Antibacterial and Antifungal Activity of Metabolites from Basidiomycetes: A Review
Abstract
:1. Introduction
2. Antimicrobial Activity of Basidial Fungi Extracts
2.1. Basidiomycetes Orders and Activities of Extracts
2.2. Sources of Antimicrobial Metabolites
2.3. The Extractants Impact
Species | Fungi Material | Extractant | Minimum Inhibitory Concentration (MIC), µg/mL | SEQ * | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|
Antibacterial Activity | Antifungal Activity | |||||||||
Gram-Positive Bacteria | Gram-Negative Bacteria | |||||||||
Auricularia spp. | Fruiting bodies | Chloroform | MRSA | 1000 | K. pneumoniae | 1330 | C. albicans | 1330 | No | [41] |
S. aureus | 1000 | P. aeruginosa | 1670 | C. parapsilosis | 1330 | |||||
70% Ethanol | MRSA | 1000 | E. coli | 1330 | C. albicans | 1330 | ||||
S. aureus | 830 | K. pneumoniae | 1000 | C. parapsilosis | 1000 | |||||
Hot water | MRSA | 1000 | E. coli | 1000 | C. albicans | 1000 | ||||
K. pneumoniae | 830 | |||||||||
S. aureus | 830 | P. aeruginosa | 1330 | C. parapsilosis | 830 | |||||
Boletus edulis | Fruiting bodies | Water | MRSA | 31.25 | E. coli | 62.50 | Not investigated | No | [46] | |
S. aureus | 15.63 | P. aeruginosa | 7.81 | |||||||
Methanol | MRSA | 250 | P. aeruginosa | 125 | Not investigated | |||||
S. aureus | 125 | |||||||||
Favolaschia calocera | Culture liquid | Ethyl Acetate | Not detected | Not detected | C. tenuis | 4.69 | Yes | [45] | ||
M. plumbeus | 75.00 | |||||||||
Mycelium | Acetone | Not detected | Not detected | C. tenuis | <2.34 | |||||
M. plumbeus | 37.50 | |||||||||
Fomitopsis officinalis | Apical part of fruiting body | EtOH/Water 7:3 | B. cereus | 19.71 | E. coli | 3.86 | A. currei | 31.49 | Yes | [49] |
S. aureus | 31.49 | P. aeruginosa | 7.71 | T. tonsurans | 19.57 | |||||
Median part of fruiting body | B. cereus | 19.71 | E. coli | 7.71 | A. currei | 39.68 | ||||
S. aureus | 39.68 | P. aeruginosa | 125.99 | T. tonsurans | 31.49 | |||||
Fuscoporia torulosa | Fruiting bodies | Methanol | B. cereus | 570–1130 | E. coli | 570–1130 | S. sclerotium | 570 | Yes | [47] |
Verticillium sp. | 570 | |||||||||
Gyroporus castaneus | Fruiting bodies | Cyclohexane | MRSA | 125 | Not detected | Not investigated | No | [37] | ||
S. aureus | 125 | |||||||||
Lentinula edodes | Fruiting bodies | Ethanol | S. aureus | 1560 | Not detected | Not investigated | No | [36] | ||
Neoboletus luridiformis | Fruiting bodies | Water | MRSA | 62.5 | E. coli | 125 | Not investigated | No | [46] | |
S. aureus | 250 | P. aeruginosa | 31.25 | |||||||
Methanol | MRSA | 250 | P. aeruginosa | 250 | Not investigated | |||||
S. aureus | 250 | |||||||||
Phellinus tuberculosus | Fruiting bodies | Ethanol | S. aureus | 700 | Not detected | Not detected | No | [48] | ||
S. mutans | 1560 | |||||||||
Rubroboletus lupinus | Fruiting bodies | Cyclohexane | MRSA | 125 | Not detected | Not investigated | No | [46] | ||
S. aureus | 250 | |||||||||
Skeletocutis nivea | Culture liquid | Ethyl Acetate | B. subtilis | 9.38 | Not detected | Not detected | Yes | [45] | ||
Mycelium | Acetone | B. subtilis | 4.69 | M. plumbeus | 300 | |||||
Termitomyces spp. | Fruiting bodies | 70% Ethanol | MRSA | 830 | E. coli | 1000 | C. albicans | 1000 | No | [41] |
S. aureus | 670 | K. pneumoniae | 1000 | C. parapsilosis | 1000 | |||||
Hot water | MRSA | 830 | E. coli | 830 | C. albicans | 830 | ||||
S. aureus | 670 | K. pneumoniae | 830 | C. parapsilosis | 830 | |||||
Tricholosporum goniospermum | Mycelium | Ethyl Acetate | B. subtilis | 78 | E. coli | 99 | C. albicans | 51 | Yes | [42] |
B. cereus | 99 | T. tonsurans | 39 | |||||||
Fruiting bodies | Methanol | B. cereus | 99 | E. coli | 198 | C. albicans | 198 |
Species | Fungi Material | Extractant | Inhibition Zone, mm | SEQ * | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|
Antibacterial Activity | Antifungal Activity | |||||||||
Gram-Positive Bacteria | Gram-Negative Bacteria | |||||||||
Amanita proxima | Fruiting bodies | Ethyl Acetate | Not investigated | Not investigated | A. niger | 33.33 | No | [43] | ||
F. oxysporum | 26.33 | |||||||||
