- Adewumi, A.T.; Oluyemi, W.M.; Adekunle, Y.A.; Adewumi, N.; Alahmdi, M.I.; Soliman, M.E.; Abo-Dya, N.E. Propitious Indazole Compounds as β-ketoacyl-ACP Synthase Inhibitors and Mechanisms Unfolded for TB Cure: Integrated Rational Design and MD Simulations. ChemistrySelect 2023, 8, 202203877. [Google Scholar] [CrossRef]
- Suliman, S.; Van Vuuren, S.F.; Viljoen, A.M. Validating the in vitro antimicrobial activity of Artemisia afra in polyherbal combinations to treat respiratory infections. S. Afr. J. Bot. 2010, 76, 655–661. [Google Scholar] [CrossRef]
- Haile, A.B.; Jiru, T.M. Antibacterial Effects of Artemisia afra Leaf Crude Extract Against Some Selected Multi-Antibiotic Resistant Clinical Pathogens. Ethiop. J. Health Sci. 2022, 32, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Tohidpour, A.; Sattari, M.; Omidbaigi, R.; Yadegar, A.; Nazemi, J. Antibacterial effects of essential oils from two medicinal plants against methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine 2010, 17, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Speisky, H.; Shahidi, F.; Costa de Camargo, A.; Fuentes, J. Revisiting the oxidation of flavonoids: Loss, conservation or enhancement of their antioxidant properties. Antioxidants 2022, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Maisetta, G.; Batoni, G.; Caboni, P.; Esin, S.; Rinaldi, A.C.; Zucca, P. Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complement. Altern. Med. 2019, 19, 82. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Banerjee, D. Antioxidants: Friend or foe for tuberculosis patients. Adv. Biosci. Biotechnol. 2013, 4, 10–14. [Google Scholar] [CrossRef]
- More, G.; Lall, N.; Hussein, A.; Tshikalange, T.E. Antimicrobial Constituents of Artemisia afra Jacq. ex Willd. against Periodontal Pathogens. Evid.-Based Complement. Altern. Med. 2012, 2012, 252758. [Google Scholar] [CrossRef]
- Palanisamy, G.S.; Kirk, N.M.; Ackart, D.F.; Shanley, C.A.; Orme, I.M.; Basaraba, R.J. Evidence for oxidative stress and defective antioxidant response in guinea pigs with tuberculosis. PLoS ONE 2011, 6, 26254. [Google Scholar] [CrossRef] [PubMed]
- Lian, Y.; Zhao, J.; Xu, P.; Wang, Y.; Zhao, J.; Jia, L.; Fu, Z.; Jing, L.; Liu, G.; Peng, S. Protective effects of metallothionein on isoniazid and rifampicin-induced hepatotoxicity in mice. PLoS ONE 2013, 8, 72058. [Google Scholar] [CrossRef]
- Njeru, S.N.; Muema, J.M. In vitro cytotoxicity of Aspilia pluriseta Schweinf. extract fractions. BMC Res. Notes 2021, 14, 1–4. [Google Scholar] [CrossRef]
- Afagnigni, A.D.; Nyegue, M.A.; Djova, S.V.; Etoa, F.X. LC-MS analysis, 15-lipoxygenase inhibition, cytotoxicity, and genotoxicity of dissotis multiflora (Sm) triana (melastomataceae) and Paullinia pinnata Linn (Sapindaceae). J. Trop. Med. 2020, 2020, 5169847. [Google Scholar] [CrossRef]
- Asita, O.A.; Magama, S.; Lengala, N.M. Evaluation of leaf extracts of Artemisia afra Jacq. ex Willd. and Leucosidea sericea Eckl. & Zeyh. for genotoxicity and the modulation of EMS-induced genotoxicity. J. Med. Plants Res. 2021, 15, 269–282. [Google Scholar] [CrossRef]
- Obakiro, S.B.; Kiprop, A.; Kowino, I.; Kigondu, E.; Odero, M.P.; Omara, T.; Bunalema, L. Ethnobotany, ethnopharmacology, and phytochemistry of traditional medicinal plants used in the management of symptoms of tuberculosis in East Africa: A systematic review. Trop. Med. Health 2020, 48, 68. [Google Scholar] [CrossRef] [PubMed]
