Potential Therapeutic Targets for Combination Antibody Therapy Against Staphylococcus aureus Infections
Abstract
:1. Introduction
2. Host Immune Response
3. Current Treatment Modalities
4. Description of Targets
4.1. Secreted Toxins and Invasins
4.1.1. Hemolysins (Alpha, Beta, Gamma, and Delta)
4.1.2. Exfoliative Toxin (A and B)
4.1.3. Exotoxins (Pyrogenic Toxin Superantigens—PTSAgs)
4.1.4. Enterotoxins (A-E, G-X)
4.1.5. Toxic Shock Syndrome (Toxin-1 (TSST-1))
4.1.6. Microbial Surface Component Recognizing Adhesive Matrix Molecules (MSCRAMMs)
4.1.7. Clumping Factor A (ClfA)
4.1.8. Clumping Factor B (ClfB)
4.1.9. Serine-Aspartate Repeat-Containing (Sdr) Protein Family
4.1.10. Plasmin-Sensitive Protein
4.1.11. Bone Sialoprotein-Binding Protein (Bbp)
4.1.12. Degradation Enzymes
4.2. Secretion System Proteins
4.2.1. Sec and Accessory Sec Pathways
4.2.2. Type I Secretion System (T1SS)
4.2.3. Type VII Secretion System (T7SS)
4.2.4. Tat Translation System
4.3. Quorum Sensing/Metabolites
4.3.1. Autoinducing Peptides (AIPs)
4.3.2. Phenol-Soluble Modulins (PSMs)
4.3.3. Autoinducer-2 (AI-2)
4.3.4. ACME (Type I Arginine Catabolic Mobile Element)
4.4. Antibiotic Resistance Determinants
4.4.1. Beta-Lactamase
4.4.2. Bifunctional Transglycosylase-Transpeptidase PBP2
4.4.3. Tetracycline Efflux Pump (TetK)
4.5. Motility Factors
4.5.1. Sortase A (SrtA)
4.5.2. Fibronectin-Binding Proteins (FnBPs)
4.6. Resource Scavenging Molecules
4.6.1. Iron Acquisition Program (Isd)
4.6.2. Glycerophosphoryl Diester Phosphodiesterase (GlpQ)
4.7. Immunomodulators
4.7.1. Panton-Valentine Leukocidin (PV-L)
4.7.2. Protein A
4.7.3. Nuc
4.7.4. Chemotaxis Inhibitory Protein (CHIP)
4.7.5. Extracellular Adherence Protein (EAP)
4.8. Other Membrane Biomolecules
4.8.1. Biofilm Associated Protein (Bap)
4.8.2. Capsule Polysaccharide (Types 1, 2, 5, and 8)
4.8.3. Poly-N-acetylglucosamine (PNAG)
4.8.4. Lipoteichoic Acid (LTA)
4.8.5. Wall Teichoic Acid (WTA)
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lam, J.C.; Stokes, W. The Golden Grapes of Wrath–Staphylococcus aureus Bacteremia: A Clinical Review. Am. J. Med. 2023, 136, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed]
- Chand, U.; Priyambada, P.; Kushawaha, P.K. Staphylococcus aureus Vaccine Strategy: Promise and Challenges. Microbiol. Res. 2023, 271, 127362. [Google Scholar] [CrossRef] [PubMed]
- Douglas, E.J.A.; Laabei, M. Staph Wars: The Antibiotic Pipeline Strikes Back. Microbiology 2023, 169, 001387. [Google Scholar] [CrossRef]
- Linz, M.S.; Mattappallil, A.; Finkel, D.; Parker, D. Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections. Antibiotics 2023, 12, 557. [Google Scholar] [CrossRef]
- Liu, K.; Wang, C.; Zhou, X.; Guo, X.; Yang, Y.; Liu, W.; Zhao, R.; Song, H. Bacteriophage Therapy for Drug-Resistant Staphylococcus aureus Infections. Front. Cell. Infect. Microbiol. 2024, 14, 1336821. [Google Scholar] [CrossRef]
- Jiang, J.-H.; Cameron, D.R.; Nethercott, C.; Aires-de-Sousa, M.; Peleg, A.Y. Virulence Attributes of Successful Methicillin-Resistant Staphylococcus aureus Lineages. Clin. Microbiol. Rev. 2023, 36, e00148-22. [Google Scholar] [CrossRef]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Methicillin-Resistant Staphylococcus aureus: An Overview of Basic and Clinical Research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Thampi, N.; Showler, A.; Burry, L.; Bai, A.D.; Steinberg, M.; Ricciuto, D.R.; Bell, C.M.; Morris, A.M. Multicenter Study of Health Care Cost of Patients Admitted to Hospital with Staphylococcus aureus Bacteremia: Impact of Length of Stay and Intensity of Care. Am. J. Infect. Control 2015, 43, 739–744. [Google Scholar] [CrossRef]
- CDC. CDC Partners Estimate Healthcare Cost of AR Infections. Available online: https://www.cdc.gov/antimicrobial-resistance/stories/partner-estimates.html?CDC_AAref_Val (accessed on 5 April 2023).
