Sustainable Bacterial Control of Hatching Eggshells Using Essential Oils
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verma, S.; Wadhwa, N.K.; Bajaj, D.; Sharma, R.; Rajni, E.; Priyadarshani, A. A Microbiological Analysis of Egg Shell Bacteria. Vantage J. Themat. Anal. 2023, 4, 34–46. [Google Scholar] [CrossRef]
- Kabir, S.M.K. Avian Colibacillosis and Salmonellosis: A Closer Look at Epidemiology, Pathogenesis, Diagnosis, Control and Public Health Concerns. Int. J. Environ. Res. Public Health 2010, 7, 89–114. [Google Scholar] [CrossRef] [PubMed]
- Kosecka-Strojek, M.; Trzeciak, J.; Homa, J.; Trzeciak, K.; Władyka, B.; Trela, M.; Międzobrodzki, J.; Lis, M.W. Effect of Staphylococcus aureus Infection on The Heat Stress Protein 70 (HSP70) Level in Chicken Embryo Tissues. Poult. Sci. 2021, 100, 101119. [Google Scholar] [CrossRef]
- Almeida e Silva, T.; Gorup, L.F.; de Araújo, R.P.; Fonseca, G.G.; Martelli, S.M.; de Oliveira, K.M.P.; Faraoni, L.H.; de Arruda, E.G.R.; Gomes, R.A.B.; da Silva, C.H.M.; et al. Synergy of Biodegradable Polymer Coatings With Quaternary Ammonium Salts Mediating Barrier Function against Bacterial Contamination and Dehydration of Eggs. Food Bioprocess Technol. 2020, 13, 2065–2081. [Google Scholar] [CrossRef]
- Melo, E.F.; Clímaco, W.L.S.; Triginelli, M.V.; Vaz, D.P.; De Souza, M.R.; Baião, N.C.; Pompeu, M.A.; Lara, L.J.C. An evaluation of alternative methods for sanitizing hatching eggs. Poult. Sci. 2019, 98, 2466–2473. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.D.S.; McManus, C.; Salgado, C.B.; Dos Santos, V.M. Effects of sanitizers on microbiological control of hatching eggshells and poultry health during embryogenesis and early stages after hatching in the last decade. Animals 2022, 12, 2826. [Google Scholar] [CrossRef]
- Cadirci, S. Disinfection of Hatching Eggs by Formaldehyde Fumigation-a Review. Eur. Poult. Sci. 2009, 73, 116–123. [Google Scholar]
- Hayretdag, S.; Kolankaya, D. Investigation of the Effects of Preincubation Formaldehyde Fumigation on the Tracheal Epithelium of Chicken Embryos and Chicks. Turk. J. Vet. Anim. Sci. 2008, 32, 263–267. [Google Scholar]
- Zeweil, H.S.; Rizk, R.E.; Bekhet, G.M.; Ahmed, M.R. Comparing the Effectiveness of Egg Disinfectants against Bacteria and Mitotic Indices of Developing Chick Embryos. J. Basic Appl. Zool. 2015, 70, 1–15. [Google Scholar] [CrossRef]
- Ezzat Abd El-Hack, M.; Alagawany, M.; Ragab Farag, M.; Tiwari, R.; Karthik, K.; Dhama, K.; Zorriehzahra, J.; Adel, M. Beneficial Impacts of Thymol Essential Oil on Health and Production of Animals, Fish and Poultry: A Review. J. Essent. Oil Res. 2016, 28, 365–382. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Wang, H.; Ma, J.; Peng, W.; Li, X.; Lai, Y.; Zhang, B.; Zhang, D. Environmentally Friendly Plant Essential Oil: Liquid Gold for Human Health. Adv. Agron. 2021, 170, 289–337. [Google Scholar]
- Oliveira, G.D.S.; McManus, C.; de Araújo, M.V.; de Sousa, D.E.R.; de Macêdo, I.L.; Castro, M.B.D.; Santos, V.M.D. Sanitizing hatching eggs with essential oils: Avian and microbiological safety. Microorganisms 2023, 11, 1890. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik-Kulesza, K.A. Toxicity of Selected Monoterpenes and Essential Oils Rich in These Compounds. Molecules 2022, 27, 1716. [Google Scholar] [CrossRef] [PubMed]