V. dahliae | 16.67 | |||||||||
Amanita virosa | Fruiting bodies | Ethyl Acetate | Not investigated | Not investigated | A. niger | 31.50 | ||||
F. oxysporum | 33.50 | |||||||||
V. dahliae | 21.67 | |||||||||
Bjerkandera adusta | Fruiting bodies | Ethanol | S. pneumoniae | 17 | Not detected | Not detected | Yes | [38] | ||
S. aureus | 15 | |||||||||
Cyclocybe cylindracea | Fruiting bodies | Ethanol | S. pneumoniae | 20 | E. coli | 17 | Not detected | Yes | [38] | |
P. aeruginosa | 17 | |||||||||
Gymnopilus junonius | Fruiting bodies | Methanol | E. faecalis | 17 | V. parahaemolyticus | 25 | Not investigated | No | [45] | |
E. lenta | 26 | |||||||||
Mycena sp. | Fruiting bodies | Methanol | E. lenta | 15 | Not investigated | Not investigated | ||||
Trametes quercina | Fruiting bodies | Ethyl Acetate | Not investigated | Not investigated | A. niger | 14.50 | No | [43] | ||
F. oxysporum | 36.83 | |||||||||
V. dahliae | 24.00 | |||||||||
Tricholoma equestre | Fruiting bodies | Methanol | E. faecalis | 17 | V. parahaemolyticus | 21 | Not investigated | No | [45] | |
E. lenta | 17 |
3. Antibacterial and Antifungal Metabolites of Basidial Fungi
3.1. Order Agaricales
3.2. Order Boletales
3.3. Order Hymenochaetales
3.4. Order Polyporales
3.5. Order Russulales
Species | Fungi Material | Compound | Minimum Inhibitory Concentration (MIC), µg/mL | SEQ * | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|
Antibacterial Activity | Antifungal Activity | |||||||||
Gram-Positive Bacteria | Gram-Negative Bacteria | |||||||||
Albatrellus confluens. | Fruiting bodies | Confluenine E | S. aureus | 29.3 ** | Not detected | Not investigated | No | [78] | ||
Confluenine F | S. aureus | 56.7 ** | Not detected | Not investigated | ||||||
Aurantiopileus mayanensis | Fruiting bodies | Merulinic acid C | B. subtilis | 16 | Not detected | Not investigated | No | [71] | ||
E. faceium | 16 | |||||||||
Bovistella radicata | Culture liquid | Griseococcin | S. aureus | 62.5 | P. aeruginosa | 62.5 | T. mentagrophytes | 31.2 | No | [52] |
T. rubrum | 31.2 | |||||||||
Caloboletus radicans | Fruiting bodies | 8-deacetylcyclocalopin B | MRSA | 16 | Not investigated | Not detected | No | [65] | ||
Cyclocalopin-A-15-ol | MRSA | 64 | Not investigated | Not detected | ||||||
12,15–dimethoxycyclocalopin A | MRSA | 128 | Not investigated | Not detected | ||||||
Crinipillis rhizomaticola | Culture liquid | Crinipellin A | Not investigated | Not investigated | B. cinerea | 31 | Yes | [59] | ||
C. coccodes | 1 | |||||||||
M. oryzae | 8 | |||||||||
P. infestans | 31 | |||||||||
Dentipellis fragilis | Mycelium | Dentifragilin A | B. subtilis | 1 | Not detected | M. hiemalis | 16.7 | Yes | [80] | |
S. aureus | 4.2 | R. glutinis | 16.7 | |||||||
Dentipellis fragilis | Mycelium | Dentifragilin D | B. subtilis | 16.7 | Not detected | Not detected | Yes | [80] | ||
S. aureus | 33.3 | |||||||||
Striatal D | B. subtilis | 1 | Not detected | M. hiemalis | 2.1 | |||||
R. glutinis | 1 | |||||||||
S. aureus | 2.1 | S. pombe | 4.2 | |||||||
Dentipellis fragilis | Culture liquid | Erinacine A | B. atrophaeus | 40 | Not investigated | C. demantium | 20 | Yes | [83] | |
B. subtilis | 20 | |||||||||
Erinacine B | B. atrophaeus | 2.5 | Not investigated | B. cinerea | 10 | |||||
C. demantium | 20 | |||||||||
B. subtilis | 5 | Diaporte sp. | 5 | |||||||
R. solani | 20 | |||||||||
Erinacine C | B. atrophaeus | 5 | Not investigated | B. cinerea | 20 | |||||
S. epidermidis | 10 | C. demantium | 20 | |||||||
Dentipellin | B. atrophaeus | 80 | Not investigated | F. oxysporum | 20 | |||||
B. subtilis | 80 | |||||||||
Dentipellis fragilis | Culture liquid | 10-Methoxycarbonyl-10-norisodrimenin | S. aureus | 66.7 | Not detected | M. hiemalis | 66.7 | Yes | [87] | |
Inonotus nidus-pici | Sclerotia | Osmundacetone | Not detected | A. fischeri | 93.8 | Not investigated | No | [69] | ||
Ergost-6,8,22-trien-3β-ol | B. subtilis | 42 | Not detected | Not investigated | ||||||
R. fascians | 168 | |||||||||
Marasmius spp. | Culture liquid | Fulvoferruginin A | Not detected | Not detected | C. albicans | 8.3 | Yes | [60] | ||
