Duration of Antimicrobial Treatment in Adult Patients with Pneumonia: A Narrative Review
Abstract
:1. Introduction
2. Current Guidelines on the Duration of Antimicrobial Treatment in Different Types of Pneumonia
2.1. Community-Acquired Pneumonia
2.2. Hospital-Acquired Pneumonia
2.3. Ventilator-Associated Pneumonia
3. Evidence on the Shorter vs. Longer Duration of Antibiotic Treatment in Different Types of Pneumonia
Author (Publication Year) | Participants—Treatment Groups | Primary Outcome | Results (Short vs. Long Course) | Comments |
---|---|---|---|---|
Siegel et al. (1999) [56] | 46 inpatients with moderately severe CAP Short course = 24 (7 d: 2 d of IV cefuroxime 750 mg × 3 followed by 5 d of oral cefuroxime axetil 500 mg × 2) Long course = 22 (10 d: 2 days of IV cefuroxime 750 mg × 3 followed by 8 days of oral cefuroxime axetil 500 mg × 2) | Clinical cure at d42 | 87.5% vs. 90.9% (95% CI, −14.5% to 21.3%) | 1. Confirmed non-inferiority for the short course 2. No late recurrence 3. No difference in the length of hospital stay 4. Potential US cost-savings: USD 27.2 million 5. Antibiotic side effects: mild and infrequent 6. The most commonly isolated microorganism was Streptococcus pneumoniae and none of them was penicillin resistant |
Léophonte et al. (2002) [55] | 186 inpatients with CAP Short course = 94 (5 d of IV Ceftriaxone 1 g × 1) Long course = 92 (10 d of IV Ceftriaxone 1 g × 1) | Clinical cure at EOT (d10) | 81.9% vs. 82.6% (95% CI, −∞ to 9, 91%) | 1. Confirmed non-inferiority for the short course 2. No difference in clinical normalization on day 10: 90.1% vs. 93.2% (95% CI, −∞ to 9, 81%) 3. No difference in clinical cure rate at follow-up (day 30–45): 73.4% vs. 72.8% [95% CI, −∞ to –0.58%] 4. No difference in radiological response rates at follow-up (day 30–45) 5. No difference in antibiotic side effects (16% vs. 21.8%) 6. No difference in liver toxicity. No nephrotoxicity 7. The most commonly isolated microorganism was followed by Staphylococcus spp. |
Dunbar et al. (2003) [54] | 390 inpatients and outpatients with mild to moderate CAP Short course = 198 (5 d of IV/oral levofloxacin 750 mg/d) Long course = 192 (10 d of IV/oral levofloxacine 500 mg/d) | Clinical cure at d7–14 post treatment | 92.4% vs. 91.1% (95% CI, −7.0 to 4.4) | 1. Confirmed non-inferiority for the short course 2. No difference in the bacteriological success rate and all-cause mortality 3. No difference in antibiotic side effects (57.8% vs. 59.6%) 4. The most commonly isolated bacteria were Streptococcus pneumoniae, Mycoplasma pneumoniae and Haemophilus spp. All of them are susceptible to levofloxacin 5. Clinical cure at d 7–14: Streptococcus pneumoniae: 90.9% vs. 90% Haemophilus influenzae: 92.3% vs. 92.9% Haemophilus parainfluenzae: 100% vs. 90% Mycoplasma pneumoniae: 95.3% vs. 94.4% |
Tellier et al. (2004) [53] | 575 inpatients and outpatients with mild to moderate CAP Short course = 193 (5 d of oral Telithromycin 800 mg × 1) or 195 (7 d of oral Telithromycin 800 mg × 1) Long course = 187 (10 d of oral Clarithromycin 500 mg × 2) | Clinical cure at EOT | 89.3% (5 days) vs. 91.8% (10 days) (dif = 2.5 (−9.7, 4.7) | 1. Confirmed non-inferiority for the short course 2. No difference in bacteriologic outcome rates 3. No difference in clinical efficacy against pneumococcal bacteremia and common respiratory pathogens, including macrolide-resistant isolates 4. Antibiotic side effects: mild—no difference [43% (5 days) vs. 46.2% (7 days) vs. 44.9% (10 days)] 5. No difference in liver toxicity. No nephrotoxicity 6. No difference in mortality 7. The most common bacteria were Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis 8. Streptococcus pneumoniae isolates: 8.7% resistant to erythromycin and 0% resistant to penicillin. Clinical cure in cases with macrolide-resistant isolates receiving short course of antibiotics: 100% |
88.8% (7 days) vs. 91.8% (10 days) (dif = 3.0 (−10.2, 4.3) | ||||