- Vostinaru, O.; Heghes, S.C.; Filip, L. Safety Profile of Essential Oils. In Essential Oils-Bioactive Compounds, New Perspectives and Applications; IntechOpen: London, UK, 2020. [Google Scholar]
- Bongiovanni, V.; Colombo, M.; Laura, C.; Andrea, T.; Daniela, C. Determining Odour-Active Compounds in a Commercial Sample of Cinnamomun cassia Essential Oil Using GC–MS and GC-O. J. Chromatogr. Sep. Tech. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Uddin, M.A.; Shahinuzzaman, M.; Rana, M.S.; Yaakob, Z. Study of chemical composition and medicinal properties of volatile oil from clove buds (Eugenia caryophyllus). Int. J. Pharm. Sci. Res. 2017, 8, 895. [Google Scholar]
- Saputra, N.A.; Wibisono, H.S.; Darmawan, S.; Pari, G. Chemical Composition of Cymbopogon Nardus Essential Oil and Its Broad-Spectrum Benefit. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 415, p. 012017. [Google Scholar]
- Moreira Silva, A.R.; Lopes Mendes, L.D.S.; Silva de Souza, E.F.; Luz Pereira, M.; Silva Alves, M.; Pará Alves, E.V.; Lima Torres, E.; Gaspar Novais, T.M. Avaliação da Atividade Antimicrobiana do Óleo Essencial de Cinnamomum cassia. Rev. Foco (Interdiscip. Stud. J.) 2023, 16, 1–18. [Google Scholar]
- Penteado, A.L.; Eschionato, R.A.; de Souza, D.R.C.; Queiroz, S.D.N. Avaliação in vitro de atividade antimicrobiana de óleos essenciais contra Salmonella typhimurium e Staphylococcus aureus. Hig. Aliment. 2021, 35, e1060. [Google Scholar]
- Freire, I.C.M.; Pérez, A.L.A.L.; Cardoso, A.M.R.; Mariz, B.A.L.A.; Almeida, L.F.D.; Cavalcanti, Y.W.; Padilha, W.W.N. Atividade antibacteriana de Óleos Essenciais sobre Streptococcus mutans e Staphylococcus aureus. Rev. Bras. Plant. Med. 2014, 16, 372–377. [Google Scholar] [CrossRef]
- Itaparica, N.V.D.A. Avaliação da Atividade Antimicrobiana dos Óleos Essenciais de Eugenia caryophyllata e Croton rhamnifolioides pax e hoffm. In Proceedings of the VII CONNEPI-Congresso Norte Nordeste de Pesquisa e Inovação, Palmas, Brazil, 19–21 October 2012. [Google Scholar]
- Oliveira, A.F.M.; da Silva, F.L.; Morais, F.M.; da Silva, R.T.; dos Santos, R.R.L.; da Silva, L.L.W.V.; Oliveira, J.M.; Morais, C.C.; Cesar, K.K.F.A. Atividade Antimicrobiana de Óleos Essenciais Frente a Bactérias Patogênicas de Importância Clínica. Res. Soc. Dev. 2022, 11, e448111335639. [Google Scholar] [CrossRef]
- Andrade, M.A.; dasGraças Cardoso, M.; Batista, L.R.; Mallet, A.C.; Machado, S.M. Essential Oils of Cinnamomum zeylanicum, Cymbopogon nardus and Zingiber officinale: Composition, Antioxidant and Antibacterial Activities. Rev. Ciên. Agron. 2012, 43, 399–408. [Google Scholar] [CrossRef]
- Santos, C.H.D.S.; Piccoli, R.H.; Tebaldi, V.M.R. Atividade Antimicrobiana de Óleos Essenciais e Compostos Isolados Frente aos Agentes Patogênicos de Origem Clínica e Alimentar. R. Inst. Adolfo Lutz 2017, 76, 1–8. [Google Scholar] [CrossRef]
