Nanoparticle-Based Nitric Oxide Donors: Exploring Their Antimicrobial and Anti-Biofilm Capabilities
Abstract
:1. Introduction
2. Nitric Oxide Donors
2.1. Types of Nitric Oxide Donors
2.2. Mechanisms of Nitric Oxide Release
2.3. Applications of Nitric Oxide Donors
3. Nanoparticles for Nitric Oxide Delivery
3.1. Types of Nanoparticles Used for Nitric Oxide Delivery
Nanoplataform | NO Donor | MIC; MBEC * | Effective Against | Ref. |
---|---|---|---|---|
Silica Nanoparticles | N-diazeniumdiolate (NONOate) | 8 mg/mL | P. aeruginosa; Escherichia coli; S. aureus; S.epidermidis; | [22] |
PEG- derivative | N-nitrosated naphthalimide | 0.877 mg/mL; 0.8 m/mL | Escherichia coli; S. aureus | [23] |
Liposome (egg lecithin) | isosorbide mononitrate (ISMN) | 60 mg/mL | S. aureus | [49] |
Copper-Based Metal Organic Framework | S-nitroso-N-acetyl-penicillamine (SNAP) | NO-MOF-3% ** | Methicillin-resistant S. aureus; Escherichia coli. | [52] |
Polydopamine-Coated Iron Oxide (PDA-IONPs) | N-diazeniumdiolates (NONOate) | 6 and 12 × 10−6 mg/mL of NO | P. aeruginosa | [53] |
Gold nanocages (AuNC@NO) | N-nitroso(4-mercaptomethylphenyl)-hydroxylamine (TCup) | 100 p mol/L; 400 p mol/L of NO | Methicillin-resistant S. aureus | [54] |
Carbon dot | N-diazeniumdiolate (NONOate) | 1 mg/mL; 1 mg/mL | P. aeruginosa | [56] |
Polyethylenimine graphene oxide (GO-PEI) nanoparticles | (GO-PEI/NO) | 0.1 mg/mL; 0.1 mg/mL | Methicillin-resistant P. aeruginosa; Methicillin-resistant S. aureus. | [58] |
Graphene oxide nanosheets (GO) | (GO)-S-nitrosothiol (GOSNO) | 500 μg/mL; 500 μg/mL | Methicillin-resistant S. aureus; E.coli | [59] |
Poly(lactide-co-glycolide) (PLGA) | isosorbide mononitrate (ISMN) | 30 mg/mL 60 mg/mL | S. aureus | [60] |
Chitosan- hydrogel-glass composite | NaNO3 | 5 mg/mL 5 mg/mL | Methicillin-resistant S. aureus | [65] |
Pluronic F127 | furoxan derivatives | 16 ug/mL | Methicillin-resistant S. aureus | [66] |
Gold Core@Shell Mesoporous Silica | AuNR@MSN-SNO | 50 μg/mL | S. aureus | [68] |
Silver Nanoparticles in alginate hydrogel | S-nitroso-mercaptosuccinic acid (MSA) | 2 μg/mL | Escherichia coli; S. aureus; Streptococcus mutans | [69] |
3.2. Strategies for Nitric Oxide Loading onto Nanoparticles
3.3. Controlled Release of Nitric Oxide from Nanoparticles
4. Antimicrobial and Anti-Biofilm Potential
4.1. Antimicrobial Activity of NO-Releasing Nanoparticles
4.2. Anti-Biofilm Properties of NO
5. Applications of Nitric Oxide Donors and Nanoparticles
5.1. Medical Applications
5.2. Environmental Applications
6. Challenges and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMR | Antimicrobial resistance |
CD8+ T cells | Cluster of differentiation 8 positive T cells |
CNP | Cerium oxide nanoparticles |
CPA | Chitosan-graft-Poly(amidoamine) |
CPC | Cooperative patent classification |
CS NP | Chitosan nanoparticle |
CySNO | S-nitrosocysteine |
EPS | Extracellular polymeric substance |
FDA | Food and Drug Administration |
GO | Graphene oxide |
GSNO | S-nitrosoglutathione |
ISMN | Isosorbide mononitrate |
MCAO | Middle cerebral artery occlusion |
MIC | Minimum inhibitory concentration |
MPSi-NP | Mesoporous silica nanoparticle with nitroprusside |
MRSA | Methicillin-resistant Staphylococcus aureus |
MSN | Mesoporous silica nanoparticle |
NCT | National clinical trial |
NO | Nitric oxide |
NONOate | N-diazeniumdiolate |
ONOO− | Peroxynitrite |
O2•− | Superoxide anion |
PAMAM | Poly(amidoamine) |
PEI | Polyethylenimine |
PGA | Polyglycolic acid |
PLA | Polylactic acid |
PLGA | Poly(lactic-co-glycolic) acid |
S150 | Spermine NONOate |
S-Nitroso-MSA | S-nitroso-Mercaptosuccinic acid |
SNAC | S-nitroso-N-acetylcysteine |
SNP | Sodium nitroprusside |
SLN | Solid lipid nanoparticle |
SNAP | S-nitroso-N-acetylpenicillamine |
References
- Ahmad, A.; Dempsey, S.K.; Daneva, Z.; Azam, M.; Li, N.; Li, P.L.; Ritter, J.K. Role of Nitric Oxide in the Cardiovascular and Renal Systems. Int. J. Mol. Sci. 2018, 19, 2605. [Google Scholar] [CrossRef] [PubMed]