M. hiemalis | 16.7 | |||||||||
R. glutinis | 33.3 | |||||||||
S. pombe | 66.7 | |||||||||
Microporus sp. | Mycelium | Microporenic acid A | M. luteus | 37.5 | Not detected | M. plumbeus | 75 | Yes | [72] | |
Microporenic acid D | B. subtilis | 37.5 | Not detected | C. tenuis | 37.5 | |||||
M. luteus | 18.8 | M. plumbeus | 75 | |||||||
S. aureus | 75 | |||||||||
Microporenic acid E | B. subtilis | 18.8 | Not detected | C. tenuis | 37.5 | |||||
M. luteus | 9.4 | M. plumbeus | 75 | |||||||
Perenniporia centrali-africana | Culture liquid | Isodrimenediol | Not detected | Not detected | M. hiemalis | 67 | Yes | [76] | ||
R glutinis | 67 | |||||||||
Porostereum spadiceum | Mycelium | 3,5-dichloro-4-methoxybenzaldehyde | C michiganensis subsp | 100 | R. solanacearum | 100 | A. brassicicola | 100 | Yes | [77] |
C. orbiculare | 100 | |||||||||
Psathyrella candolleana | Culture liquid | Psathyrin A | S. aureus | 14.3 | S. enterica | 77.9 | Not investigated | No | [64]. | |
Psathyrin B | S. aureus | 22.7 | S. enterica | 101.6 | Not investigated | |||||
Skeletocutis sp. | Mycelium, Culture liquid | Skeletocutin I | B. subtilis | 18.75 | Not detected | Not detected | Yes | [74] | ||
S. aureus | 37.5 | |||||||||
Skeletocutis sp. | Mycelium, Culture liquid | Skeletocutin L | B. subtilis | 18.75 | Not detected | Not detected | Yes | [74] | ||
M. luteus | 37.5 | |||||||||
S. aureus | 18.75 | |||||||||
Tyromycin A | B. subtilis | 9.375 | Not detected | Not detected | ||||||
Stereum hirsutum | Culture liquid | Sterenin D | Not investigated | Not investigated | B. cinerea | 20 | No | [79] | ||
Tapinella atrotomentosa | Fruiting bodies | Osmundalactone | Not detected | A. baumannii | 10 | Not investigated | No | [68] | ||
E. coli | 10 | |||||||||
5-hydroxy-hex-2-en-4-olide | Not detected | A. baumannii | 6 | Not investigated | ||||||
E. coli | 10 | |||||||||
M. catarrhalis | 50 | |||||||||
Spiromentin C | Not detected | A. baumannii | 20 | Not investigated | ||||||
E. coli | 10 | |||||||||
M. catarrhalis | 50 |
Species | Fungi Material | Compound | Inhibition Zone, mm | SEQ * | Reference | ||||
---|---|---|---|---|---|---|---|---|---|
Antibacterial Activity | Antifungal Activity | ||||||||
Gram-Positive Bacteria | Gram-Negative Bacteria | ||||||||
Coprinus rhizophorus | Culture liquid | Sesquiterpene 2 | S. epidermidis | 13.8 | Not detected | Not detected | No | [57] | |
Echinolactone D | Not detected | Not detected | S. cerevisiae | 38.6 | |||||
Schizophyllum commune | Culture liquid | Schizostatin | S. aureus | 21.2 | Not investigated | A.solani | 20.2 | Yes | [56] |
Diaporte sp. | 19.5 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, M.-Q.; Zhao, R.-L.; Liu, D.-M.; Denchev, T.T.; Begerow, D.; Yurkov, A.; Kemler, M.; Millanes, A.M.; Wedin, M.; McTaggart, A.R.; et al. Species diversity of Basidiomycota. Fungal Divers. 2022, 114, 281–325. [Google Scholar] [CrossRef]
- Gressler, M.; Löhr, N.A.; Schäfer, T.; Lawrinowitz, S.; Seibold, P.S.; Hoffmeister, D. Mind the mushroom: Natural product biosynthetic genes and enzymes of Basidiomycota. Nat. Prod. Rep. 2021, 38, 702–722. [Google Scholar] [CrossRef] [PubMed]
- Wasser, S.P. Medicinal mushroom science: History, current status, future trends, and unsolved problems. Int. J. Med. Mushrooms 2010, 12, 1–16. [Google Scholar] [CrossRef]
- Anke, H.; Sterner, O. Nematicidal metabolites from higher fungi. Curr. Org. Chem. 1997, 1, 361–374. [Google Scholar] [CrossRef]
- Martinez-Burgos, W.J.; Montes Montes, E.; Pozzan, R.; Serra, J.L.; Torres, D.O.; Manzoki, M.C.; Vieira, R.L.; dos Reis, G.A.; Rodrigues, C.; Karp, S.G.; et al. Bioactive Compounds Produced by Macromycetes for Application in the Pharmaceutical Sector: Patents and Products. Fermentation 2024, 10, 275. [Google Scholar] [CrossRef]
- Grienke, U.; Zöll, M.; Peintner, U.; Rollinger, J.M. European medicinal polypores–A modern view on traditional uses. J. Ethnopharmacol. 2014, 154, 564–583. [Google Scholar] [CrossRef]
- Schueffler, A.; Anke, T. Fungal natural products in research and development. Nat. Prod. Rep. 2014, 31, 1425–1448. [Google Scholar] [CrossRef]