- Contrucci, B.A.; Silva, R.; Junior, R.A.; Kozusny-Andreani, D.I. Efeito de Óleos Essenciais Sobre Bactérias Gram-Negativas Isoladas de Alimentos. Ens. Ciên. Ciên. Biol. Agr. Saúde. 2019, 23, 180–184. [Google Scholar] [CrossRef]
- Kolypetri, S.; Kostoglou, D.; Nikolaou, A.; Kourkoutas, Y.; Giaouris, E. Chemical Composition, Antibacterial and Antibiofilm Actions of Oregano (Origanum vulgare subsp. Hirtum) Essential Oil against Salmonella typhimurium and Listeria monocytogenes. Foods 2023, 12, 2893. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.R.; Souza, A.G.; Quispe, Y.M.; Rosa, D.S. Essential Oils Loaded-Chitosan Nanocapsules Incorporation in Biodegradable Starch Films: A Strategy to Improve Fruits Shelf Life. Int. J. Biol. Macromol. 2021, 188, 628–638. [Google Scholar] [CrossRef]
- Motelica, L.; Ficai, D.; Oprea, O.; Ficai, A.; Trusca, R.-D.; Andronescu, E.; Holban, A. Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oil—A Novel Antimicrobial Structure. Pharmaceutics 2021, 13, 1020. [Google Scholar] [CrossRef]
- Kačániová, M.; Garzoli, S.; Ben Hsouna, A.; Ban, Z.; Elizondo-Luevano, J.H.; Kluz, M.I.; Ben Saad, R.; Haščík, P.; Čmiková, N.; Waskiewicz-Robak, B.; et al. Enhancing Deer Sous Vide Meat Shelf Life and Safety with Eugenia caryophyllus Essential Oil against Salmonella enterica. Foods 2024, 13, 2512. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration, Department of Health and Human Services. Subchapter B—Food for Human Consumption (Continued). Part 182—Substances Generally Recognized as Safe. Subpart A—General Provisions. Sec. 182.20 Essential Oils, Oleoresins (Solvent-Free), and Natural Extractives (Including Distillates). Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=182.20. (accessed on 24 October 2024).
- Food and Drug Administration, Department of Health and Human Services. Subchapter B—Food for Human Consumption (Continued). PART 184—Direct Food Substances Affirmed as Generally Recognized as Safe. Subpart B—Listing of Specific Substances Affirmed as GRAS. Sec. 184.1257 Clove and Its Derivatives. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1257 (accessed on 24 October 2024).
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Al-Shemery, N.J.; Kamaluddin, Z.N. Effect of Using Different Concentrations of Hydrogen Peroxide and Formalin Compared to Formaldehyde Evaporation in Sterilization of Hatching Eggs of Broiler. Euphrates J. Agric. Sci. 2018, 10, 36–41. [Google Scholar]
- Oliveira, G.D.S.; dos Santos, V.M.; Nascimento, S.T. Essential Oils as Sanitisers for Hatching Eggs. Worlds Poult. Sci. J. 2021, 77, 605–617. [Google Scholar] [CrossRef]
- Puvača, N.; Milenković, J.; Galonja Coghill, T.; Bursić, V.; Petrović, A.; Tanasković, S.; Pelić, M.; Ljubojević Pelić, D.; Miljković, T. Antimicrobial Activity of Selected Essential Oils against Selected Pathogenic Bacteria: In Vitro Study. Antibiotics 2021, 10, 546. [Google Scholar] [CrossRef] [PubMed]
- Aouadhi, C.; Jouini, A.; Maaroufi, K.; Maaroufi, A. Antibacterial Effect of Eight Essential Oils against Bacteria Implicated in Bovine Mastitis and Characterization of Primary Action Mode of Thymus capitatus Essential Oil. Antibiotics 2024, 13, 237. [Google Scholar] [CrossRef] [PubMed]