- Picón-Pagès, P.; Garcia-Buendia, J.; Muñoz, F.J. Functions and Dysfunctions of Nitric Oxide in Brain. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2019, 1865, 1949–1967. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, C. Nitric Oxide and the Immune Response. Nat. Immunol. 2001, 2, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Arasimowicz, M.; Floryszak-Wieczorek, J. Nitric Oxide as a Bioactive Signalling Molecule in Plant Stress Responses. Plant Sci. 2007, 172, 876–887. [Google Scholar] [CrossRef]
- Khan, E.A.; Aftab, S.; Hasanuzzaman, M. Unraveling the Importance of Nitric Oxide in Plant-Microbe Interaction. Plant Stress 2023, 10, 100258. [Google Scholar] [CrossRef]
- Yang, Y.; Qi, P.K.; Yang, Z.L.; Huang, N. Nitric Oxide Based Strategies for Applications of Biomedical Devices. Biosurf. Biotribol. 2015, 1, 177–201. [Google Scholar] [CrossRef]
- Seabra, A.B.; Silveira, N.M.; Ribeiro, R.V.; Pieretti, J.C.; Barroso, J.B.; Corpas, F.J.; Palma, J.M.; Hancock, J.T.; Petřivalský, M.; Gupta, K.J.; et al. Nitric Oxide-Releasing Nanomaterials: From Basic Research to Potential Biotechnological Applications in Agriculture. New Phytologist. 2015, 234, 1119–1125. [Google Scholar] [CrossRef]
- Ray, A.; Gulati, K.; Rehman, S. Translating Nitric Oxide Research to Therapeutics: A Critical Appraisal. In Nitric Oxide: From Research to Therapeutics, 1st ed.; Advances in Biochemistry in Health and Disease; Ray, A., Gulati, K., Eds.; Springer: Cham, Switzerland, 2023; Volume 22, pp. 1–13. [Google Scholar]
- Chen, Z.-Q.; Mou, R.-T.; Feng, D.-X.; Wang, Z.; Chen, G. The Role of Nitric Oxide in Stroke. Med. Gas Res. 2017, 7, 194–203. [Google Scholar]
- Tewari, D.; Sah, A.N.; Bawari, S.; Nabavi, S.F.; Dehpour, A.R.; Shirooie, S.; Braidy, N.; Fiebich, B.L.; Vacca, R.A.; Nabavi, S.M. Role of Nitric Oxide in Neurodegeneration: Function, Regulation, and Inhibition. Curr. Neuropharmacol. 2021, 19, 114–126. [Google Scholar] [CrossRef]
- Hardy, M.; Zielonka, J.; Karoui, H.; Sikora, A.; Michalski, R.; Podsiadły, R.; Lopez, M.; Vasquez-Vivar, J.; Kalyanaraman, B.; Ouari, O. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products. Antioxid. Redox Signal 2018, 28, 1416–1432. [Google Scholar] [CrossRef]
- Privett, B.J.; Broadnax, A.D.; Bauman, S.J.; Riccio, D.A.; Schoenfisch, M.H. Examination of Bacterial Resistance to Exogenous Nitric Oxide. Nitric Oxide 2012, 26, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Spirescu, V.A.; Chircov, C.; Grumezescu, A.M.; Andronescu, E. Polymeric Nanoparticles for Antimicrobial Therapies: An Up-To-Date Overview. Polymers 2021, 13, 724. [Google Scholar] [CrossRef] [PubMed]
- Tortella, G.R.; Rubilar, O.; Diez, M.C.; Padrão, J.; Zille, A.; Pieretti, J.C.; Seabra, A.B. Advanced Material Against Human (Including Covid-19) and Plant Viruses: Nanoparticles as a Feasible Strategy. Glob. Chall. 2020, 5, 2000049. [Google Scholar] [CrossRef] [PubMed]
- Tortella, G.; Rubilar, O.; Fincheira, P.; Pieretti, J.C.; Duran, P.; Lourenço, I.M.; Seabra, A.B. Bactericidal and Virucidal Activities of Biogenic Metal-Based Nanoparticles: Advances and Perspectives. Antibiotics 2021, 10, 783. [Google Scholar] [CrossRef] [PubMed]
- El-Ganainy, S.M.; Soliman, A.M.; Ismail, A.M.; Sattar, M.N.; Farroh, K.Y.; Shafie, R.M. Antiviral Activity of Chitosan Nanoparticles and Chitosan Silver Nanocomposites Against Alfalfa Mosaic Virus. Polymers 2023, 15, 2961. [Google Scholar] [CrossRef]
- Jiang, H.; Li, L.; Li, Z.; Xiang, X. Metal-Based Nanoparticles in Antibacterial Application in Biomedical Field: Current Development and Potential Mechanisms. Biomed. Microdev. 2024, 26, 12. [Google Scholar] [CrossRef]
- Schairer, D.O.; Chouake, J.S.; Nosanchuk, J.D.; Friedman, A.J. The Potential of Nitric Oxide Releasing Therapies as Antimicrobial Agents. Virulence 2012, 3, 271–279. [Google Scholar] [CrossRef]
- Lancaster, J.R., Jr. Nitric Oxide: A Brief Overview of Chemical and Physical Properties Relevant to Therapeutic Applications. Future Sci. OA 2015, 1, FSO59. [Google Scholar] [CrossRef]
- Seabra, A.B.; Duran, N. Nitric Oxide-Releasing Vehicles for Biomedical Applications. J. Mater. Chem. 2010, 20, 1624–1637. [Google Scholar] [CrossRef]
- Lu, B.; Hu, E.; Xie, R.; Yu, K.; Lu, F.; Bao, R.; Wang, C.; Lan, G.; Dai, F. Magnetically Guided Nanoworms for Precise Delivery to Enhance In Situ Production of Nitric Oxide to Combat Focal Bacterial Infection In Vivo. ACS Appl. Mater. Interfaces 2021, 13, 22225–22239. [Google Scholar] [CrossRef]