- Zakharychev, V.V.; Kovalenko, L.V. Natural compounds of the strobilurin series and their synthetic analogues as cell respiration inhibitors. Russ. Chem. Rev. 1998, 67, 535. [Google Scholar] [CrossRef]
- Narayanan, Z.; Glick, B.R. Secondary metabolites produced by plant growth-promoting bacterial endophytes. Microorganisms 2022, 10, 2008. [Google Scholar] [CrossRef]
- Hood, I.A. The mycology of the basidiomycetes. In Proceedings of the Australian Centre for International Agricultural Research (ACIAR) Proceedings, Yogykarta, Indonesia, 7–9 February 2006; Volume 124, pp. 34–45. [Google Scholar]
- Spiteller, P. Chemical defence strategies of higher fungi. Chem. A Eur. J. 2008, 14, 9100–9110. [Google Scholar] [CrossRef]
- Wu, B.; Ohlendorf, B.; Oesker, V.; Wiese, J.; Malien, S.; Schmaljohann, R.; Imhoff, J.F. Acetylcholinesterase inhibitors from a marine fungus Talaromyces sp. strain LF458. Mar. Biotechnol. 2015, 17, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Ding, W.; Li, C.; Cox, D.G. Two new cyclopeptides from the co-culture broth of two marine mangrove fungi and their antifungal activity. Pharmacogn. Mag. 2014, 10, 410. [Google Scholar] [PubMed]
- Han, W.B.; Lu, Y.H.; Zhang, A.H.; Zhang, G.F.; Mei, Y.N.; Jiang, N.; Lei, X.; Song, Y.C.; Ng, S.W.; Tan, R.X. Curvulamine, a new antibacterial alkaloid incorporating two undescribed units from a Curvularia species. Org. Lett. 2014, 16, 5366–5369. [Google Scholar] [CrossRef]
- Bérdy, J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J. Antibiot. 2012, 65, 385–395. [Google Scholar] [CrossRef]
- Kavanagh, F.; Hervey, A.; Robbins, W.J. Antibiotic substances from basidiomycetes: VIII. Pleurotus multilus (Fr.) Sacc. and Pleurotus passeckerianus Pilat. Proc. Natl. Acad. Sci. USA 1951, 37, 570–574. [Google Scholar] [CrossRef]
- Florey, H.W.; Chain, E.; Heatley, N.G.; Jennings, M.A.; Sanders, A.G.; Abraham, E.P.; Florey, M. Antibiotics. A Survey of Penicillin, Streptomycin, and Other Antimicrobial Substances from Fungi, Actinomyeetes, Bacteria, and Plants; Oxford University Press: Oxford, UK, 1949; Volume I. [Google Scholar]
- Singh, B.N.; Hidangmayum, A.; Singh, A.; Shera, S.S.; Dwivedi, P. Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms; Springer: Berlin/Heidelberg, Germany, 2019; pp. 4–5. [Google Scholar]
- Ranadive, K.R.; Belsare, M.H.; Deokule, S.S.; Jagtap, N.V.; Jadhav, H.K.; Vaidya, J.G. Glimpses of antimicrobial activity of fungi from World. J. New Biol. Rep. 2013, 2, 142–162. [Google Scholar]
- Udu-Ibiam, O.E.; Ogbu, O.; Nworie, O.; Ibiam, U.A.; Agah, M.V.; Nnachi, A.U.; Ogbu, K.I.; Chukwu, O.S. Antimicrobial activities of some selected edible mushrooms and spices against clinical isolates from Federal University Teaching Hospital Abakaliki (FETHA), Ebonyi State, Nigeria. Int. J. Sci. Technol. Res. 2014, 3, 251–255. [Google Scholar]
- Zhu, F.; Qin, C.; Tao, L.; Liu, X.; Shi, Z.; Ma, X.; Jia, J.; Tan, Y.; Cui, C.; Lin, J.; et al. Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proc. Natl. Acad. Sci. USA 2011, 108, 12943–12948. [Google Scholar] [CrossRef]
- Hartley, A.J.; de Mattos-Shipley, K.; Collins, C.M.; Kilaru, S.; Foster, G.D.; Bailey, A.M. Investigating pleuromutilin-producing Clitopilus species and related basidiomycetes. FEMS Microbiol. Lett. 2009, 297, 24–30. [Google Scholar] [CrossRef]
- Paukner, S.; Riedl, R. Pleuromutilins: Potent drugs for resistant bugs—Mode of action and resistance. Cold Spring Harb. Perspect. Med. 2017, 7, a027110. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Q.; Huo, Y.; Sun, X.; Hu, J. Recent advances in developing modified C14 side chain pleuromutilins as novel antibacterial agents. Eur. J. Med. Chem. 2024, 269, 116313. [Google Scholar] [CrossRef] [PubMed]
- Anke, T.; Oberwinkler, F.; Steglich, W.; Schramm, G. The strobilurins-new antifungal antibiotics from the basidiomycete Strobilurus tenacellus (Pers. ex Fr.) Sing. J. Antibiot. 1977, 30, 806–810. [Google Scholar] [CrossRef]
- Niego, A.G.; Raspé, O.; Thongklang, N.; Charoensup, R.; Lumyong, S.; Stadler, M.; Hyde, K.D. Taxonomy, diversity and cultivation of the Oudemansielloid/Xeruloid taxa Hymenopellis, Mucidula, Oudemansiella, and Xerula with respect to their bioactivities: A review. J. Fungi 2021, 7, 51. [Google Scholar] [CrossRef]