- Fournomiti, M.; Kimbaris, A.; Mantzourani, I.; Plessas, S.; Theodoridou, I.; Papaemmanouil, V.; Kapsiotis, I.; Panopoulou, M.; Stavropoulou, E.; Bezirtzoglou, E.E.; et al. Antimicrobial Activity of Essential Oils of Cultivated Oregano (Origanum vulgare), Sage (Salvia officinalis), and Thyme (Thymus vulgaris) against Clinical Isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microb. Ecol. Health Dis. 2015, 26, 23289–23295. [Google Scholar] [CrossRef]
- Lopez-Romero, J.C.; González-Ríos, H.; Borges, A.; Simõs, M. Antibacterial Effects and Mode of Action of Selected Essential Oils Components against Escherichia coli and Staphylococcus aureus. Evid. Based Complementary Altern. Med. 2015, 2015, 795435. [Google Scholar] [CrossRef]
- Ribeiro, O.S.; Fontaine, V.; Mathieu, V.; Zhiri, A.; Baudoux, D.; Stévigny, C.; Souard, F. Antibacterial and cytotoxic activities of ten commercially available essential Oils. Antibiotics 2020, 9, 717. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.D.S.; McManus, C.; Vale, I.R.R.; Dos Santos, V.M. Obtaining Microbiologically Safe Hatching Eggs from Hatcheries: Using Essential Oils for Integrated Sanitization Strategies in Hatching Eggs, Poultry Houses and Poultry. Pathogens 2024, 13, 260. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.A.; Mirza, R.A.; Aziz, H.I. Lavender Essential Oil in Sanitation on Fertile Egg. Passer J. Basic Appl. Sci. 2023, 5, 377–381. [Google Scholar] [CrossRef]
- Bizzo, H.R.; Rezende, C.M. O mercado de óleos essenciais no Brasil e no mundo na última década. Quím. Nova. 2022, 45, 949–958. [Google Scholar]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils-Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
Essential Oil | Concentration/Dose | Sensitive Bacteria | Study |
---|---|---|---|
CCEO | 100 μL | Pseudomonas aeruginosa | [18] |
Staphylococus aureus | |||
Escherichia coli | |||
Klebsiella pneumoniae | |||
10 µL | Staphylococus aureus | [19] | |
Salmonella typhimurium | |||
1.13 mg/mL | Streptococcus mutans | [20] | |
0.56 mg/mL | Staphylococcus aureus | ||
SAEO | 10% | Staphylococcus aureus | [21] |
Escherichia coli | |||
Salmonella abony | |||
40 µL | Staphylococus aureus | [22] | |
Escherichia coli | |||
Klebsiella pneumoniae | |||
Pseudomonas aeruginosa | |||
CNEO | 31.25 µg/mL | Staphylococcus aureus | [23] |
Listeria monocytogenes | |||
250 µg/mL | Pseudomonas aeruginosa | ||
125 µg/mL | Salmonella choleraesuis | ||
0.06% | Staphylococcus aureus | [24] | |
2.5% | Pseudomonas aeruginosa | ||
3.13% | Escherichia coli | [25] | |
6.25% | Pseudomonas aeruginosa |
Essential Oil | Extraction Method | Density (20 °C) | Refraction Index (20 °C) | Main Chemical Compound |
---|---|---|---|---|
CCEO | Steam distillation of leaves, stems and peel | 1.044 | 1.604 | Cinnamaldehyde—80.15% |
SAEO | Steam distillation of the leaves | 1.044 | 1.533 | Eugenol—83.62% |
CNEO | Steam distillation of the leaves | 0.880 | 1.466 | Citronellal—43.34% |
Sanitizers | Sanitizer Concentration | Manual Application Method | Number of Eggs | Egg Drying Period |
---|---|---|---|---|
NE | 6 | 30 min | ||