Léophonte et al. (2004) [52] | 249 inpatients with CAP of suspected Streptococcus pneumoniae origin Short course = 128 (7 d of oral gemifloxacin 320 mg × 1) Long course = 121 (10 d of oral amoxicillin/clavulanate 1 g/125 mg × 3) | Clinical cure at EOT (d12–14) and follow-up (d24–30) | EOT: 95.3% vs. 90.1 (95% CI, −1.2% to 11.7%) Follow-up: 88.7% vs. 87.6 (95% CI, −7.3% to 9.5%) | 1. Confirmed non-inferiority for the short course 2. No difference in clinical cure in patients with severe CAP 3. No difference in bacteriologic response rates at EOT and at follow-up 4. No difference in radiological response rates at EOT and at follow-up 5. No difference in antibiotic side effects (18.6% vs. 22.9%) 6. Liver toxicity: 7.8% vs. 1.3%, but it was transient, with lower values at EOT. No nephrotoxicity 7. The most common microorganism was Streptococcus pneumoniae, followed by Mycoplasma pneumoniae, Legionella pneumophila and Chlamydia pneumoniae 8. Clinical cure at EOT: Streptococcus pneumoniae: 96% vs. 100% Haemophilus influenzae: 78% vs. 100% Mycoplasma pneumoniae: 94% vs. 83% Legionella pneumophila: 80% vs. 83% Chlamydia pneumoniae: 100% vs. 100% 9. No isolate was resistant to ofloxacin, and 5.8% of Streptococcus pneumoniae isolates were resistant to penicillin. All of them were eradicated by the antibiotic courses. |
El Moussaoui et al. (2006) [51] | 119 inpatients with mild to moderate/severe CAP (pneumonia severity index score < or = 110), who substantially improved after three days’ treatment Short course = 56 (3 d of IV Amoxicillin 1 g × 4) Long course = 63 (8 d: IV Amoxicillin 1 g × 4 for 3 d followed by oral amoxicillin 750 mg × 3 for 5 d) | Clinical cure at d10 | 93% vs. 93% (dif = 0.1%, 95% CI, −9% to 10%) | 1. Confirmed non-inferiority for the short course 2. No difference in clinical cure on day 28: 90% vs. 88% (difference 2%, − 9% to 15%) 3. No difference in bacteriological and radiological success rates on days 10 and 28 4. No difference in clinical efficacy against pneumococcal bacteremia 5. Antibiotic side effects: mild, no difference (11% vs. 21%) |
File et al. (2007) [50] | 510 outpatients with mild to moderate CAP Short course = 256 (5 d of oral Gemifloxacin 320 mg × 1) Long course = 254 (7 d of oral Gemifloxacin 320 mg × 1) | Clinical cure at d24–30 | 95% vs. 92% (95% CI, −1.48 to 7.42) | 1. Confirmed non-inferiority for the short course 2. No difference in clinical cure at EOT: 95.5% vs. 95.8% [95% CI, −3.85 to 3.42] 3. No difference in bacteriological and radiological success rates at EOT and follow-up 4. No difference in antibiotic side effects (21% vs. 21%) 5. Liver toxicity: elevated ALT 7.4% vs. 4.7% and elevated AST 7.4% vs. 2.8%. No nephrotoxicity. 6. The most common microorganism was Streptococcus pneumoniae, followed by Chlamydia pneumoniae, Mycoplasma pneumoniae, Haemophilus influenzae and Staphylococcus aureus 7. Multidrug-resistant Streptococcus pneumoniae was isolated in 28% (23% vs. 33%). 8. Eradication rate for Streptococcus pneumoniae was 100% vs. 95%, and for multidrug-resistant Streptococcus pneumoniae, it was 100% vs. 66.7%. |
Strålin et al. (2014) [49] | 174 inpatients with CAP Short course = 88 (at least 5 d of beta-lactam) Long course = 86 (10 d of beta-lactam) | Clinical cure at EOT | 90% vs. 94% | 1. Confirmed non-inferiority for the short course 2. No difference in clinical cure at pneumococcal CAP: 96% vs. 97% 3. No difference in antibiotic side effects (0% vs. 4.6%) 4. The most common microorganism was Streptococcus pneumoniae, and the clinical cure in these cases was 96% vs. 97%. |
Uranga et al. (2016) [48] | 312 inpatients with CAP Short course = 162 (median 5 d (IQR 5–6.5) of various antibiotics) Long course = 150 (median 10 d (IQR 10–11) of various antibiotics) | Clinical cure at d10 and d30 | D10: 59.7% vs. 50.4% (p = 0.12) D30: 94.4% vs. 92.7% (p = 0.54) | 1. Shorter courses based on clinical stability criteria can be safely implemented in hospitalized patients with CAP. 2. No difference between the different severity groups and types of antibiotics 3. No difference in in-hospital and 30-day mortality, in-hospital complications, recurrence by day 30, length of hospital stay, and radiologic resolution 4. Readmission by day 30 was significantly more common in the long course than in the short course (6.6% vs. 1.4%; p = 0.02). 5. No difference in antibiotic side effects (13.1% vs. 11.7%) |