- de Oliveira Vieira, V.; Conceição, A.A.; de Oliveira Gorgulho Silva, C.; Romero-Pelaez, R.D.; Junior, M.L.; Abdelnur, P.V.; de Almeida, J.R.M.; Almeida, E.G.; de Siqueira, F.G. Characterization of extracellular secondary metabolites in Oudemansiella canarii BRM-044600 displaying antifungal activity against the phytopathogen Sclerotinia sclerotiorum. World J. Microbiol. Biotechnol. 2021, 37, 203. [Google Scholar] [CrossRef]
- Anke, T. Secondary metabolites from mushrooms. J. Antibiot. 2020, 73, 655–656. [Google Scholar] [CrossRef]
- Karwehl, S.; Stadler, M. Exploitation of fungal biodiversity for discovery of novel antibiotics. In How to Overcome the Antibiotic Crisis: Facts, Challenges, Technologies and Future Perspectives; Springer: Berlin/Heidelberg, Germany, 2016; pp. 303–338. [Google Scholar]
- Vallavan, V.; Krishnasamy, G.; Zin, N.M.; Abdul Latif, M. A review on antistaphylococcal secondary metabolites from basidiomycetes. Molecules 2020, 25, 5848. [Google Scholar] [CrossRef]
- Erjavec, J.; Kos, J.; Ravnikar, M.; Dreo, T.; Sabotič, J. Proteins of higher fungi–from forest to application. Trends Biotechnol. 2012, 30, 259–273. [Google Scholar] [CrossRef]
- Ngai, P.H.; Ng, T.B. A ribonuclease with antimicrobial, antimitogenic and antiproliferative activities from the edible mushroom Pleurotus sajor-caju. Peptides 2004, 25, 11–17. [Google Scholar] [CrossRef]
- Choi, H.S.; Cho, H.Y.; Yang, H.C.; Ra, K.S.; Suh, H.J. Angiotensin I-converting enzyme inhibitor from Grifola frondosa. Food Res. Int. 2001, 34, 177–182. [Google Scholar] [CrossRef]
- Shen, H.S.; Shao, S.; Chen, J.C.; Zhou, T. Antimicrobials from mushrooms for assuring food safety. Compr. Rev. Food Sci. Food Saf. 2017, 16, 316–329. [Google Scholar] [CrossRef]
- Erdoğan Eliuz, E.A. Antibacterial activity and antibacterial mechanism of ethanol extracts of Lentinula edodes (Shiitake) and Agaricus bisporus (button mushroom). Int. J. Environ. Health Res. 2022, 32, 1828–1841. [Google Scholar] [CrossRef] [PubMed]
- Bach, F.; Zielinski, A.A.F.; Helm, C.V.; Maciel, G.M.; Pedro, A.C.; Stafussa, A.P.; Ávila, S.; Haminiuk, C.W.I. Bio compounds of edible mushrooms: In vitro antioxidant and antimicrobial activities. Lwt 2019, 107, 214–220. [Google Scholar] [CrossRef]
- Morel, S.; Vitou, M.; Masnou, A.; Jumas-Bilak, E.; Rapior, S.; Licznar-Fajardo, P. Antibacterial activity of wild mushrooms from France. Int. J. Med. Mushrooms 2021, 23, 79–89. [Google Scholar] [CrossRef]
- Soliman, E.R.; El-Sayed, H. Molecular identification and antimicrobial activities of some wild Egyptian mushrooms: Bjerkandera adusta as a promising source of bioactive antimicrobial phenolic compounds. J. Genet. Eng. Biotechnol. 2021, 19, 106. [Google Scholar] [CrossRef]
- Lysakova, V.S.; Rogozhin, E.A.; Sineva, O.N.; Krasnopolskaya, L.M. Protein-peptide extracts of basidiomycetes with antibiotic activity. Uspekhi Meditcinskoy Mikol. 2023, 25, 217–219. (In Russia) [Google Scholar]
- Ragupathi, V.; Stephen, A.; Arivoli, D.; Kumaresan, S. In vitro antibacterial activity of methanolic extract of wild mushrooms from southern Western Ghats, India. Int. J. Phytopharm. Res. 2018, 9, 32–39. [Google Scholar]
- Gebreyohannes, G.; Nyerere, A.; Bii, C.; Sbhatu, D.B. Investigation of antioxidant and antimicrobial activities of different extracts of Auricularia and Termitomyces species of mushrooms. Sci. World J. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Angelini, P.; Venanzoni, R.; Angeles Flores, G.; Tirillini, B.; Orlando, G.; Recinella, L.; Chiavaroli, A.; Brunetti, L.; Leone, S.; Di Simone, S.C.; et al. Evaluation of antioxidant, antimicrobial and tyrosinase inhibitory activities of extracts from Tricholosporum goniospermum, an edible wild mushroom. Antibiotics 2020, 9, 513. [Google Scholar] [CrossRef]
- Clericuzio, M.; Bivona, M.; Gamalero, E.; Bona, E.; Novello, G.; Massa, N.; Dovana, F.; Marengo, E.; Robotti, E. A systematic study of the antibacterial activity of basidiomycota crude extracts. Antibiotics 2021, 10, 1424. [Google Scholar] [CrossRef]