- Miller, W.R.; Arias, C.A. ESKAPE Pathogens: Antimicrobial Resistance, Epidemiology, Clinical Impact and Therapeutics. Nat. Rev. Microbiol. 2024, 22, 598–616. [Google Scholar] [CrossRef] [PubMed]
- Karauzum, H.; Datta, S.K. Adaptive Immunity against Staphylococcus aureus. Curr. Top. Microbiol. Immunol. 2017, 409, 419–439. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.F.; Murphy, A.G.; Lalor, S.J.; Leech, J.M.; O’Keeffe, K.M.; Aogáin, M.M.; O’Halloran, D.P.; Lacey, K.A.; Tavakol, M.; Hearnden, C.H.; et al. Memory Th1 Cells Are Protective in Invasive Staphylococcus aureus Infection. PLOS Pathog. 2015, 11, e1005226. [Google Scholar] [CrossRef] [PubMed]
- Francis, D.; Kumar, A.; Chittalakkottu, S. Identification of CD4+ T Cell Epitopes from Staphylococcus aureus Secretome Using Immunoinformatic Prediction and Molecular Docking. BioTechnologia 2021, 102, 43–54. [Google Scholar] [CrossRef]
- Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2020, 10, 107. [Google Scholar] [CrossRef]
- Siddiqui, A.H.; Koirala, J. Methicillin-Resistant Staphylococcus aureus. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Shariati, A.; Dadashi, M.; Moghadam, M.T.; van Belkum, A.; Yaslianifard, S.; Darban-Sarokhalil, D. Global Prevalence and Distribution of Vancomycin Resistant, Vancomycin Intermediate and Heterogeneously Vancomycin Intermediate Staphylococcus aureus Clinical Isolates: A Systematic Review and Meta-Analysis. Sci. Rep. 2020, 10, 12689. [Google Scholar] [CrossRef]
- Cavalcanti, A.B.; Goncalves, A.R.; Almeida, C.S.; Bugano, D.D.; Silva, E. Teicoplanin versus Vancomycin for Proven or Suspected Infection. Cochrane Database Syst. Rev. 2010, 6, CD007022. [Google Scholar] [CrossRef]
- Esposito, S.; Blasi, F.; Curtis, N.; Kaplan, S.; Lazzarotto, T.; Meschiari, M.; Mussini, C.; Peghin, M.; Rodrigo, C.; Vena, A.; et al. New Antibiotics for Staphylococcus aureus Infection: An Update from the World Association of Infectious Diseases and Immunological Disorders (WAidid) and the Italian Society of Anti-Infective Therapy (SITA). Antibiotics 2023, 12, 742. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.C.; Basuino, L.; Diep, B.; Hamilton, S.; Chatterjee, S.S.; Chambers, H.F. Ceftobiprole- and Ceftaroline-Resistant Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2015, 59, 2960–2963. [Google Scholar] [CrossRef]
- George Sakoulas, M.D. Ceftobiprole Joins the Beta-Lactam Squad Against MRSA Infections. NEJM J. Watch 2024, 2024. [Google Scholar]
- Minter, D.J.; Appa, A.; Chambers, H.F.; Doernberg, S.B. Executive Summary: State-of-The-Art Review: Contemporary Management of Staphylococcus aureus Bacteremia: Controversies in Clinical Practice. Clin. Infect. Dis. 2023, 77, 1489–1491. [Google Scholar] [CrossRef]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections in Adults and Children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef]
- Lambert, M. IDSA Guidelines on the Treatment of MRSA Infections in Adults and Children. AFP 2011, 84, 455–463. [Google Scholar]
- Dinges, M.M.; Orwin, P.M.; Schlievert, P.M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 2000, 13, 19. [Google Scholar] [CrossRef]
- Proctor, L.L.; Ward, W.L.; Roggy, C.S.; Koontz, A.G.; Clark, K.M.; Quinn, A.P.; Schroeder, M.; Brooks, A.E.; Small, J.M.; Towne, F.D.; et al. Potential Therapeutic Targets for Combination Antibody Therapy against Pseudomonas aeruginosa Infections. Antibiotics 2021, 10, 1530. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcus aureus Toxins. Curr. Opin. Microbiol. 2014, 17, 32–37. [Google Scholar] [CrossRef]
- Howden, B.P.; Giulieri, S.G.; Wong Fok Lung, T.; Baines, S.L.; Sharkey, L.K.; Lee, J.Y.H.; Hachani, A.; Monk, I.R.; Stinear, T.P. Staphylococcus aureus Host Interactions and Adaptation. Nat. Rev. Microbiol. 2023, 21, 380–395. [Google Scholar] [CrossRef]
- Plotkin, S.A.; Orenstein, W.A.; Offit, P.A. Plotkin’s Vaccines; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-323-39302-7. [Google Scholar]
- Krakauer, T. Staphylococcal Superantigens: Pyrogenic Toxins Induce Toxic Shock. Toxins 2019, 11, 178. [Google Scholar] [CrossRef]
- Murray, R.J. Recognition and Management of Staphylococcus aureus Toxin-Mediated Disease. Intern. Med. J. 2005, 35 (Suppl. 2), S106–S119. [Google Scholar] [CrossRef]
- Brooks, B.D.; Brooks, A.E.; Grainger, D.W. Antimicrobial Medical Devices in Preclinical Development and Clinical Use. In Biomaterials Associated Infection; Springer: New York, NY, USA, 2012. [Google Scholar]