- Masoko, P.; Nxumalo, K.M. Validation of Antimycobacterial Plants Used by Traditional Healers in Three Districts of the Limpopo Province (South Africa). Evid.-Based Complement. Altern. Med. 2013, 2013, 586247. [Google Scholar] [CrossRef] [PubMed]
- Mativandlela, S.P.N.; Meyer, J.J.M.; Hussein, A.A.; Houghton, P.J.; Hamilton, C.J.; Lall, N. Activity against Mycobacterium smegmatis and M. tuberculosis by extract of South African medicinal plants. Phytother. Res. 2008, 22, 841–845. [Google Scholar] [CrossRef]
- Kiani, B.H.; Alonso, M.N.; Weathers, P.J.; Shell, S.S. Artemisia afra and Artemisia annua extracts have bactericidal activity against Mycobacterium tuberculosis in physiologically relevant carbon sources and hypoxia. Pathogens 2023, 12, 227. [Google Scholar] [CrossRef]
- Martini, M.C.; Zhang, T.; Williams, J.T.; Abramovitch, R.B.; Weathers, P.J.; Shell, S.S. Artemisia annua and Artemisia afra extracts exhibit strong bactericidal activity against Mycobacterium tuberculosis. J. Ethnopharm. 2020, 262, 113191. [Google Scholar] [CrossRef]
- Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar. J. 2011, 10, S1–S4. [Google Scholar] [CrossRef]
- Muleya, E.; Ahmed, A.S.; Sipamla, A.M.; Mtunzi, F.M.; Mutatu, W. Evaluation of anti-microbial, anti-inflammatory and anti-oxidative properties Artemisia afra, Gunnera perpensa and Eucomis autumnalis. J. Nutr. Food Sci. 2014, 4, 1–6. [Google Scholar] [CrossRef]
- Getahun, M.; Blumberg, H.M.; Ameni, G.; Beyene, D.; Kempker, R.R. Minimum inhibitory concentrations of rifampin and isoniazid among multidrug and isoniazid resistant Mycobacterium tuberculosis in Ethiopia. PLoS ONE 2022, 17, 0274426. [Google Scholar] [CrossRef]
- Schönfeld, N.; Bergmann, T.; Vesenbeckh, S.; Mauch, H.; Bettermann, G.; Bauer, T.T.; Rüssmann, H. Minimal inhibitory concentrations of first-line drugs of multidrug-resistant tuberculosis isolates. Lung India Off. Organ. Indian Chest Soc. 2012, 29, 309. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.C.; Tsakris, Z.; Rozos, G.; Tsigalou, C.; Bezirtzoglou, E. Interactions between Medical Plant-Derived Bioactive Compounds: Focus on Antimicrobial Combination Effects. Antibiotics 2022, 11, 1014. [Google Scholar] [CrossRef] [PubMed]
- Fridman, O.; Goldberg, A.; Ronin, I.; Shoresh, N.; Balaban, N.Q. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 2014, 513, 418–421. [Google Scholar] [CrossRef]
- Moreno-Gámez, S.; Kiviet, D.J.; Vulin, C.; Schlegel, S.; Schlegel, K.; van Doorn, G.S.; Ackermann, M. Wide lag time distributions break a trade-off between reproduction and survival in bacteria. Proc. Nat. Acad. Sci. USA 2020, 117, 18729–18736. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.R.; Manialawy, Y.; Siraki, A.G. Isoniazid and host immune system interactions: A proposal for a novel comprehensive mode of action. Br. J. Pharm. 2019, 176, 4599–4608. [Google Scholar] [CrossRef]
- Khan, J.; Tarar, S.M.; Gul, I.; Nawaz, U.; Arshad, M. Challenges of antibiotic resistance biofilms and potential combating strategies: A review. 3 Biotech 2021, 11, 169. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881. [Google Scholar] [CrossRef] [PubMed]
- Tsuneda, S.; Aikawa, H.; Hayashi, H.; Yuasa, A.; Hirata, A. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol. Lett. 2003, 223, 287–292. [Google Scholar] [CrossRef]
- Jin, Y.; Zheng, H.; Ibanez, A.C.; Patil, P.D.; Lv, S.; Luo, M.; Duncan, T.M.; Luk, Y.Y. Cell Wall-Related Antibiotics Cause Lag-Phase Bacteria to Form Surface-Mediated Filaments Promoting Formation of Biofilms and Aggregates. ChemBioChem 2020, 21, 825–835. [Google Scholar] [CrossRef]