- Hetrick, E.M.; Shin, J.H.; Paul, H.S.; Schoenfisch, M.H. Anti-Biofilm Efficacy of Nitric Oxide-Releasing Silica Nanoparticles. Biomaterials 2009, 30, 2782–2789. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lin, Z.; Lu, X.; Chen, C.; Xie, A.; Tang, Y.; Zhang, Z. Photo-Controlled and Photo-Calibrated Nanoparticle Enabled Nitric Oxide Release for Antibacterial and Anti-Biofilm Applications. RSC Adv. 2022, 12, 33358–33364. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-H.; Guo, M.; Shi, S.-W.; Zhang, Q.-L.; Yang, S.-P.; Liu, J.-G. A Ruthenium-Nitrosyl-Functionalized Nanoplatform for the Targeting of Liver Cancer Cells and NIR-Light-Controlled Delivery of Nitric Oxide Combined with Photothermal Therapy. J. Mater. Chem. B 2017, 5, 7831–7838. [Google Scholar] [CrossRef]
- Sharma, N.; Dhyani, A.K.; Marepally, S.; Jose, D.A. Nanoscale Lipid Vesicles Functionalized with a Nitro-Aniline Derivative for Photoinduced Nitric Oxide (NO) Delivery. Nanoscale Adv. 2020, 2, 463–469. [Google Scholar] [CrossRef]
- Ignarro, L.J.; Byrns, R.E.; Buga, G.M.; Wood, K.S. Endothelium-Derived Relaxing Factor from Pulmonary Artery and Vein Possesses Pharmacologic and Chemical Properties Identical to Those of Nitric Oxide Radical. Circ. Res. 1987, 61, 866–879. [Google Scholar] [CrossRef]
- Katsuki, S.; Arnold, W.; Mittal, C.; Murad, F. Stimulation of Guanylate Cyclase by Sodium Nitroprusside, Nitroglycerin and Nitric Oxide in Various Tissue Preparations and Comparison to the Effects of Sodium Azide and Hydroxylamine. J. Cycl. Nucleotide Res. 1977, 3, 23–35. [Google Scholar]
- Ignarro, L.J. Nitric Oxide Is Not Just Blowing in the Wind. Br. J. Pharmacol. 2019, 176, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Tian, X.; Chen, S.; Ma, C.; Bai, L.; Zhang, Y.; Yang, N.; Sun, M.; Wang, W. Candidate Molecules as Alternative Nitric Oxide Donors with Better Antibacterial Property Against Escherichia coli and Staphylococcus aureus. J. Appl. Microbiol. 2023, 134, lxad285. [Google Scholar] [CrossRef]
- Cabral, F.V.; Santana, B.d.M.; Lange, C.N.; Batista, B.L.; Seabra, A.B.; Ribeiro, M.S. Pluronic F-127 Hydrogels Containing Copper Oxide Nanoparticles and a Nitric Oxide Donor to Treat Skin Cancer. Pharmaceutics 2023, 15, 71971. [Google Scholar] [CrossRef]
- Pieretti, J.C.; Pelegrino, M.T.; Silveira, N.M.; Rodrigues, M.G.; Seabra, A.B. State-of-the-Art and Perspectives for Nanomaterials Combined with Nitric Oxide Donors: From Biomedical to Agricultural Applications. ACS Appl. Nano Mater. 2024, 7, 18590–18609. [Google Scholar] [CrossRef]
- Lourenço, I.M.; Freire, B.M.; Pieretti, J.C.; dos Reis, R.A.; Soares, N.M.; Santos, M.d.L.; Batista, B.L.; Seabra, A.B.; Lange, C.N. Implications of ZnO Nanoparticles and S-Nitrosoglutathione on Nitric Oxide, Reactive Oxidative Species, Photosynthetic Pigments, and Ionomic Profile in Rice. Antioxidants 2023, 12, 1871. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.-M.; Webb, J.S. Optimization of Nitric Oxide Donors for Investigating Biofilm Dispersal Response in Pseudomonas aeruginosa Clinical Isolates. Appl. Microbiol. Biotechnol. 2020, 104, 8859–8869. [Google Scholar] [CrossRef] [PubMed]
- Hottinger, D.; Beebe, D.; Kozhimannil, T.; Prielipp, R.; Belani, K. Sodium Nitroprusside in 2014: A Clinical Concepts Review. J. Anaesthesiol. Clin. Pharmacol. 2014, 30, 462. [Google Scholar] [PubMed]
- Mount Sinai Hospital, Canada. Safety Study of Nebulized Sodium Nitroprusside in Adult Acute Lung Injury. ClinicalTrials.Gov, NCT01619280. 2012. Available online: https://clinicaltrials.gov/ct2/show/NCT01619280 (accessed on 23 October 2024).
- Kavaklıdere Umut Hospital. Clinical Study Investigating the Effect of Sodium Nitroprusside Infusion on Thyroidal Function. ClinicalTrials.Gov, NCT00636584. 2008. Available online: https://clinicaltrials.gov/ct2/show/NCT00636584 (accessed on 23 October 2024).
- University of Sao Paulo. Add-on Sodium Nitroprusside to Treatment as Usual in Schizophrenia. ClinicalTrials.Gov, NCT01548612. 2012. Available online: https://clinicaltrials.gov/ct2/show/NCT01548612 (accessed on 23 October 2024).