- Joh, D.; Wann, E.R.; Kreikemeyer, B.; Speziale, P.; Höök, M. Role of Fibronectin-Binding MSCRAMMs in Bacterial Adherence and Entry into Mammalian Cells. Matrix Biol. 1999, 18, 211–223. [Google Scholar] [CrossRef]
- Nilsson, I.M.; Patti, J.M.; Bremell, T.; Höök, M.; Tarkowski, A. Vaccination with a Recombinant Fragment of Collagen Adhesin Provides Protection against Staphylococcus aureus-Mediated Septic Death. J. Clin. Investig. 1998, 101, 2640–2649. [Google Scholar] [CrossRef]
- Schennings, T.; Heimdahl, A.; Coster, K.; Flock, J.I. Immunization with Fibronectin Binding Protein from Staphylococcus aureus Protects against Experimental Endocarditis in Rats. Microb. Pathog. 1993, 15, 227–236. [Google Scholar] [CrossRef]
- Ní Eidhin, D.; Perkins, S.; Francois, P.; Vaudaux, P.; Höök, M.; Foster, T.J. Clumping Factor B (ClfB), a New Surface-Located Fibrinogen-Binding Adhesin of Staphylococcus aureus. Mol. Microbiol. 1998, 30, 245–257. [Google Scholar] [CrossRef]
- O’Connell, D.P.; Nanavaty, T.; McDevitt, D.; Gurusiddappa, S.; Höök, M.; Foster, T.J. The Fibrinogen-Binding MSCRAMM (Clumping Factor) of Staphylococcus aureus Has a Ca2+-Dependent Inhibitory Site. J. Biol. Chem. 1998, 273, 6821–6829. [Google Scholar] [CrossRef]
- McDevitt, D.; Francois, P.; Vaudaux, P.; Foster, T.J. Identification of the Ligand-Binding Domain of the Surface-Located Fibrinogen Receptor (Clumping Factor) of Staphylococcus aureus. Mol. Microbiol. 1995, 16, 895–907. [Google Scholar] [CrossRef]
- Hartford, O.M.; Wann, E.R.; Höök, M.; Foster, T.J. Identification of Residues in the Staphylococcus aureus Fibrinogen-Binding MSCRAMM Clumping Factor A (ClfA) That Are Important for Ligand Binding *. J. Biol. Chem. 2001, 276, 2466–2473. [Google Scholar] [CrossRef]
- Deivanayagam, C.C.S.; Wann, E.R.; Chen, W.; Carson, M.; Rajashankar, K.R.; Höök, M.; Narayana, S.V.L. A Novel Variant of the Immunoglobulin Fold in Surface Adhesins of Staphylococcus aureus: Crystal Structure of the Fibrinogen-Binding MSCRAMM, Clumping Factor A. EMBO J. 2002, 21, 6660–6672. [Google Scholar] [CrossRef]
- Vastag, B. New Vaccine Decreases Rate of Nosocomial Infections. JAMA 2001, 285, 1565–1566. [Google Scholar] [CrossRef]
- Nour El-Din, A.N.M.; Shkreta, L.; Talbot, B.G.; Diarra, M.S.; Lacasse, P. DNA Immunization of Dairy Cows with the Clumping Factor A of Staphylococcus aureus. Vaccine 2006, 24, 1997–2006. [Google Scholar] [CrossRef]
- Ganesh, V.K.; Barbu, E.M.; Deivanayagam, C.C.S.; Le, B.; Anderson, A.S.; Matsuka, Y.V.; Lin, S.L.; Foster, T.J.; Narayana, S.V.L.; Höök, M. Structural and Biochemical Characterization of Staphylococcus aureus Clumping Factor B/Ligand Interactions. J. Biol. Chem. 2011, 286, 25963–25972. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, A.C.; Solinga, R.M.; Cocchiaro, J.; Portoles, M.; Kiser, K.B.; Risley, A.; Randall, S.M.; Valtulina, V.; Speziale, P.; Walsh, E.; et al. Immunization with Staphylococcus aureus Clumping Factor B, a Major Determinant in Nasal Carriage, Reduces Nasal Colonization in a Murine Model. Infect. Immun. 2006, 74, 2145–2153. [Google Scholar] [CrossRef]
- Barbu, E.M.; Ganesh, V.K.; Gurusiddappa, S.; Mackenzie, R.C.; Foster, T.J.; Sudhof, T.C.; Höök, M. β-Neurexin Is a Ligand for the Staphylococcus aureus MSCRAMM SdrC. PLoS Pathog. 2010, 6, e1000726. [Google Scholar] [CrossRef]
- Corrigan, R.M.; Miajlovic, H.; Foster, T.J. Surface Proteins That Promote Adherence of Staphylococcus aureus to Human Desquamated Nasal Epithelial Cells. BMC Microbiol. 2009, 9, 22. [Google Scholar] [CrossRef]
- O’Brien, L.; Kerrigan, S.W.; Kaw, G.; Hogan, M.; Penadés, J.; Litt, D.; Fitzgerald, D.J.; Foster, T.J.; Cox, D. Multiple Mechanisms for the Activation of Human Platelet Aggregation by Staphylococcus aureus: Roles for the Clumping Factors ClfA and ClfB, the Serine–Aspartate Repeat Protein SdrE and Protein A. Mol. Microbiol. 2002, 44, 1033–1044. [Google Scholar] [CrossRef]
- Huesca, M.; Peralta, R.; Sauder, D.N.; Simor, A.E.; McGavin, M.J. Adhesion and Virulence Properties of Epidemic Canadian Methicillin-Resistant Staphylococcus aureus Strain 1: Identification of Novel Adhesion Functions Associated with Plasmin-Sensitive Surface Protein. J. Infect. Dis. 2002, 185, 1285–1296. [Google Scholar] [CrossRef]
- Roche, F.M.; Meehan, M.; Foster, T.J. The Staphylococcus aureus Surface Protein SasG and Its Homologues Promote Bacterial Adherence to Human Desquamated Nasal Epithelial Cells. Microbiology 2003, 149, 2759–2767. [Google Scholar] [CrossRef]
- Josefsson, E.; Juuti, K.; Bokarewa, M.; Kuusela, P. The Surface Protein Pls of Methicillin-Resistant Staphylococcus aureus Is a Virulence Factor in Septic Arthritis. Infect. Immun. 2005, 73, 2812–2817. [Google Scholar] [CrossRef]