- Milutinović, M.; Dimitrijević-Branković, S.; Rajilić-Stojanović, M. Plant extracts rich in polyphenols as potent modulators in the growth of probiotic and pathogenic intestinal microorganisms. Front. Nut. 2021, 8, 688843. [Google Scholar] [CrossRef]
- Priyanto, J.A.; Prastya, M.E.; Sinarawadi, G.S.; Datu’salamah, W.; Avelina, T.Y.; Yanuar, A.I.A.; Azizah, E.; Tachrim, Z.P.; Mozef, T. The antibacterial and antibiofilm potential of Paederia foetida Linn. leaves extract. J. App. Pharma. Sci. 2022, 12, 117–124. [Google Scholar] [CrossRef]
- Smith, J.P.; Modongo, C.; Moonan, P.K.; Dima, M.; Matsiri, O.; Fane, O.; Click, E.S.; Boyd, R.; Finlay, A.; Surie, D.; et al. Tuberculosis attributed to transmission within healthcare facilities, Botswana-The Kopanyo Study. Infect. Control. Hosp. Epidemiol. 2022, 43, 1603–1609. [Google Scholar] [CrossRef] [PubMed]
- Shinyuy, L.M.; Loe, G.E.; Jansen, O.; Mamede, L.; Ledoux, A.; Noukimi, S.F.; Abenwie, S.N.; Ghogomu, S.M.; Souopgui, J.; Robert, A.; et al. Secondary Metabolites Isolated from Artemisia afra and Artemisia annua and Their Anti-Malarial, Anti-Inflammatory and Immunomodulating Properties—Pharmacokinetics and Pharmacodynamics: A Review. Metabolites 2023, 13, 613. [Google Scholar] [CrossRef]
- Valls, A.; Andreu, J.J.; Falomir, E.; Luis, S.V.; Atrián-Blasco, E.; Mitchell, S.G.; Altava, B. Imidazole and imidazolium antibacterial drugs derived from amino acids. Pharmaceuticals 2020, 13, 482. [Google Scholar] [CrossRef]
- Jarboe, L.R.; Royce, L.A.; Liu, P. Understanding biocatalyst inhibition by carboxylic acids. Front. Microbiol. 2013, 4, 272. [Google Scholar] [CrossRef]
- Semelková, L.; Janošcová, P.; Fernandes, C.; Bouz, G.; Janďourek, O.; Konečná, K.; Paterová, P.; Navrátilová, L.; Kuneš, J.; Doležal, M.; et al. Design, synthesis, antimycobacterial evaluation, and in silico studies of 3-(phenylcarbamoyl)-pyrazine-2-carboxylic acids. Molecules 2017, 22, 1491. [Google Scholar] [CrossRef] [PubMed]
- Prusa, J.; Jensen, D.; Santiago-Collazo, G.; Pope, S.S.; Garner, A.L.; Miller, J.J.; Ruiz, M.A.; Galburt, E.A.; Stallings, C.L. Domains within RbpA serve specific functional roles that regulate the expression of distinct mycobacterial gene subsets. J. Bacteriol. 2018, 200, 10–1128. [Google Scholar] [CrossRef]
- Choi, K.H.; Kremer, L.; Besra, G.S.; Rock, C.O. Identification and substrate specificity of β-ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J. Biol. Chem. 2000, 275, 28201–28207. [Google Scholar] [CrossRef]
- Boyaci, H.; Chen, J.; Lilic, M.; Palka, M.; Mooney, R.A.; Landick, R.; Darst, S.A.; Campbell, E.A. Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts. eLife 2018, 7, 34823. [Google Scholar] [CrossRef]
- Hubin, E.A.; Tabib-Salazar, A.; Humphrey, L.J.; Flack, J.E.; Olinares, P.D.B.; Darst, S.A.; Campbell, E.A.; Paget, M.S. Structural, functional, and genetic analyses of the actinobacterial transcription factor RbpA. Proc. Natl. Acad. Sci. USA 2015, 112, 7171–7176. [Google Scholar] [CrossRef]
- Hubin, E.A.; Fay, A.; Xu, C.; Bean, J.M.; Saecker, R.M.; Glickman, M.S.; Darst, S.A.; Campbell, E.A. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA. eLife 2017, 6, 22520. [Google Scholar] [CrossRef] [PubMed]