GA | 93.8% | Spraying | 6 | 30 min |
FA | 1.5% * | Spraying | 6 | 30 min |
CCEO | 0.59 mg/mL | Spraying | 6 | 30 min |
SAEO | 4.69 mg/mL | Spraying | 6 | 30 min |
CNEO | 0.59 mg/mL | Spraying | 6 | 30 min |
Concentrations (mg/mL) | E. coli | S. aureus | ||||
---|---|---|---|---|---|---|
CCEO | SAEO | CNEO | CCEO | SAEO | CNEO | |
Inhibition Halos (mm) | ||||||
600 | 33.33 ± 3.05 | 15.33 ± 1.53 | 34.67 ± 3.05 | 30.33 ± 1.53 | 11.33 ± 1.53 | 32.00 ± 5.29 |
300 | 30.00 ± 1.00 | 14.33 ± 0.58 | 31.33 ± 6.11 | 30.00 ± 1.00 | 10.67 ± 0.58 | 31.33 ± 1.15 |
150 | 29.33 ± 3.21 | 14.33 ± 0.58 | 31.00 ± 1.15 | 29.00 ± 0.00 | 10.33 ± 1.15 | 23.33 ± 3.05 |
75 | 29.00 ± 1.73 | 11.67 ± 0.58 | 25.33 ± 4.73 | 26.33 ± 0.58 | 8.67 ± 0.58 | 20.00 ± 2.00 |
37.5 | 27.00 ± 3.61 | 10.00 ± 0.00 | 21.33 ± 1.15 | 25.33 ± 2.31 | 8.67 ± 2.08 | 20.00 ± 4.00 |
18.75 | 23.00 ± 4.00 | 9.00 ± 2.00 | 20.67 ± 1.15 | 18.67 ± 2.31 | 8.33 ± 2.31 | 19.33 ± 4.16 |
9.38 | 16.33 ± 5.13 | 8.67 ± 1.53 | 19.33 ± 1.15 | 17.00 ± 3.46 | 8.00 ± 1.00 | 19.33 ± 4.62 |
4.69 | 13.67 ± 3.06 | 7.67 ± 1.15 | 17.33 ± 2.31 | 10.00 ± 2.00 | 7.67 ± 1.15 | 18.00 ± 2.00 |
2.34 | 11.00 ± 1.73 | 7.67 ± 1.53 | 16.33 ± 4.73 | 8.67 ± 3.79 | ND | 18.67 ± 1.15 |
1.17 | 10.67 ± 2.08 | ND | 14.67 ± 2.08 | 8.33 ± 2.08 | ND | 10.67 ± 0.58 |
0.59 | 9.67 ± 1.53 | ND | 10.33 ± 1.15 | 8.00 ± 1.73 | ND | 9.67 ± 2.52 |
0.29 | 9.00 ± 2.83 | ND | ND | ND | ND | 9.33 ± 0.58 |
0.15 | 8.67 ± 1.15 | ND | ND | ND | ND | ND |
0.07 | 8.33 ± 0.58 | ND | ND | ND | ND | ND |
0.037 | 7.33 ± 0.58 | ND | ND | ND | ND | ND |
0.018 | ND | ND | ND | ND | ND | ND |
0.009 | ND | ND | ND | ND | ND | ND |
0.005 | ND | ND | ND | ND | ND | ND |
Treatments | Total Aerobic Mesophilic Bacteria (log10 CFU/mL) | Enterobacteriaceae (log10 CFU/mL) |
---|---|---|
NE | 4.96 ± 0.52 a | 2.24 ± 1.20 a |
GA | 4.06 ± 0.50 a | 2.02 ± 0.41 a |
FA | 2.03 ± 0.47 b | 1.20 ± 1.31 ab |
CCEO | 1.32 ± 0.85 b | 0.00 ± 0.00 * b |
SAEO | 1.70 ± 0.83 b | 0.00 ± 0.00 b |
CNEO | 1.01 ± 0.70 b | 0.00 ± 0.00 b |
p value | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vale, I.R.R.; Oliveira, G.d.S.; de Jesus, L.M.; de Castro, M.B.; McManus, C.; dos Santos, V.M. Sustainable Bacterial Control of Hatching Eggshells Using Essential Oils. Antibiotics 2024, 13, 1025. https://doi.org/10.3390/antibiotics13111025
Vale IRR, Oliveira GdS, de Jesus LM, de Castro MB, McManus C, dos Santos VM. Sustainable Bacterial Control of Hatching Eggshells Using Essential Oils. Antibiotics. 2024; 13(11):1025. https://doi.org/10.3390/antibiotics13111025
Chicago/Turabian StyleVale, Igor Rafael Ribeiro, Gabriel da Silva Oliveira, Luana Maria de Jesus, Marcio Botelho de Castro, Concepta McManus, and Vinícius Machado dos Santos. 2024. "Sustainable Bacterial Control of Hatching Eggshells Using Essential Oils" Antibiotics 13, no. 11: 1025. https://doi.org/10.3390/antibiotics13111025
APA StyleVale, I. R. R., Oliveira, G. d. S., de Jesus, L. M., de Castro, M. B., McManus, C., & dos Santos, V. M. (2024). Sustainable Bacterial Control of Hatching Eggshells Using Essential Oils. Antibiotics, 13(11), 1025. https://doi.org/10.3390/antibiotics13111025