- Hussain, M.; Schäfer, D.; Juuti, K.M.; Peters, G.; Haslinger-Löffler, B.; Kuusela, P.I.; Sinha, B. Expression of Pls (Plasmin Sensitive) in Staphylococcus aureus Negative for Pls Reduces Adherence and Cellular Invasion and Acts by Steric Hindrance. J. Infect. Dis. 2009, 200, 107–117. [Google Scholar] [CrossRef]
- Tung, H.s.; Guss, B.; Hellman, U.; Persson, L.; Rubin, K.; Rydén, C. A Bone Sialoprotein-Binding Protein from Staphylococcus aureus: A Member of the Staphylococcal Sdr Family. Biochem. J. 2000, 345 Pt 3, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Hynes, W.L.; Walton, S.L. Hyaluronidases of Gram-Positive Bacteria. FEMS Microbiol. Lett. 2000, 183, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.G.; Contaifer, D.; Wijesinghe, D.S.; Jefferson, K.K. Staphylococcus aureus Lipase 3 (SAL3) Is a Surface-Associated Lipase That Hydrolyzes Short Chain Fatty Acids. PLoS ONE 2021, 16, e0258106. [Google Scholar] [CrossRef]
- Alkuraythi, D. Virulence Factors and Pathogenicity of Staphylococcus aureus; IntechOpen: London, UK, 2024; ISBN 978-0-85466-886-1. [Google Scholar]
- Taj, Z.; Chattopadhyay, I. Staphylococcus aureus Virulence Factors and Biofilm Components: Synthesis, Structure, Function and Inhibitors. Available online: https://colab.ws/articles/10.1007%2F978-981-99-8799-3_8 (accessed on 3 October 2024).
- Sibbald, M.J.J.B.; Ziebandt, A.K.; Engelmann, S.; Hecker, M.; de Jong, A.; Harmsen, H.J.M.; Raangs, G.C.; Stokroos, I.; Arends, J.P.; Dubois, J.Y.F.; et al. Mapping the Pathways to Staphylococcal Pathogenesis by Comparative Secretomics. Microbiol. Mol. Biol. Rev. 2006, 70, 755–788. [Google Scholar] [CrossRef]
- Quiblier, C.; Seidl, K.; Roschitzki, B.; Zinkernagel, A.S.; Berger-Bächi, B.; Senn, M.M. Secretome Analysis Defines the Major Role of SecDF in Staphylococcus aureus Virulence. PLoS ONE 2013, 8, e63513. [Google Scholar] [CrossRef]
- Kanonenberg, K.; Spitz, O.; Erenburg, I.N.; Beer, T.; Schmitt, L. Type I Secretion System—It Takes Three and a Substrate. FEMS Microbiol. Lett. 2018, 365, fny094. [Google Scholar] [CrossRef]
- Rivera-Calzada, A.; Famelis, N.; Llorca, O.; Geibel, S. Type VII Secretion Systems: Structure, Functions and Transport Models. Nat. Rev. Microbiol. 2021, 19, 567–584. [Google Scholar] [CrossRef]
- Yamada, K.; Sanzen, I.; Ohkura, T.; Okamoto, A.; Torii, K.; Hasegawa, T.; Ohta, M. Analysis of Twin-Arginine Translocation Pathway Homologue in Staphylococcus aureus. Curr. Microbiol. 2007, 55, 14–19. [Google Scholar] [CrossRef]
- Tran, N.N.; Morrisette, T.; Jorgensen, S.C.J.; Orench-Benvenutti, J.M.; Kebriaei, R. Current Therapies and Challenges for the Treatment of Staphylococcus aureus Biofilm-Related Infections. Pharmacotherapy 2023, 43, 816–832. [Google Scholar] [CrossRef]
- Le, K.Y.; Otto, M. Quorum-Sensing Regulation in Staphylococci—An Overview. Front. Microbiol. 2015, 6, 1174. [Google Scholar] [CrossRef]
- Aboelnaga, N.; Elsayed, S.W.; Abdelsalam, N.A.; Salem, S.; Saif, N.A.; Elsayed, M.; Ayman, S.; Nasr, M.; Elhadidy, M. Deciphering the Dynamics of Methicillin-Resistant Staphylococcus aureus Biofilm Formation: From Molecular Signaling to Nanotherapeutic Advances. Cell Commun. Signal 2024, 22, 188. [Google Scholar] [CrossRef] [PubMed]
- Tuon, F.F.; Suss, P.H.; Telles, J.P.; Dantas, L.R.; Borges, N.H.; Ribeiro, V.S.T. Antimicrobial Treatment of Staphylococcus aureus Biofilms. Antibiotics 2023, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- Otto, M. Phenol-Soluble Modulins. Int. J. Med. Microbiol. 2014, 304, 164–169. [Google Scholar] [CrossRef]
- Queck, S.Y.; Khan, B.A.; Wang, R.; Bach, T.-H.L.; Kretschmer, D.; Chen, L.; Kreiswirth, B.N.; Peschel, A.; DeLeo, F.R.; Otto, M. Mobile Genetic Element-Encoded Cytolysin Connects Virulence to Methicillin Resistance in MRSA. PLOS Pathog. 2009, 5, e1000533. [Google Scholar] [CrossRef]
- Cheung, G.Y.C.; Joo, H.-S.; Chatterjee, S.S.; Otto, M. Phenol-Soluble Modulins–Critical Determinants of Staphylococcal Virulence. FEMS Microbiol. Rev. 2014, 38, 698–719. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcal Biofilms. In Bacterial Biofilms; Romeo, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 207–228. ISBN 978-3-540-75418-3. [Google Scholar]
- Zhu, Z.; Hu, Z.; Li, S.; Fang, R.; Ono, H.K.; Hu, D.-L. Molecular Characteristics and Pathogenicity of Staphylococcus aureus Exotoxins. Int. J. Mol. Sci. 2023, 25, 395. [Google Scholar] [CrossRef]