- Terefe, E.M.; Ghosh, A. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of phytochemicals isolated from Croton dichogamus against the hiv-1 reverse transcriptase. Bioinform. Biol. Insights 2022, 16, 11779322221125605. [Google Scholar] [CrossRef] [PubMed]
- Alifano, P.; Palumbo, C.; Pasanisi, D.; Talà, A. Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering. J. Biotechnol. 2015, 202, 60–77. [Google Scholar] [CrossRef] [PubMed]
- Hamouche, L.; Poljak, L.; Carpousis, A.J. Ribosomal RNA degradation induced by the bacterial RNA polymerase inhibitor rifampicin. RNA 2021, 27, 946–958. [Google Scholar] [CrossRef] [PubMed]
- Tambe, V.D.; Bhambar, R.S. Estimation of total phenol, tannin, alkaloid and flavonoid in Hibiscus Tiliaceus Linn. wood extracts. J. Pharm. Phytochem. 2016, 2, 2321–6182. [Google Scholar]
- Chigayo, K.; Mojapelo, P.E.L.; Moleele, S.M. Phytochemical and antioxidant properties of different solvent extracts of Kirkia wilmsii tubers. Asian Pac. J. Trop. Biomed. 2016, 6, 1037–1043. [Google Scholar] [CrossRef]
- Begue, W.J.; Kline, R.M. The use of tetrazolium salts in bioautographic procedures. J. Chrom. 1972, 64, 182–184. [Google Scholar] [CrossRef]
- Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef]
- Kotze, M.; Eloff, J.N. Extraction of antibacterial compounds from Combretum microphyllum (Combretaceae). S. Afr. J. Bot. 2002, 6, 62–67. [Google Scholar] [CrossRef]
- Eloff, T.X.; He, L.; Zhan, Y.; Zang, S.; Ma, Y.; Zhao, X.; Zhang, C.; Xin, Y. The effect of MSMEG_6402 gene disruption on the cell wall structure of Mycobacterium smegmatis. Microb. Pathog. 2011, 51, 156–160. [Google Scholar] [CrossRef]
- Uttra, A.M. Assessment of antiarthritic potential of Ephedra gerardiana by in vitro and in vivo methods. Bangladesh J. Pharm. 2017, 12, 403–409. [Google Scholar] [CrossRef]
- Safar, R.; Doumandji, Z.; Saidou, T.; Ferrari, L.; Nahle, S.; Rihn, B.H.; Joubert, O. Cytotoxicity and global transcriptional responses induced by zinc oxide nanoparticles NM 110 in PMA-differentiated THP-1 cells. Toxicol. Lett. 2019, 308, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Sandasi, M.; Leonard, C.M.; Viljoen, A.M. The effect of five common essential oil components on Listeria monocytogenes biofilms. Food Control 2008, 19, 1070–1075. [Google Scholar] [CrossRef]
- Djordjevic, D.; Wiedmann, M.; McLandsborough, L.A. Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl. Environ. Microbiol. 2002, 68, 2950–2958. [Google Scholar] [CrossRef]
- Bentley, J.; Moore, J.P.; Farrant, J.M. Metabolomic Profiling of the Desiccation-Tolerant Medicinal Shrub Myrothamnus flabellifolia Indicates Phenolic Variability Across Its Natural Habitat: Implications for Tea and Cosmetics Production. Molecules 2019, 24, 1240. [Google Scholar] [CrossRef] [PubMed]
- Afriza, D.; Suriyah, W.H.; Ichwan, S.J.A. In silico analysis of molecular interactions between the anti-apoptotic protein survivin and dentatin, nordentatin, and quercetin. J. Phys. Conf. Ser. 2018, 1073, 032001. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
Polyphenolic Content | |||
---|---|---|---|
Sample | TPC (mg TAE/g) | TFC (mg QE/g) | TTC (mg GAE/g) |
Crude Extract | 599.7 ± 3.5 | 60.6 ± 1.3 | 87.2 ± 4.1 |
Antimycobacterial activity (MIC mg/mL) | |||
Crude | 0.52 ± 0.22 | ||
FC1 | 0.90 ± 0.10 | ||
FC2 | 0.078 ± 0 | ||
Rifampicin | 0.0016 ± 0 | ||
Cytotoxicity (LC50 (μg/mL)) | |||
Crude | 172.7 | ||
FC2 | 172.7 | ||
Rifampicin | 320.30 |
Isotopic Mass | Formula | Identifier | Retention Time | Name | Database |
---|---|---|---|---|---|