- Zhao, Y.; Vanhoutte, P.M.; Leung, S.W.S. Vascular Nitric Oxide: Beyond eNOS. J. Pharmacol. Sci. 2015, 129, 83–94. [Google Scholar] [CrossRef]
- Guimaraes, D.A.; Batista, R.I.M.; Tanus-Santos, J.E. Nitrate and Nitrite-Based Therapy to Attenuate Cardiovascular Remodelling in Arterial Hypertension. Basic Clin. Pharmacol. Toxicol. 2021, 128, 9–17. [Google Scholar] [CrossRef]
- Cohn, J.N. Nitrates for Congestive Heart Failure. Am. J. Cardiol. 1985, 56, A19–A23. [Google Scholar] [CrossRef]
- Tsujimoto, T.; Kajio, H. Use of Nitrates and Risk of Cardiovascular Events in Patients with Heart Failure with Preserved Ejection Fraction. Am. J. Cardiol. 2019, 94, 1210–1220. [Google Scholar] [CrossRef]
- Andrabi, S.M.; Sharma, N.S.; Karan, A.; Shahriar, S.M.S.; Cordon, B.; Ma, B.; Xie, J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. Adv. Sci. 2023, 10, 2303259. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, B.; Lin, R.; Dai, H.; Zhang, Y.; Qunlong, M.; Huang, Y. Liquid Nitric Oxide Donor for Adjuvant Therapy of Acute Ischemic Stroke via Nasal Administration. Nitric Oxide 2023, 134–135, 72–78. [Google Scholar] [CrossRef]
- Li, C.Y.; Anuraga, G.; Chang, C.P.; Weng, T.Y.; Hsu, H.P.; Ta, H.D.K.; Su, P.F.; Chiu, P.H.; Yang, S.J.; Chen, F.W.; et al. Repurposing Nitric Oxide Donating Drugs in Cancer Therapy Through Immune Modulation. J. Exp. Clin. Cancer Res. 2023, 42, 22. [Google Scholar] [CrossRef]
- Rao, N.; Singh, R.; Bashambu, L. Carbon-Based Nanomaterials: Synthesis and Prospective Applications. Mat. Today Proc. 2021, 44, 608–614. [Google Scholar] [CrossRef]
- Bhardwaj, H.; Jangde, R.K. Current Updated Review on Preparation of Polymeric Nanoparticles for Drug Delivery and Biomedical Applications. Next Nanotechnol. 2023, 2, 100013. [Google Scholar] [CrossRef]
- Burlec, A.F.; Corciova, A.; Boev, M.; Batir-Marin, D.; Mircea, C.; Cioanca, O.; Danila, G.; Danila, M.; Bucur, A.F.; Hancianu, M. Current Overview of Metal Nanoparticles’ Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals 2023, 16, 1410. [Google Scholar] [CrossRef] [PubMed]
- Poh, W.H.; Rice, S.A. Recent Developments in Nitric Oxide Donors and Delivery for Antimicrobial and Anti-Biofilm Applications. Molecules 2022, 27, 674. [Google Scholar] [CrossRef]
- Jardeleza, C.; Rao, S.; Thierry, B.; Gajjar, P.; Vreugde, S.; Prestidge, C.A.; Wormald, P.J. Liposome-Encapsulated ISMN: A Novel Nitric Oxide-Based Therapeutic Agent Against Staphylococcus aureus Biofilms. PLoS ONE 2014, 9, e92117. [Google Scholar] [CrossRef] [PubMed]
- Forier, K.; Raemdonck, K.; De Smedt, S.C.; Demeester, J.; Coenye, T.; Braeckmans, K. Lipid and Polymer Nanoparticles for Drug Delivery to Bacterial Biofilms. J. Control. Release 2014, 190, 607–623. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, M.; Shen, Z.; Zhang, M.; Zheng, B.; Cheng, S.; Hu, J. Photoresponsive Vesicles Enabling Sequential Release of Nitric Oxide (NO) and Gentamicin for Efficient Biofilm Eradication. Macromol. Rapid Commun. 2021, 42, 2000759. [Google Scholar] [CrossRef]
- Garren, M.; Maffe, P.; Melvin, A.; Griffin, L.; Wilson, S.; Douglass, M.; Reynolds, M.; Handa, H. Surface-Catalyzed Nitric Oxide Release via a Metal Organic Framework Enhances Antibacterial Surface Effects. ACS Appl. Mater. Interfaces 2021, 13, 56931–56943. [Google Scholar] [CrossRef]
- Adnan, N.N.M.; Sadrearhami, Z.; Bagheri, A.; Nguyen, T.K.; Wong, E.H.H.; Ho, K.K.K.; Lim, M.; Kumar, N.; Boyer, C. Exploiting the Versatility of Polydopamine-Coated Nanoparticles to Deliver Nitric Oxide and Combat Bacterial Biofilm. Macromol. Rapid Commun. 2018, 39, 1800159. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, T.; Feng, J.; Rong, F.; Wang, K.; Li, P.; Huang, W. Photoactivatable Nitric Oxide-Releasing Gold Nanocages for Enhanced Hyperthermia Treatment of Biofilm-Associated Infections. ACS Appl. Mater. Interfaces 2021, 13, 50668–50681. [Google Scholar] [CrossRef]
- Rahman, L.; Sarwar, Y.; Khaliq, S.; Inayatullah, N.; Abbas, W.; Mobeen, A.; Ullah, A.; Hussain, S.Z.; Khan, W.S.; Kyriazi, M.E.; et al. Surfactin-Conjugated Silver Nanoparticles as an Antibacterial and Antibiofilm Agent Against Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces 2023, 15, 43321–43331. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lv, K.; Chen, Z.; Li, C.; Chen, T.; Ma, D. Fluorescent Carbon Dots with a High Nitric Oxide Payload for Effective Antibacterial Activity and Bacterial Imaging. Biomater. Sci. 2021, 9, 6486–6500. [Google Scholar] [CrossRef]