- Hanzelmann, D.; Joo, H.-S.; Franz-Wachtel, M.; Hertlein, T.; Stevanovic, S.; Macek, B.; Wolz, C.; Götz, F.; Otto, M.; Kretschmer, D.; et al. Toll-like Receptor 2 Activation Depends on Lipopeptide Shedding by Bacterial Surfactants. Nat. Commun. 2016, 7, 12304. [Google Scholar] [CrossRef]
- Tal-Gan, Y.; Ivancic, M.; Cornilescu, G.; Blackwell, H.E. Characterization of Structural Elements in Native Autoinducing Peptides and Non-Native Analogues That Permit the Differential Modulation of AgrC-Type Quorum Sensing Receptors in Staphylococcus aureus. Org. Biomol. Chem. 2016, 14, 113–121. [Google Scholar] [CrossRef]
- Wu, K.; Conly, J.; McClure, J.-A.; Kurwa, H.A.; Zhang, K. Arginine Catabolic Mobile Element in Evolution and Pathogenicity of the Community-Associated Methicillin-Resistant Staphylococcus aureus Strain USA300. Microorganisms 2020, 8, 275. [Google Scholar] [CrossRef]
- Mlynarczyk-Bonikowska, B.; Kowalewski, C.; Krolak-Ulinska, A.; Marusza, W. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int. J. Mol. Sci. 2022, 23, 8088. [Google Scholar] [CrossRef]
- Musini, A.; Kandula, P.; Giri, A. Drug Resistance Mechanism in Staphylococcus aureus. In Innovations in Biotechnology for a Sustainable Future; Maddela, N.R., García, L.C., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 355–376. ISBN 978-3-030-80108-3. [Google Scholar]
- Kim, C.; Mwangi, M.; Chung, M.; Milheirço, C.; Lencastre, H.d.; Tomasz, A. The Mechanism of Heterogeneous Beta-Lactam Resistance in MRSA: Key Role of the Stringent Stress Response. PLoS ONE 2013, 8, e82814. [Google Scholar] [CrossRef] [PubMed]
- Foster, T.J. Antibiotic Resistance in Staphylococcus aureus. Current Status and Future Prospects. FEMS Microbiol. Rev. 2017, 41, 430–449. [Google Scholar] [CrossRef]
- Ohwada, A.; Sekiya, M.; Hanaki, H.; Arai, K.K.; Nagaoka, I.; Hori, S.; Tominaga, S.; Hiramatsu, K.; Fukuchi, Y. DNA Vaccination by mecA Sequence Evokes an Antibacterial Immune Response against Methicillin-Resistant Staphylococcus aureus. J. Antimicrob. Chemother. 1999, 44, 767–774. [Google Scholar] [CrossRef]
- Stephen, J.; Salam, F.; Lekshmi, M.; Kumar, S.H.; Varela, M.F. The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen Staphylococcus aureus. Antibiotics 2023, 12, 343. [Google Scholar] [CrossRef]
- Pollitt, E.J.G.; Crusz, S.A.; Diggle, S.P. Staphylococcus aureus Forms Spreading Dendrites That Have Characteristics of Active Motility. Sci. Rep. 2015, 5, 17698. [Google Scholar] [CrossRef]
- Kizaki, H.; Omae, Y.; Tabuchi, F.; Saito, Y.; Sekimizu, K.; Kaito, C. Cell-Surface Phenol Soluble Modulins Regulate Staphylococcus aureus Colony Spreading. PLoS ONE 2016, 11, e0164523. [Google Scholar] [CrossRef]
- Liu, C.-C.; Lin, M.-H. Involvement of Heme in Colony Spreading of Staphylococcus aureus. Front. Microbiol. 2020, 11, 170. [Google Scholar] [CrossRef]
- Kumari, P.; Nath, Y.; Murty, U.S.; Ravichandiran, V.; Mohan, U. Sortase A Mediated Bioconjugation of Common Epitopes Decreases Biofilm Formation in Staphylococcus aureus. Front. Microbiol. 2020, 11, 1702. [Google Scholar] [CrossRef]
- Speziale, P.; Pietrocola, G.; Foster, T.J.; Geoghegan, J.A. Protein-Based Biofilm Matrices in Staphylococci. Front. Cell. Infect. Microbiol. 2014, 4, 171. [Google Scholar] [CrossRef]
- Frees, D.; Chastanet, A.; Qazi, S.; Sørensen, K.; Hill, P.; Msadek, T.; Ingmer, H. Clp ATPases Are Required for Stress Tolerance, Intracellular Replication and Biofilm Formation in Staphylococcus aureus. Mol. Microbiol. 2004, 54, 1445–1462. [Google Scholar] [CrossRef]
- Sinha, B.; François, P.P.; Nüsse, O.; Foti, M.; Hartford, O.M.; Vaudaux, P.; Foster, T.J.; Lew, D.P.; Herrmann, M.; Krause, K.H. Fibronectin-Binding Protein Acts as Staphylococcus aureus Invasin via Fibronectin Bridging to Integrin Alpha5beta1. Cell. Microbiol. 1999, 1, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Dziewanowska, K.; Patti, J.M.; Deobald, C.F.; Bayles, K.W.; Trumble, W.R.; Bohach, G.A. Fibronectin Binding Protein and Host Cell Tyrosine Kinase Are Required for Internalization of Staphylococcus aureus by Epithelial Cells. Infect. Immun. 1999, 67, 4673–4678. [Google Scholar] [CrossRef] [PubMed]
- Fowler, T.; Wann, E.R.; Joh, D.; Johansson, S.; Foster, T.J.; Höök, M. Cellular Invasion by Staphylococcus aureus Involves a Fibronectin Bridge between the Bacterial Fibronectin-Binding MSCRAMMs and Host Cell Beta1 Integrins. Eur. J. Cell Biol. 2000, 79, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Dziewanowska, K.; Carson, A.R.; Patti, J.M.; Deobald, C.F.; Bayles, K.W.; Bohach, G.A. Staphylococcal Fibronectin Binding Protein Interacts with Heat Shock Protein 60 and Integrins: Role in Internalization by Epithelial Cells. Infect. Immun. 2000, 68, 6321–6328. [Google Scholar] [CrossRef] [PubMed]