- Ait Hamadouche, Y.; Dib, S.; Fortas, Z. Antifungal Basidiomycete Extracts with Phytosanitary Potential. South Asian J. Exp. Biol. 2021, 11, 86–95. [Google Scholar] [CrossRef]
- Sum, W.C.; Indieka, S.A.; Matasyoh, J.C. Antimicrobial activity of Basidiomycetes fungi isolated from a Kenyan tropical0 forest. Afr. J. Biotechnol. 2019, 18, 112–123. [Google Scholar]
- Garcia, J.; Rodrigues, F.; Castro, F.; Aires, A.; Marques, G.; Saavedra, M.J. Antimicrobial, antibiofilm, and antioxidant properties of Boletus edulis and Neoboletus luridiformis against multidrug-resistant ESKAPE pathogens. Front. Nutr. 2022, 8, 773346. [Google Scholar] [CrossRef] [PubMed]
- Covino, S.; D’Ellena, E.; Tirillini, B.; Angeles, G.; Arcangeli, A.; Bistocchi, G.; Venanzon, R.; Angelini, P. Characterization of biological activities of methanol extract of Fuscoporia torulosa (Basidiomycetes) from Italy. Int. J. Med. Mushrooms 2019, 21, 1051–1063. [Google Scholar] [CrossRef] [PubMed]
- Dokhaharani, S.C.; Ghobad-Nejhad, M.; Moghimi, H.; Farazmand, A.; Rahmani, H. Biological activities of two polypore macrofungi (Basidiomycota) and characterization of their compounds using HPLC–DAD and LC–ESI–MS/MS. Folia Microbiol. 2021, 66, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Flores, G.A.; Cusumano, G.; Ianni, F.; Blasi, F.; Angelini, P.; Cossignani, L.; Pellegrino, R.M.; Emiliani, C.; Venanzoni, R.; Zengin, G.; et al. Fomitopsis officinalis: Spatial (Pileus and Hymenophore) Metabolomic Variations Affect Functional Components and Biological Activities. Antibiotics 2023, 12, 766. [Google Scholar] [CrossRef]
- Vaquiro, H.A.; Suárez, H.; Murillo, W. Probiotic growth-stimulating capacity and antimicrobial activities of aqueous extracts of Lentinus crinitus (L.) Fr (polyporales, basidiomycota). Heliyon 2023, 9, e18738. [Google Scholar]
- Bills, G.F.; Gloer, J.B. Biologically active secondary metabolites from the fungi. Microbiol. Spectr. 2016, 4, 4–6. [Google Scholar] [CrossRef]
- Ye, Y.; Zeng, Q.; Zeng, Q. Griseococcin (1) from Bovistella radicata (Mont.) Pat and antifungal activity. BMC Microbiol. 2020, 20, 276. [Google Scholar] [CrossRef]
- Ye, Y.; Liu, K.; Zeng, Q.H.; Zeng, Q.M. Antimicrobial activity of puffball (Bovistella radicata) and separation of bioactive compounds. AMB Express 2017, 7, 99. [Google Scholar] [CrossRef]
- Tanimoto, T.; Onodera, K.; Hosoya, T.; Takamatsu, Y.; Kinoshita, T.; Tago, K.; Kogen, H.; Fujioka, T.; Hamano, K.; Tsujita, Y. Schizostatin, a novel squalene synthase inhibitor produced by the mushroom, Schizophyllum commune I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J. Antibiot. 1996, 49, 617–623. [Google Scholar] [CrossRef]
- Chan, W.K.; Tan, L.T.H.; Chan, K.G.; Lee, L.H.; Goh, B.H. Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules 2016, 21, 529. [Google Scholar] [CrossRef] [PubMed]
- Woo, E.E.; Kim, J.Y.; Kim, J.S.; Kwon, S.W.; Lee, I.K.; Yun, B.S. Mannonerolidol, a new nerolidol mannoside from culture broth of Schizophyllum commune. J. Antibiot. 2019, 72, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Woo, E.E.; Ha, L.S.; Kim, J.Y.; Lee, I.K.; Yun, B.S. Rhizophins A and B, new sesquiterpenes from the culture broth of Coprinus rhizophorus. J. Antibiot. 2020, 73, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Murayama, T.; Shiono, Y. Echinolactones C and D: Two illudalane sesquiterpenoids isolated from the cultured mycelia of the fungus Echinodontium japonicum. Z. Für Naturforschung B 2006, 61, 1295–1298. [Google Scholar] [CrossRef]
- Han, J.W.; Oh, M.; Lee, Y.J.; Choi, J.; Choi, G.J.; Kim, H. Crinipellins A and I, two diterpenoids from the basidiomycete fungus Crinipellis rhizomaticola, as potential natural fungicides. Molecules 2018, 23, 2377. [Google Scholar] [CrossRef]
- Sandargo, B.; Kaysan, L.; Teponno, R.B.; Richter, C.; Thongbai, B.; Surup, F.; Stadler, M. Analogs of the carotane antibiotic fulvoferruginin from submerged cultures of a Thai Marasmius sp. Beilstein J. Org. Chem. 2021, 17, 1385–1391. [Google Scholar] [CrossRef]