- Huang, S.; Liu, H.; Liao, K.; Hu, Q.; Guo, R.; Deng, K. Functionalized GO Nanovehicles with Nitric Oxide Release and Photothermal Activity-Based Hydrogels for Bacteria-Infected Wound Healing. ACS Appl. Mater. Interfaces 2020, 12, 28952–28964. [Google Scholar] [CrossRef]
- Cao, J.; Hlaing, S.P.; Lee, J.; Kim, J.; Lee, E.H.; Kang, S.H.; Hong, S.W.; Yoon, I.S.; Yun, H.; Jung, Y.; et al. Bacteria-Adhesive Nitric Oxide-Releasing Graphene Oxide Nanoparticles for MRPA-Infected Wound Healing Therapy. ACS Appl. Mater. Interfaces 2022, 14, 50507–50519. [Google Scholar] [CrossRef] [PubMed]
- Garren, M.; Ashcraft, M.; Crowley, D.; Brisbois, E.J.; Handa, H. Derivatization of Graphene Oxide Nanosheets with Tunable Nitric Oxide Release for Antibacterial Biomaterials. J. Biomed. Mater. Res. A 2023, 111, 451–464. [Google Scholar] [CrossRef]
- Hasan, S.; Thomas, N.; Thierry, B.; Prestidge, C.A. Biodegradable Nitric Oxide Precursor-Loaded Micro- and Nanoparticles for the Treatment of Staphylococcus aureus Biofilms. J. Mater. Chem. B 2017, 5, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Hasan, N.; Cao, J.; Lee, J.; Naeem, M.; Hlaing, S.P.; Kim, J.; Jung, Y.; Lee, B.L.; Yoo, J.W. PEI/NONOates-Doped PLGA Nanoparticles for Eradicating Methicillin-Resistant Staphylococcus aureus Biofilm in Diabetic Wounds via Binding to the Biofilm Matrix. Mater. Sci. Eng. C 2019, 103, 109741. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Selvanayagam, R.; Ho, K.K.K.; Chen, R.; Kutty, S.K.; Rice, S.A.; Kumar, N.; Barraud, N.; Duong, H.T.T.; Boyer, C. Co-Delivery of Nitric Oxide and Antibiotic Using Polymeric Nanoparticles. Chem. Sci. 2016, 7, 1016–1027. [Google Scholar] [CrossRef]
- Hua, X.; Tan, S.; Bandara, H.M.H.N.; Fu, Y.; Liu, S.; Smyth, H.D.C. Externally Controlled Triggered-Release of Drug from PLGA Micro and Nanoparticles. PLoS ONE 2014, 9, e114271. [Google Scholar] [CrossRef]
- Oh, Y.; Jeong, H.; Lim, S.; Hong, J. Controlled Nitric Oxide Release Using Poly(Lactic-Co-Glycolic Acid) Nanoparticles for Anti-Inflammatory Effects. Biomacromolecules 2020, 21, 4972–4979. [Google Scholar] [CrossRef]
- Budhian, A.; Siegel, S.J.; Winey, K.I. Controlling the In Vitro Release Profiles for a System of Haloperidol-Loaded PLGA Nanoparticles. Int. J. Pharm. 2008, 346, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Mihu, M.R.; Cabral, V.; Pattabhi, R.; Tar, M.T.; Davies, K.P.; Friedman, A.J.; Martinez, L.R.; Nosanchuk, J.D. Sustained Nitric Oxide-Releasing Nanoparticles Interfere with Methicillin-Resistant Staphylococcus aureus Adhesion and Biofilm Formation in a Rat Central Venous Catheter Model. Antimicrob. Agents Chemother. 2017, 61, e02020-16. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, X.; Lai, X.; Dzuvor, C.K.O.; Lyu, L.; Chow, S.H.; He, L.; Yu, L.; Wang, Y.; Song, J.; et al. Coassembled Nitric Oxide-Releasing Nanoparticles with Potent Antimicrobial Efficacy Against Methicillin-Resistant Staphylococcus aureus (MRSA) Strains. ACS Appl. Mater. Interfaces 2022, 14, 37369–37379. [Google Scholar] [CrossRef] [PubMed]
- Slomberg, D.L.; Lu, Y.; Broadnax, A.D.; Hunter, R.A.; Carpenter, A.W.; Schoenfisch, M.H. Role of Size and Shape on Biofilm Eradication for Nitric Oxide-Releasing Silica Nanoparticles. ACS Appl. Mater. Interfaces 2013, 5, 9322–9329. [Google Scholar] [CrossRef] [PubMed]
- García, A.; González, B.; Harvey, C.; Izquierdo-Barba, I.; Vallet-Regí, M. Effective Reduction of Biofilm Through Photothermal Therapy by Gold Core@Shell Based Mesoporous Silica Nanoparticles. Microporous Mesoporous Mater. 2021, 328, 111489. [Google Scholar] [CrossRef]
- Urzedo, A.L.; Gonçalves, M.C.; Nascimento, M.H.M.; Lombello, C.B.; Nakazato, G.; Seabra, A.B. Cytotoxicity and Antibacterial Activity of Alginate Hydrogel Containing Nitric Oxide Donor and Silver Nanoparticles for Topical Applications. ACS Biomater. Sci. Eng. 2020, 6, 2117–2134. [Google Scholar] [CrossRef] [PubMed]
- Seabra, A.B.; Pieretti, J.C.; Santana, B.d.M.; Horue, M.; Tortella, G.R.; Castro, G.R. Pharmacological Applications of Nitric Oxide-Releasing Biomaterials in Human Skin. Int. J. Pharm. 2023, 630, 122465. [Google Scholar] [CrossRef]
- Bagheri, A.; Sadrearhami, Z.; Adnan, N.N.M.; Boyer, C.; Lim, M. Surface Functionalization of Upconversion Nanoparticles Using Visible Light-Mediated Polymerization. Polymer 2018, 151, 6–14. [Google Scholar] [CrossRef]
- Chug, M.K.; Brisbois, E.J. Recent Developments in Multifunctional Antimicrobial Surfaces and Applications Toward Advanced Nitric Oxide-Based Biomaterials. ACS Mater. Au 2022, 2, 525–555. [Google Scholar] [CrossRef]