- Tsompanidou, E.; Denham, E.L.; Sibbald, M.J.J.B.; Yang, X.; Seinen, J.; Friedrich, A.W.; Buist, G.; van Dijl, J.M. The Sortase A Substrates FnbpA, FnbpB, ClfA and ClfB Antagonize Colony Spreading of Staphylococcus aureus. PLoS ONE 2012, 7, e44646. [Google Scholar] [CrossRef]
- Thappeta, K.R.V.; Zhao, L.N.; Nge, C.E.; Crasta, S.; Leong, C.Y.; Ng, V.; Kanagasundaram, Y.; Fan, H.; Ng, S.B. In-Silico Identified New Natural Sortase A Inhibitors Disrupt S. Aureus Biofilm Formation. Int. J. Mol. Sci. 2020, 21, 8601. [Google Scholar] [CrossRef]
- Conroy, B.S.; Grigg, J.C.; Kolesnikov, M.; Morales, L.D.; Murphy, M.E.P. Staphylococcus aureus Heme and Siderophore-Iron Acquisition Pathways. Biometals 2019, 32, 409–424. [Google Scholar] [CrossRef]
- Friedman, D.B.; Stauff, D.L.; Pishchany, G.; Whitwell, C.W.; Torres, V.J.; Skaar, E.P. Staphylococcus aureus Redirects Central Metabolism to Increase Iron Availability. PLoS Pathog. 2006, 2, e87. [Google Scholar] [CrossRef]
- Liu, G.Y. Molecular Pathogenesis of Staphylococcus aureus Infection. Pediatr. Res. 2009, 65, 71R–77R. [Google Scholar] [CrossRef]
- Kuklin, N.A.; Clark, D.J.; Secore, S.; Cook, J.; Cope, L.D.; McNeely, T.; Noble, L.; Brown, M.J.; Zorman, J.K.; Wang, X.M.; et al. A Novel Staphylococcus aureus Vaccine: Iron Surface Determinant B Induces Rapid Antibody Responses in Rhesus Macaques and Specific Increased Survival in a Murine S. Aureus Sepsis Model. Infect. Immun. 2006, 74, 2215–2223. [Google Scholar] [CrossRef]
- Hejazian, S.M.; Pirmoradi, S.; Zununi Vahed, S.; Kumar Roy, R.; Hosseiniyan Khatibi, S.M. An Update on Glycerophosphodiester Phosphodiesterases; From Bacteria to Human. Protein J. 2024, 43, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Bank, R.P.D. RCSB PDB—2OOG: Crystal Structure of Glycerophosphoryl Diester Phosphodiesterase from Staphylococcus aureus. Available online: https://www.rcsb.org/structure/2oog (accessed on 3 October 2024).
- Jung, N.; Lehmann, C.; Hellmann, M.; Seifert, H.; Valter, M.M.; Hallek, M.; Fätkenheuer, G.; Kochanek, M. Necrotizing Pneumonia Caused by Panton-Valentine Leucocidin-Producing Staphylococcus aureus Originating from a Bartholin’s Abscess. Infect. Dis. Obstet. Gynecol. 2008, 2008, 491401. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Lin, Z.; Lu, M.; Fu, Y.; Liu, G.; Yu, B. The Effect of Staphylococcus aureus on Innate and Adaptive Immunity and Potential Immunotherapy for S. Aureus-Induced Osteomyelitis. Front. Immunol. 2023, 14, 1219895. [Google Scholar] [CrossRef]
- Goodyear, C.S.; Silverman, G.J. B Cell Superantigens: A Microbe’s Answer to Innate-like B Cells and Natural Antibodies. Springer Semin. Immun. 2005, 26, 463–484. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Cheng, A.G.; Kim, H.-Y.; Missiakas, D.M.; Schneewind, O. Nontoxigenic Protein A Vaccine for Methicillin-Resistant Staphylococcus aureus Infections in Mice. J. Exp. Med. 2010, 207, 1863–1870. [Google Scholar] [CrossRef]
- Olson, M.E.; Nygaard, T.K.; Ackermann, L.; Watkins, R.L.; Zurek, O.W.; Pallister, K.B.; Griffith, S.; Kiedrowski, M.R.; Flack, C.E.; Kavanaugh, J.S.; et al. Staphylococcus aureus Nuclease Is an SaeRS-Dependent Virulence Factor. Infect. Immun. 2013, 81, 1316–1324. [Google Scholar] [CrossRef] [PubMed]
- Guerra, F.E.; Borgogna, T.R.; Patel, D.M.; Sward, E.W.; Voyich, J.M. Epic Immune Battles of History: Neutrophils vs. Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2017, 7, 286. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, E.; Haas, P.-J.; Walse, B.; Hijnen, M.; Furebring, C.; Ohlin, M.; van Strijp, J.A.; van Kessel, K.P. Identification of Conformational Epitopes for Human IgG on Chemotaxis Inhibitory Protein of Staphylococcus aureus. BMC Immunol. 2009, 10, 13. [Google Scholar] [CrossRef]
- Gustafsson, E.; Rosén, A.; Barchan, K.; van Kessel, K.P.M.; Haraldsson, K.; Lindman, S.; Forsberg, C.; Ljung, L.; Bryder, K.; Walse, B.; et al. Directed Evolution of Chemotaxis Inhibitory Protein of Staphylococcus aureus Generates Biologically Functional Variants with Reduced Interaction with Human Antibodies. Protein Eng. Des. Sel. 2010, 23, 91–101. [Google Scholar] [CrossRef]
- Staphylococcus aureus (Including Staphylococcal Toxic Shock Syndrome)—ClinicalKey. Available online: https://www-clinicalkey-com.proxy.rvu.edu/#!/content/book/3-s2.0-B9780323482554001946 (accessed on 4 October 2024).