145.0 | C2HN4O4 | 87396588 | 0.83 | 4-nitro-3-oxo-4H-triazol-3-ium-5-one | PubChem |
144.989 | C3HN2O5 | 88813764 | 3.12 | 1-oxido-3-oxo-imidazolidine-1,3-diium-2,4,5-trione | PubChem |
228.085 | C7H16O8 | 89009828 | 3.73 | 3,4,5-trihydroperoxy-1-methoxy-hexan-2-ol | PubChem |
193.049 | C8H7N3O3 | 82669819 | 4.14 | 3-[5-(1-aminocyclopropyl)-1,3,4-oxadiazol-2-yl]prop-2-ynoic acid | PubChem |
223.059 | C9H9N3O4 | 70341629 | 4.21 | 3-hydroxy-5,7-dimethoxy-1,2,3-benzotriazin-4-one | PubChem |
253.117 | C10H15N5O3 | 23487968 | 4.99 | N4-allyl-N6-(2-methoxyethyl)-5-nitro-pyrimidine-4,6-diamine | PubChem |
401.18 | C17H27N3O8 | 91595513 | 6.46 | [(2R)-2-[(1S)-1-[(2S)-2,6-diaminohexanoyl]oxy-2-hydroxy-ethyl]-4,5-dioxo-tetrahydrofuran-3-yl] (2S)-pyrrolidine-2-carboxylate | PubChem |
415.195 | C18H29N3O8 | 89564021 | 6.65 | [(2S)-3-[6-acetyl-4,6-dihydroxy-3-[(1R)-1-hydroxyethyl]tetrahydropyran-2-yl]-2-hydroxy-propyl] (2R)-2-amino-3-(1H-imidazol-5-yl)propanoate | PubChem |
415.197 | C19H25N7O4 | 56284089 | 6.91 | 3-(6-aminopurin-9-yl)propyl 3-(2,4-dioxo-1,3-diazaspiro[4.5]decan-3-yl)propanoate | PubChem |
195.112 | C8H13N5O | 82365250 | 6.89 | 1-(methoxymethyl)-5-(2H-tetrazol-5-yl)-3,6-dihydro-2H-pyridine | PubChem |
195.112 | C8H13N5O | 69463083 | 6.91 | 1-ethoxy-2-methyl-pyrrolo[1,2-b][1,2,4]triazole-5,7-diamine | PubChem |
563.259 | C26H37N5O9 | 101614490 | 7.63 | (3S)-4-[[(1S)-2-amino-1-benzyl-2-oxo-ethyl]amino]-3-[[(2S)-2-[[(2S)-2-(3-carboxypropanoylamino)propanoyl]amino]-4-methyl-pentanoyl]amino]-4-oxo-butanoic acid | PubChem |
338.341 | C20H42N4 | 71442591 | 11.17 | 2-hexadecyl-3,5-dimethyl-3H-1,2,4-triazol-4-amine | PubChem |
Target | Protein Data Bank Code | Name of Ligands | Binding Energies (kcal/mol) |
---|---|---|---|
RNA polymerase binding protein (RbpA) | 4X8K | [(2S)-3-[6-acetyl-4,6-dihydroxy-3-[(1R)-1-hydroxyethyl]tetrahydropyran-2-yl]-2-hydroxy-propyl](2R)-2-amino-3-(1H-imidazol-5-yl)propanoate | −5.4 |
3-(6-aminopurin-9-yl)propyl 3-(2,4-dioxo-1,3-diazaspiro[4.5]decan-3-yl)propanoate | −6.3 | ||
Beta-ketoacyl synthase | 4EWG | 3-hydroxy-5,7-dimethoxy-1,2,3-benzotriazin-4-one | −7.1 |
1-(methoxymethyl)-5-(2H-tetrazol-5-yl)-3,6-dihydro-2H-pyridine | −7.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matlala, M.P.; Matotoka, M.M.; Shekwa, W.; Masoko, P. Antioxidant: Antimycobacterial and Antibiofilm Activities of Acetone Extract and Subfraction Artemisia afra Jacq. ex Willd. Against Mycobacterium smegmatis. Antibiotics 2024, 13, 1027. https://doi.org/10.3390/antibiotics13111027
Matlala MP, Matotoka MM, Shekwa W, Masoko P. Antioxidant: Antimycobacterial and Antibiofilm Activities of Acetone Extract and Subfraction Artemisia afra Jacq. ex Willd. Against Mycobacterium smegmatis. Antibiotics. 2024; 13(11):1027. https://doi.org/10.3390/antibiotics13111027
Chicago/Turabian StyleMatlala, Mabasa Precious, Mashilo Mash Matotoka, Wanda Shekwa, and Peter Masoko. 2024. "Antioxidant: Antimycobacterial and Antibiofilm Activities of Acetone Extract and Subfraction Artemisia afra Jacq. ex Willd. Against Mycobacterium smegmatis" Antibiotics 13, no. 11: 1027. https://doi.org/10.3390/antibiotics13111027
APA StyleMatlala, M. P., Matotoka, M. M., Shekwa, W., & Masoko, P. (2024). Antioxidant: Antimycobacterial and Antibiofilm Activities of Acetone Extract and Subfraction Artemisia afra Jacq. ex Willd. Against Mycobacterium smegmatis. Antibiotics, 13(11), 1027. https://doi.org/10.3390/antibiotics13111027