- Silva Filho, P.M.; Paz, I.A.; Nascimento, N.R.F.; Santos, C.F.; Arau, V.R.; Aquino, C.P.; Ribeiro, T.S.; Vasconcelos, I.F.; Lopes, L.G.F.; Sousa, E.H.S.; et al. Incorporation of Nitroprusside on Silica Nanoparticles: A Strategy for Safer Use of This NO Donor in Therapy. Mol. Pharm. 2019, 16, 2912–2921. [Google Scholar] [CrossRef]
- Zhang, S.; Chu, Z.; Yin, C.; Zhang, C.; Lin, G.; Li, Q. Controllable Drug Release and Simultaneously Carrier Decomposition of SiO2-Drug Composite Nanoparticles. J. Am. Chem. Soc. 2013, 135, 5709–5716. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.S.; Socha, M.; Lamprecht, A.; El Ghazouani, F.; Sapin, A.; Hoffman, M.; Maincent, P.; Ubrich, N. Effect of the Microencapsulation of Nanoparticles on the Reduction of Burst Release. Int. J. Pharm. 2007, 344, 53–61. [Google Scholar] [CrossRef]
- Liu, S.; He, X.; Hu, X.; Pu, Y.; Mao, X. Porous Nanomaterials for Biosensing and Related Biological Application in In Vitro/Vivo Usability. Mater. Adv. 2024, 5, 453–474. [Google Scholar] [CrossRef]
- Popat, A.; Liu, J.; Hu, Q.; Kennedy, M.; Peters, B.; Lu, G.Q.; Qiao, S.Z. Adsorption and Release of Biocides with Mesoporous Silica Nanoparticles. Nanoscale 2012, 4, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Singh, R.K.; Perez, R.A.; Neel, E.A.A.; Kim, H.W.; Chrzanowski, W. Silica-Based Mesoporous Nanoparticles for Controlled Drug Delivery. J. Tissue Eng. 2013, 4, 2041731413503357. [Google Scholar] [CrossRef]
- Sun, T.; Jiang, C. Stimuli-Responsive Drug Delivery Systems Triggered by Intracellular or Subcellular Microenvironments. Adv. Drug Deliv. Rev. 2023, 196, 114773. [Google Scholar] [CrossRef]
- Gao, D.; Asghar, S.; Hu, R.; Chen, S.; Niu, R.; Liu, J.; Chen, Z.; Xiao, Y. Recent Advances in Diverse Nanosystems for Nitric Oxide Delivery in Cancer Therapy. Acta Pharm. Sin. B 2023, 13, 1498–1521. [Google Scholar] [CrossRef] [PubMed]
- Bril, M.; Fredrich, S.; Kurniawan, N.A. Stimuli-Responsive Materials: A Smart Way to Study Dynamic Cell Responses. Smart Mater. Med. 2022, 3, 257–273. [Google Scholar] [CrossRef]
- Jones, M.L.; Ganopolsky, J.G.; Labbé, A.; Wahl, C.; Prakash, S. Antimicrobial Properties of Nitric Oxide and Its Application in Antimicrobial Formulations and Medical Devices. Appl. Microbiol. Biotechnol. 2010, 88, 401–407. [Google Scholar] [CrossRef]
- Hall, J.R.; Rouillard, K.R.; Suchyta, D.J.; Brown, M.D.; Ahonen, M.J.R.; Schoenfisch, M.H. Mode of Nitric Oxide Delivery Affects Antibacterial Action. ACS Biomater. Sci. Eng. 2020, 6, 433–441. [Google Scholar] [CrossRef]
- Förstermann, U.; Sessa, W.C. Nitric Oxide Synthases: Regulation and Function. Eur. Heart J. 2012, 33, 829–837. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Weitzberg, E. Nitric Oxide Signaling in Health and Disease. Cell 2022, 185, 2853–2878. [Google Scholar] [CrossRef] [PubMed]
- Estes, L.M.; Singha, P.; Singh, S.; Sakthivel, T.S.; Garren, M.; Devine, R.; Brisbois, E.J.; Seal, S.; Handa, H. Characterization of a Nitric Oxide (NO) Donor Molecule and Cerium Oxide Nanoparticle (CNP) Interactions and Their Synergistic Antimicrobial Potential for Biomedical Applications. J. Colloid Interface Sci. 2021, 586, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Li, G.; Liu, R.; Ma, D.; Xue, W. Dendritic Fe3O4@Poly(Dopamine)@Pamam Nanocomposite as Controllable NO-Releasing Material: A Synergistic Photothermal and NO Antibacterial Study. Adv. Funct. Mater. 2018, 28, 1707440. [Google Scholar] [CrossRef]
- Duan, Y.; He, K.; Zhang, G.; Hu, J. Photoresponsive Micelles Enabling Co-Delivery of Nitric Oxide and Formaldehyde for Combinatorial Antibacterial Applications. Biomacromolecules 2021, 22, 2160–2170. [Google Scholar] [CrossRef] [PubMed]
- Hetrick, E.M.; Shin, J.H.; Stasko, N.A.; Johnson, C.B.; Wespe, D.A.; Holmuhamedov, E.; Schoenfisch, M.H. Bactericidal Efficacy of Nitric Oxide-Releasing Silica Nanoparticles. ACS Nano 2008, 2, 235–246. [Google Scholar] [CrossRef]
- Martinez, L.R.; Han, G.; Chacko, M.; Mihu, M.R.; Jacobson, M.; Gialanella, P.; Friedman, A.J.; Nosanchuk, J.D.; Friedman, J.M. Antimicrobial and Healing Efficacy of Sustained Release Nitric Oxide Nanoparticles Against Staphylococcus aureus Skin Infection. J. Investig. Dermatol. 2009, 129, 2463–2469. [Google Scholar] [CrossRef]
- Zhao, A.; Sun, J.; Liu, Y. Understanding Bacterial Biofilms: From Definition to Treatment Strategies. Front. Cell. Infect. Microbiol. 2023, 13, 1137947. [Google Scholar] [CrossRef]
- Yadav, M.K.; Vidal, J.E.; Song, J.-J. Microbial Biofilms on Medical Indwelling Devices. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms; Elsevier: Amsterdam, The Netherlands, 2020; pp. 15–28. [Google Scholar]