- Eisenbeis, J.; Saffarzadeh, M.; Peisker, H.; Jung, P.; Thewes, N.; Preissner, K.T.; Herrmann, M.; Molle, V.; Geisbrecht, B.V.; Jacobs, K.; et al. The Staphylococcus aureus Extracellular Adherence Protein Eap Is a DNA Binding Protein Capable of Blocking Neutrophil Extracellular Trap Formation. Front. Cell. Infect. Microbiol. 2018, 8, 235. [Google Scholar] [CrossRef]
- Chavakis, T.; Hussain, M.; Kanse, S.M.; Peters, G.; Bretzel, R.G.; Flock, J.-I.; Herrmann, M.; Preissner, K.T. Staphylococcus aureus Extracellular Adherence Protein Serves as Anti-Inflammatory Factor by Inhibiting the Recruitment of Host Leukocytes. Nat. Med. 2002, 8, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.K.; Rao, T.S. Staphylococcus aureus Biofilm Removal by Targeting Biofilm-Associated Extracellular Proteins. Indian J. Med. Res. 2017, 146, S1–S8. [Google Scholar] [CrossRef]
- Nemeth, J.; Lee, J.C. Antibodies to Capsular Polysaccharides Are Not Protective against Experimental Staphylococcus aureus Endocarditis. Infect. Immun. 1995, 63, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Fattom, A.I.; Sarwar, J.; Ortiz, A.; Naso, R. A Staphylococcus aureus Capsular Polysaccharide (CP) Vaccine and CP-Specific Antibodies Protect Mice against Bacterial Challenge. Infect. Immun. 1996, 64, 1659–1665. [Google Scholar] [CrossRef] [PubMed]
- Fattom, A.; Matalon, A.; Buerkert, J.; Taylor, K.; Damaso, S.; Boutriau, D. Efficacy Profile of a Bivalent Staphylococcus aureus Glycoconjugated Vaccine in Adults on Hemodialysis: Phase III Randomized Study. Hum. Vaccin. Immunother. 2015, 11, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Boyle-Vavra, S.; Li, X.; Alam, M.T.; Read, T.D.; Sieth, J.; Cywes-Bentley, C.; Dobbins, G.; David, M.Z.; Kumar, N.; Eells, S.J.; et al. USA300 and USA500 Clonal Lineages of Staphylococcus aureus Do Not Produce a Capsular Polysaccharide Due to Conserved Mutations in the Cap5 Locus. mBio 2015, 6, e02585-14. [Google Scholar] [CrossRef]
- Hassanzadeh, H.; Baber, J.; Begier, E.; Noriega, D.C.; Konishi, H.; Yato, Y.; Wang, M.Y.; Le Huec, J.C.; Patel, V.; Varga, P.; et al. Efficacy of a 4-Antigen Staphylococcus aureus Vaccine in Spinal Surgery: The Staphylococcus aureus suRgical Inpatient Vaccine Efficacy (STRIVE) Randomized Clinical Trial. Clin. Infect. Dis. 2023, 77, 312–320. [Google Scholar] [CrossRef]
- Clegg, J.; Soldaini, E.; McLoughlin, R.M.; Rittenhouse, S.; Bagnoli, F.; Phogat, S. Staphylococcus aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Front. Immunol. 2021, 12, 705360. [Google Scholar] [CrossRef]
- McKenney, D.; Pouliot, K.L.; Wang, Y.; Murthy, V.; Ulrich, M.; Döring, G.; Lee, J.C.; Goldmann, D.A.; Pier, G.B. Broadly Protective Vaccine for Staphylococcus aureus Based on an in Vivo-Expressed Antigen. Science 1999, 284, 1523–1527. [Google Scholar] [CrossRef]
- Kelly-Quintos, C.; Cavacini, L.A.; Posner, M.R.; Goldmann, D.; Pier, G.B. Characterization of the Opsonic and Protective Activity against Staphylococcus aureus of Fully Human Monoclonal Antibodies Specific for the Bacterial Surface Polysaccharide Poly-N-Acetylglucosamine. Infect. Immun. 2006, 74, 2742–2750. [Google Scholar] [CrossRef]
- Douglas, E.J.A.; Wulandari, S.W.; Lovell, S.D.; Laabei, M. Novel Antimicrobial Strategies to Treat Multi-drug Resistant Staphylococcus aureus Infections. Microb. Biotechnol. 2023, 16, 1456–1474. [Google Scholar] [CrossRef]
- Weisman, L.E.; Thackray, H.M.; Garcia-Prats, J.A.; Nesin, M.; Schneider, J.H.; Fretz, J.; Kokai-Kun, J.F.; Mond, J.J.; Kramer, W.G.; Fischer, G.W. Phase 1/2 Double-Blind, Placebo-Controlled, Dose Escalation, Safety, and Pharmacokinetic Study of Pagibaximab (BSYX-A110), an Antistaphylococcal Monoclonal Antibody for the Prevention of Staphylococcal Bloodstream Infections, in Very-Low-Birth-Weight Neonates. Antimicrob. Agents Chemother. 2009, 53, 2879–2886. [Google Scholar] [CrossRef]