- Klein, J.; Anke, T.; Sheldrick, W.S.; Bross, M.; Steffan, B.; Steglich, W. Fulvoferruginin, a carotane antibiotic from Marasmius fulvoferrugineus Gilliam [1]. Z. Für Naturforschung C 1990, 45, 845–850. [Google Scholar] [CrossRef]
- Huo, G.H.; Wu, T.F.; Peng, W.W.; Hu, D.M.; Li, Z.M.; Huo, D. Two Carotane Sesquiterpenoids from Gymnopus sp. 0612-9 Against Penicillium italicum and P. digitatum, Which Decay Postharvest Citrus. Chem. Nat. Compd. 2019, 55, 857–860. [Google Scholar] [CrossRef]
- Liu, Y.P.; Dai, Q.; Wang, W.X.; He, J.; Li, Z.H.; Feng, T.; Liu, J.K. Psathyrins: Antibacterial diterpenoids from Psathyrella candolleana. J. Nat. Prod. 2020, 83, 1725–1729. [Google Scholar] [CrossRef]
- Wu, H.; Yang, H.X.; Li, Z.H.; Feng, T.; Liu, J.K. Psathyrellins A–E, antibacterial guanacastane diterpenoids from mushroom Psathyrella candolleana. Nat. Prod. Bioprospecting 2021, 11, 447–452. [Google Scholar] [CrossRef]
- Tareq, F.S.; Hasan, C.M.; Rahman, M.M.; Hanafi, M.M.M.; Colombi Ciacchi, L.; Michaelis, M.; Harder, T.; Tebben, J.; Islam, M.T.; Spiteller, P. Anti-staphylococcal calopins from fruiting bodies of Caloboletus radicans. J. Nat. Prod. 2018, 81, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Ebel, H.; Knör, S.; Steglich, W. Total synthesis of the mushroom metabolite (+)-calopin. Tetrahedron 2003, 59, 123–129. [Google Scholar] [CrossRef]
- Liktor-Busa, E.; Kovács, B.; Urbán, E.; Hohmann, J.; Ványolós, A. Investigation of Hungarian mushrooms for antibacterial activity and synergistic effects with standard antibiotics against resistant bacterial strains. Lett. Appl. Microbiol. 2016, 62, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Béni, Z.; Dékány, M.; Kovács, B.; Csupor-Löffler, B.; Zomborszki, Z.; Kerekes, E.; Szekeres, A.; Urbán, E.; Hohmann, J.; Ványolós, A. Bioactivity-guided isolation of antimicrobial and antioxidant metabolites from the mushroom Tapinella atrotomentosa. Molecules 2018, 23, 1082. [Google Scholar] [CrossRef]
- Garádi, Z.; Dékány, M.; Móricz, Á.M.; Gaál, A.; Papp, V.; Béni, S.; Ványolós, A. Antimicrobial, antioxidant and antiproliferative secondary metabolites from Inonotus nidus-pici. Molecules 2021, 26, 5453. [Google Scholar] [CrossRef]
- Béni, Z.; Dékány, M.; Sárközy, A.; Kincses, A.; Spengler, G.; Papp, V.; Hohmann, J.; Ványolós, A. Triterpenes and phenolic compounds from the fungus Fuscoporia torulosa: Isolation, structure determination and biological activity. Molecules 2021, 26, 1657. [Google Scholar] [CrossRef]
- Rodrigues-Costa, F.; Slivinski, J.; Ióca, L.P.; Bertonha, A.F.; de Felício, R.; Da Cunha, M.G.; da Mata Madeira, P.V.; Cauz, A.C.G.; Trindade, D.M.; Freire, V.F.; et al. Merulinic acid C overcomes gentamicin resistance in Enterococcus faecium. Bioorganic Chem. 2020, 100, 103921. [Google Scholar] [CrossRef]
- Chepkirui, C.; Yuyama, K.T.; Wanga, L.A.; Decock, C.; Matasyoh, J.C.; Abraham, W.R.; Stadler, M. Microporenic acids A–G, biofilm inhibitors, and antimicrobial agents from the Basidiomycete Microporus species. J. Nat. Prod. 2018, 81, 778–784. [Google Scholar] [CrossRef]
- Weber, W.; Semar, M.; Anke, T.; Bross, M.; Steglich, W. Tyromycin A: A Novel Inhibitor of Leucine and Cysteine Aminopeptidases from Tyromyces lacteus. Planta Medica 1991, 57, A18. [Google Scholar] [CrossRef]
- Chepkirui, C.; Cheng, T.; Sum, W.C.; Matasyoh, J.C.; Decock, C.; Praditya, D.F.; Stadler, M. Skeletocutins AL: Antibacterial agents from the Kenyan wood-inhabiting basidiomycete, Skeletocutis sp. J. Agric. Food Chem. 2019, 67, 8468–8475. [Google Scholar] [CrossRef]
- Rodríguez, B.; Zapata, N.; Medina, P.; Viñuela, E. A complete 1H and 13C NMR data assignment for four drimane sesquiterpenoids isolated from Drimys winterii. Magn. Reson. Chem. 2005, 43, 82–84. [Google Scholar] [CrossRef] [PubMed]
- Pathompong, P.; Pfütze, S.; Surup, F.; Boonpratuang, T.; Choeyklin, R.; Matasyoh, J.C.; Decock, C.; Stadler, M.; Boonchird, C. Drimane-Type Sesquiterpenoids Derived from the Tropical Basidiomycetes Perenniporia centrali-africana and Cerrena sp. nov. Molecules 2022, 27, 5968. [Google Scholar] [CrossRef] [PubMed]