- Silva Filho, P.M.; Andrade, A.L.; Cruz Lopes, J.B.A.; Pinheiro, A.A.; Vasconcelos, M.A.; da Cruz Fonseca, S.G.; de França Lopes, L.G.; Sousa, E.H.S.; Teixeira, E.H.; Longhinotti, E. The Biofilm Inhibition Activity of a NO Donor Nanosilica with Enhanced Antibiotics Action. Int. J. Pharm. 2021, 610, 121220. [Google Scholar] [CrossRef]
- Ma, H.; Tang, Y.; Rong, F.; Wang, K.; Wang, T.; Li, P. Surface Charge Adaptive Nitric Oxide Nanogenerator for Enhanced Photothermal Eradication of Drug-Resistant Biofilm Infections. Bioact. Mater. 2023, 27, 154–167. [Google Scholar] [CrossRef]
- Barraud, N.; Kelso, M.J.; Rice, S.A.; Kjelleberg, S. Nitric Oxide: A Key Mediator of Biofilm Dispersal with Applications in Infectious Diseases. Curr. Pharm. Des. 2015, 21, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Barraud, N.; Schleheck, D.; Klebensberger, J.; Webb, J.S.; Hassett, D.J.; Rice, S.A.; Kjelleberg, S. Nitric Oxide Signaling in Pseudomonas aeruginosa Biofilms Mediates Phosphodiesterase Activity, Decreased Cyclic di-GMP Levels, and Enhanced Dispersal. J. Bacteriol. 2009, 191, 7333–7342. [Google Scholar] [CrossRef] [PubMed]
- Henares, B.M.; Xu, Y.; Boon, E.M. A Nitric Oxide-Responsive Quorum Sensing Circuit in Vibrio harveyi Regulates Flagella Production and Biofilm Formation. Int. J. Mol. Sci. 2013, 14, 16473–16484. [Google Scholar] [CrossRef]
- Plate, L.; Marletta, M.A. Nitric Oxide Modulates Bacterial Biofilm Formation Through a Multicomponent Cyclic-di-GMP Signaling Network. Mol. Cell 2012, 46, 449–460. [Google Scholar] [CrossRef]
- Thompson, C.M.; Tischler, A.H.; Tarnowski, D.A.; Mandel, M.J.; Visick, K.L. Nitric Oxide Inhibits Biofilm Formation by Vibrio fischeri via the Nitric Oxide Sensor HnoX. Mol. Microbiol. 2019, 111, 187–203. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Cao, Z.; Prettner, K.; Kuhn, M.; Yang, J.; Jiao, L.; Wang, Z.; Li, W.; Geldsetzer, P.; Bärnighausen, T.; et al. Estimates and Projections of the Global Economic Cost of 29 Cancers in 204 Countries and Territories from 2020 to 2050. JAMA Oncol. 2023, 9, 465. [Google Scholar] [CrossRef]
- WO1992021346A1; Linsidomin for Treating Erectile Dysfunctions. WIPO: Geneva, Switzerland, 1992.
- AU657726B2; Devices for Treating Pulmonary Vasoconstriction and Asthma. WIPO: Geneva, Switzerland, 1992.
- Stene Hurtsén, A.; Zorikhin Nilsson, I.; Dogan, E.M.; Nilsson, K.F. A Comparative Study of Inhaled Nitric Oxide and an Intravenously Administered Nitric Oxide Donor in Acute Pulmonary Hypertension. Drug Des. Devel. Ther. 2020, 14, 635–645. [Google Scholar] [CrossRef]
- Adusumilli, N.C.; Zhang, D.; Friedman, J.M.; Friedman, A.J. Harnessing Nitric Oxide for Preventing, Limiting and Treating the Severe Pulmonary Consequences of COVID-19. Nitric Oxide 2020, 103, 4–8. [Google Scholar] [CrossRef]
- Pieretti, J.C.; Rubilar, O.; Weller, R.B.; Tortella, G.R.; Seabra, A.B. Nitric Oxide (NO) and Nanoparticles—Potential Small Tools for the War Against COVID-19 and Other Human Coronavirus Infections. Virus Res. 2021, 291, 198202. [Google Scholar] [CrossRef]
- Paulo, M.; Costa, D.E.F.R.; Bonaventura, D.; Lunardi, C.N.; Bendhack, L.M. Nitric Oxide Donors as Potential Drugs for the Treatment of Vascular Diseases Due to Endothelium Dysfunction. Curr. Pharm. Des. 2020, 26, 3748–3759. [Google Scholar] [CrossRef]
- Rink, J.S.; Sun, W.; Misener, S.; Wang, J.-J.; Zhang, Z.J.; Kibbe, M.R.; Dravid, V.P.; Venkatraman, S.; Thaxton, C.S. Nitric Oxide-Delivering High-Density Lipoprotein-like Nanoparticles as a Biomimetic Nanotherapy for Vascular Diseases. ACS Appl. Mater. Interfaces 2018, 10, 6904–6916. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, N.; de Mel, A.; Alavijeh, O.S.; Cousins, B.G.; Seifalian, A.M. Nitric Oxide Donors for Cardiovascular Implant Applications. Small 2013, 9, 22–35. [Google Scholar] [CrossRef]
- de Mel, A.; Murad, F.; Seifalian, A.M. Nitric Oxide: A Guardian for Vascular Grafts? Chem. Rev. 2011, 111, 5742–5767. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Zedan, H.T.; Al-Fakhroo, D.; Ibrahim, H.E.; Abiib, S.I.; El-Sherbiny, I.M.; Yalcin, H.C. In Vivo Testing of Novel Nitric Oxide-Releasing Nanoparticles for Alleviating Heart Failure Using the Zebrafish Embryo Model. Nitric Oxide 2024, 144, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Zhang, Z.; Chen, Y.; Su, H.; Deng, X.; Liu, X.; Fan, Y. Delivery of Nitric Oxide in the Cardiovascular System: Implications for Clinical Diagnosis and Therapy. Int. J. Mol. Sci. 2021, 22, 12166. [Google Scholar] [CrossRef]