- Suzuki, T.; Campbell, J.; Kim, Y.; Swoboda, J.G.; Mylonakis, E.; Walker, S.; Gilmore, M.S. Wall Teichoic Acid Protects Staphylococcus aureus from Inhibition by Congo Red and Other Dyes. J. Antimicrob. Chemother. 2012, 67, 2143–2151. [Google Scholar] [CrossRef] [PubMed]
- Kırmusaoğlu, S. Staphylococcal Biofilms: Pathogenicity, Mechanism and Regulation of Biofilm Formation by Quorum-Sensing System and Antibiotic Resistance Mechanisms of Biofilm-Embedded Microorganisms. In Microbial Biofilms—Importance and Applications; IntechOpen: London, UK, 2016; ISBN 978-953-51-2436-8. [Google Scholar]
- Weidenmaier, C.; Lee, J.C. Structure and Function of Surface Polysaccharides of Staphylococcus aureus. Curr. Top. Microbiol. Immunol. 2017, 409, 57–93. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, A.K.; Chougale, R.A.; Parthasarathy, A.K.; Chougale, R.A. Antibiotic Resistant Staphylococcus aureus. In Insights into Drug Resistance in Staphylococcus aureus; IntechOpen: London, UK, 2021; ISBN 978-1-83962-743-9. [Google Scholar]
- Vestergaard, M.; Frees, D.; Ingmer, H. Antibiotic Resistance and the MRSA Problem. Microbiol. Spectr. 2019, 7, GPP3-0057-2018. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.-M.; Hwang, Y.-C.; Liu, I.-J.; Lee, C.-C.; Tsai, H.-Z.; Li, H.-J.; Wu, H.-C. Development of Therapeutic Antibodies for the Treatment of Diseases. J. Biomed. Sci. 2020, 27, 1. [Google Scholar] [CrossRef]
- Jones, R.G.A.; Martino, A. Targeted Localized Use of Therapeutic Antibodies: A Review of Non-Systemic, Topical and Oral Applications. Crit. Rev. Biotechnol. 2016, 36, 506–520. [Google Scholar] [CrossRef]
Drug | Type | Use | Mechanism |
---|---|---|---|
Vancomycin | Glycopeptide | First-line for severe MRSA | Inhibits cell wall synthesis |
Daptomycin | Lipopeptide | Bacteremia, endocarditis | Disrupts bacterial membrane |
Teicoplanin | Glycopeptide | Alternative to vancomycin (not in the US) | Inhibits cell wall synthesis |
Ceftaroline | Cephalosporin | Alternative for bacteremia | Binds altered penicillin-binding proteins |
Linezolid | Oxazolidinone | Pneumonia, soft tissue infections | Inhibits protein synthesis |
Dalbavancin | Glycopeptide (Long-acting) | Outpatient care for skin infections | Inhibits cell wall synthesis |
Oritavancin | Glycopeptide (Long-acting) | Outpatient skin infections | Disrupts cell wall and membrane |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, S.; Kil, H.; Roggy, C.; Shields, T.; Quinn, Z.; Quinn, A.P.; Small, J.M.; Towne, F.D.; Brooks, A.E.; Brooks, B.D. Potential Therapeutic Targets for Combination Antibody Therapy Against Staphylococcus aureus Infections. Antibiotics 2024, 13, 1046. https://doi.org/10.3390/antibiotics13111046
Ke S, Kil H, Roggy C, Shields T, Quinn Z, Quinn AP, Small JM, Towne FD, Brooks AE, Brooks BD. Potential Therapeutic Targets for Combination Antibody Therapy Against Staphylococcus aureus Infections. Antibiotics. 2024; 13(11):1046. https://doi.org/10.3390/antibiotics13111046
Chicago/Turabian StyleKe, Sharon, Hyein Kil, Conner Roggy, Ty Shields, Zachary Quinn, Alyssa P. Quinn, James M. Small, Francina D. Towne, Amanda E. Brooks, and Benjamin D. Brooks. 2024. "Potential Therapeutic Targets for Combination Antibody Therapy Against Staphylococcus aureus Infections" Antibiotics 13, no. 11: 1046. https://doi.org/10.3390/antibiotics13111046
APA StyleKe, S., Kil, H., Roggy, C., Shields, T., Quinn, Z., Quinn, A. P., Small, J. M., Towne, F. D., Brooks, A. E., & Brooks, B. D. (2024). Potential Therapeutic Targets for Combination Antibody Therapy Against Staphylococcus aureus Infections. Antibiotics, 13(11), 1046. https://doi.org/10.3390/antibiotics13111046