- Hamamoto, E.; Kimura, N.; Nishino, S.; Ishihara, A.; Otani, H.; Osaki-Oka, K. Antimicrobial activity of the volatile compound 3, 5-dichloro-4-methoxybenzaldehyde, produced by the mushroom Porostereum spadiceum, against plant-pathogenic bacteria and fungi. J. Appl. Microbiol. 2021, 131, 1431–1439. [Google Scholar] [CrossRef]
- Zhang, S.B.; Huang, Y.; Chen, H.P.; Li, Z.H.; Wu, B.; Feng, T.; Liu, J.K. Confluenines A–F, N-oxidized l-isoleucine derivatives from the edible mushroom Albatrellus confluens. Tetrahedron Lett. 2018, 59, 3262–3266. [Google Scholar] [CrossRef]
- Aqueveque, P.; Céspedes, C.L.; Becerra, J.; Aranda, M.; Sterner, O. Antifungal activities of secondary metabolites isolated from liquid fermentations of Stereum hirsutum (Sh134-11) against Botrytis cinerea (grey mould agent). Food Chem. Toxicol. 2017, 109, 1048–1054. [Google Scholar] [CrossRef]
- Sum, W.C.; Mitschke, N.; Schrey, H.; Wittstein, K.; Kellner, H.; Stadler, M.; Matasyoh, J.C. Antimicrobial and Cytotoxic Cyathane-Xylosides from Cultures of the Basidiomycete Dentipellis fragilis. Antibiotics 2022, 11, 1072. [Google Scholar] [CrossRef]
- Anke, T.; Rabe, U.; Schu, P.; Eizenhöfer, T.; Schrage, M.; Steglich, W. Studies on the biosynthesis of striatal-type diterpenoids and the biological activity of herical. Z. Für Naturforschung C 2002, 57, 263–271. [Google Scholar] [CrossRef]
- Mudalungu, C.M.; Richter, C.; Wittstein, K.; Abdalla, M.A.; Matasyoh, J.C.; Stadler, M.; Süssmuth, R.D. Laxitextines A and B, cyathane xylosides from the tropical fungus Laxitextum incrustatum. J. Nat. Prod. 2016, 79, 894–898. [Google Scholar] [CrossRef]
- Ha, L.S.; Ki, D.W.; Kim, J.Y.; Choi, D.C.; Lee, I.K.; Yun, B.S. Dentipellin, a new antibiotic from culture broth of Dentipellis fragilis. J. Antibiot. 2021, 74, 538–541. [Google Scholar] [CrossRef]
- Shen, T.; Morlock, G.; Zorn, H. Production of cyathane type secondary metabolites by submerged cultures of Hericium erinaceus and evaluation of their antibacterial activity by direct bioautography. Fungal Biol. Biotechnol. 2015, 2, 8. [Google Scholar] [CrossRef]
- Ma, B.J.; Shen, J.W.; Yu, H.Y.; Ruan, Y.; Wu, T.T.; Zhao, X. Hericenones and erinacines: Stimulators of nerve growth factor (NGF) biosynthesis in Hericium erinaceus. Mycology 2010, 1, 92–98. [Google Scholar] [CrossRef]
- Kawagishi, H.; Zhuang, C.; Yunoki, R. Compounds for dementia from Hericium erinaceum. Drugs Future 2008, 33, 149. [Google Scholar] [CrossRef]
- Mitschke, N.; Sum, W.C.; Hassan, K.; Kirchenwitz, M.; Schrey, H.; Gerhards, L.; Kellner, H.; Stradal, T.E.B.; Matasyoh, J.C.; Stadler, M. Biologically active drimane derivatives isolated from submerged cultures of the wood-inhabiting basidiomycete Dentipellis fragilis. RSC Adv. 2023, 13, 25752–25761. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xiao, S.; Zhang, D.; Mu, S.; Zhang, L.; Wang, X.; Xue, F. Synthesis and antibacterial activity of novel pleuromutilin derivatives. Biol. Pharm. Bull. 2015, 38, 1041–1048. [Google Scholar] [CrossRef]
- Goudarzi, M.; Khoshbayan, A.; Taheri, F. Retapamulin: Current Status and Future Perspectives. Arch. Clin. Infect. Dis. 2021, 16, e114970. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lysakova, V.; Krasnopolskaya, L.; Yarina, M.; Ziangirova, M. Antibacterial and Antifungal Activity of Metabolites from Basidiomycetes: A Review. Antibiotics 2024, 13, 1026. https://doi.org/10.3390/antibiotics13111026
Lysakova V, Krasnopolskaya L, Yarina M, Ziangirova M. Antibacterial and Antifungal Activity of Metabolites from Basidiomycetes: A Review. Antibiotics. 2024; 13(11):1026. https://doi.org/10.3390/antibiotics13111026
Chicago/Turabian StyleLysakova, Valeria, Larissa Krasnopolskaya, Maria Yarina, and Mayya Ziangirova. 2024. "Antibacterial and Antifungal Activity of Metabolites from Basidiomycetes: A Review" Antibiotics 13, no. 11: 1026. https://doi.org/10.3390/antibiotics13111026
APA StyleLysakova, V., Krasnopolskaya, L., Yarina, M., & Ziangirova, M. (2024). Antibacterial and Antifungal Activity of Metabolites from Basidiomycetes: A Review. Antibiotics, 13(11), 1026. https://doi.org/10.3390/antibiotics13111026