- Vidanapathirana, A.K.; Psaltis, P.J.; Bursill, C.A.; Abell, A.D.; Nicholls, S.J. Cardiovascular Bioimaging of Nitric Oxide: Achievements, Challenges, and the Future. Med. Res. Rev. 2021, 41, 435–463. [Google Scholar] [CrossRef] [PubMed]
- Rouillard, K.R.; Novak, O.P.; Pistiolis, A.M.; Yang, L.; Ahonen, M.J.R.; McDonald, R.A.; Schoenfisch, M.H. Exogenous Nitric Oxide Improves Antibiotic Susceptibility in Resistant Bacteria. ACS Infect. Dis. 2021, 7, 23–33. [Google Scholar] [CrossRef]
- Kumar, D.; Ohri, P. Say “NO” to Plant Stresses: Unravelling the Role of Nitric Oxide Under Abiotic and Biotic Stress. Nitric Oxide 2023, 130, 36–57. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme Weather Events Risk to Crop-Production and the Adaptation of Innovative Management Strategies to Mitigate the Risk: A Retrospective Survey of Rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Xiang, M.; Li, Y.; Yang, J.; Lei, K.; Li, Y.; Li, F.; Zheng, D.; Fang, X.; Cao, Y. Heavy Metal Contamination Risk Assessment and Correlation Analysis of Heavy Metal Contents in Soil and Crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef]
- Hammer, G.L.; McLean, G.; van Oosterom, E.; Chapman, S.; Zheng, B.; Wu, A.; Doherty, A.; Jordan, D. Designing Crops for Adaptation to the Drought and High-Temperature Risks Anticipated in Future Climates. Crop Sci. 2020, 60, 605–621. [Google Scholar] [CrossRef]
- Ahmad, P.; Alyemeni, M.N.; Wijaya, L.; Ahanger, M.A.; Ashraf, M.; Alam, P.; Paray, B.A.; Rinklebe, J. Nitric Oxide Donor, Sodium Nitroprusside, Mitigates Mercury Toxicity in Different Cultivars of Soybean. J. Hazard. Mater. 2021, 408, 124852. [Google Scholar] [CrossRef] [PubMed]
- Gomes, D.G.; Debiasi, T.V.; Pelegrino, M.T.; Pereira, R.M.; Ondrasek, G.; Batista, B.L.; Seabra, A.B.; Oliveira, H.C. Soil Treatment with Nitric Oxide-Releasing Chitosan Nanoparticles Protects the Root System and Promotes the Growth of Soybean Plants Under Copper Stress. Plants 2022, 11, 3245. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.C.; Gomes, B.C.R.; Pelegrino, M.T.; Seabra, A.B. Nitric Oxide-Releasing Chitosan Nanoparticles Alleviate the Effects of Salt Stress in Maize Plants. Nitric Oxide 2016, 61, 10–19. [Google Scholar] [CrossRef] [PubMed]
- do Carmo, G.C.; Iastrenski, L.F.; Debiasi, T.V.; da Silva, R.C.; Gomes, D.G.; Pelegrino, M.T.; Bianchini, E.; Stolf-Moreira, R.; Pimenta, J.A.; Seabra, A.B.; et al. Nanoencapsulation Improves the Protective Effects of a Nitric Oxide Donor on Drought-Stressed Heliocarpus popayanensis Seedlings. Ecotoxicol. Environ. Saf. 2021, 225, 112713. [Google Scholar] [CrossRef]
- Shi, H.-T.; Li, R.-J.; Cai, W.; Liu, W.; Fu, Z.-W.; Lu, Y.-T. In Vivo Role of Nitric Oxide in Plant Response to Abiotic and Biotic Stress. Plant Signal Behav. 2012, 7, 437–439. [Google Scholar] [CrossRef]
- Marvasi, M. Potential Use and Perspectives of Nitric Oxide Donors in Agriculture. J. Sci. Food Agric. 2017, 97, 1065–1072. [Google Scholar] [CrossRef]
- Seabra, A.B.; Oliveira, H.C. How Nitric Oxide Donors Can Protect Plants in a Changing Environment: What We Know So Far and Perspectives. AIMS Mol. Sci. 2016, 3, 692–718. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tortella Fuentes, G.; Fincheira, P.; Rubilar, O.; Leiva, S.; Fernandez, I.; Schoebitz, M.; Pelegrino, M.T.; Paganotti, A.; dos Reis, R.A.; Seabra, A.B. Nanoparticle-Based Nitric Oxide Donors: Exploring Their Antimicrobial and Anti-Biofilm Capabilities. Antibiotics 2024, 13, 1047. https://doi.org/10.3390/antibiotics13111047
Tortella Fuentes G, Fincheira P, Rubilar O, Leiva S, Fernandez I, Schoebitz M, Pelegrino MT, Paganotti A, dos Reis RA, Seabra AB. Nanoparticle-Based Nitric Oxide Donors: Exploring Their Antimicrobial and Anti-Biofilm Capabilities. Antibiotics. 2024; 13(11):1047. https://doi.org/10.3390/antibiotics13111047
Chicago/Turabian StyleTortella Fuentes, Gonzalo, Paola Fincheira, Olga Rubilar, Sebastian Leiva, Ivette Fernandez, Mauricio Schoebitz, Milena T. Pelegrino, André Paganotti, Roberta Albino dos Reis, and Amedea B. Seabra. 2024. "Nanoparticle-Based Nitric Oxide Donors: Exploring Their Antimicrobial and Anti-Biofilm Capabilities" Antibiotics 13, no. 11: 1047. https://doi.org/10.3390/antibiotics13111047
APA StyleTortella Fuentes, G., Fincheira, P., Rubilar, O., Leiva, S., Fernandez, I., Schoebitz, M., Pelegrino, M. T., Paganotti, A., dos Reis, R. A., & Seabra, A. B. (2024). Nanoparticle-Based Nitric Oxide Donors: Exploring Their Antimicrobial and Anti-Biofilm Capabilities. Antibiotics, 13(11), 1047. https://doi.org/10.3390/antibiotics13111047