Zhao et al. (2016) [47] | 427 inpatients and outpatients with mild to moderate CAP Short course = 208 (5 d of IV levofloxacin 750 mg/day) Long course = 219 (at least 7 d (range 7–14) of IV/oral levofloxacin 500 mg/d) | Clinical cure at EOT | 93.8% vs. 95.9% (OR 0.643 (95% CI, 0.269, 1.537) (dif −2.14 (95% CI, −6.35, 2.07) p = 0.35 | 1. Confirmed non-inferiority for the short course 2. No difference in the bacteriological success rate 3. No difference in antibiotic side effects (18.42% vs. 13.54%). No difference in liver toxicity. No nephrotoxicity 4. The most commonly isolated microorganism was Streptococcus pneumoniae, and all the isolates were eradicated in both groups. |
Dinh et al. (2021) [46] | 310 inpatients with moderately severe CAP Short course = 157 (3 d of beta-lactam) Long course = 153 (8 d: beta-lactam for 3 days followed by oral amoxicillin 1 g plus clavulanate 125 mg × 3) | Clinical cure at d15 | 78% vs. 68% (dif = 9.44% [95% CI, −0.15 to 20.34]) | 1. Confirmed non-inferiority for the short course 2. No difference in clinical cure at day 30: 74% vs. 76% (dif –1.42%) (95% CI, –12.08 to 9.20) 3. No difference in mortality on day 30 and length of hospital stay 4. No difference between the different age and severity groups 5. No difference in antibiotic side effects (19% vs. 14%). No difference in liver toxicity. No nephrotoxicity |
Author (Publication Year) | Participants | Primary Outcome | Results (Short vs. Long Course) | Comments |
---|---|---|---|---|
Hospital-acquired pneumonia | ||||
Singh et al. (2000) [61] | Short course = 39 (3 d) Usual care = 42 (9.8 d; 4–20) | 3 d mortality 14 d mortality 30 d mortality | 0% vs. 7 %, p > 0.05 8% vs. 21%, p > 0.05 13% vs. 31%, p > 0.05 | 1. Mixed case population with HAP (42%) and VAP (58%) patients 2. Confirmed non-inferiority for the short course 3. Shorter LOS in ICU for the short course 4. Lower cost of antimicrobial therapy for the short course 5. Lower antimicrobial resistance/superinfection rate for the short course |
Ventilator-associated pneumonia | ||||
Mo et al. (2024) [60] REGARD-VAP | Short course = 232 (6 d; 5–7) Usual care = 229 (14 d; 10–21) | Death or pneumonia recurrence (60 d) | 41% vs. 44% (dif = −3%; −∞, 5%) | 1. Confirmed non-inferiority, but not superiority 2. Antibiotic side effects = −31% (−37 to −25, p < 0.0001); kidney injury = −30% (−36 to −24, p < 0.0001); liver injury = −3% (−5 to −1, p = 0.033) 3. Composite outcome for NF-GNB VAP, OR = 1.38 (0.65 to 2.92, p = 0.40) 4. New CRE acquisition or infection, dif = 0.0009% (−0.061 to 0.059, p = 0.98) |
Bouglé et al. (2022) [59] iDIAPASON | Short course = 88 (8 d) Long course = 98 (15 d) (VAP from Ps. aeruginosa) | Composite: mortality and VAP recurrence (90 d) | 35.2% vs. 25.5 (dif = 9.7%; −1.9% −21.2%) | 1. Did not confirm non-inferiority for the short course due to inadequate enrolment (target = 600) 2. New MDRO acquisition, dif = −4.5% (−16.8 to 8.3) |
Kollef et al. (2012) [62] | Doripenem (7 d) = 115 Imipenem (10 d) = 112 | Clinical cure at EOT (d10) | 45.6% vs. 56.8%; 95% CI, −26.3% to 3.8% | 1. 28 d mortality = 21.5% vs. 14.8%; 95% CI, −5.0 to 18.5 2. VAP relapse, hospital mortality, LOS were similar between groups |
Capellier et al. (2012) [58] | Short course = 116 (8 d) Usual care = 109 (15 d) (early-onset VAP) | Clinical cure at d21 | 85.3% vs. 84.4% (dif = 0.9%; −8.4% −10.3%) OR = 0.929 (0.448–1.928) | 1. Only early-onset VAP 2. Equivalence between the two arms 3. No dif in mortality 4. Secondary infection higher in 8 d cohort |
Fekih et al. (2008) [57] | Short course = 14 (7 d) Long course = 16 (10 d) | 14 d mortality 28 d mortality | 7.1 vs. 35.7% (7 d) 31.2 vs. 37.5% (10 d) | 1. No dif in mortality 2. No dif in recurrent pulmonary infection 3. No dif in ICU LOS |
Chastre et al. (2003) [44] PneumoA | Short course = 197 (8 d) Long course = 204 (15 d) | 28 d mortality 28 d recurrence Antibiotic-free days | 18.8% vs. 17.2% (dif = 1.6%; −3.7%–6.9%) 28.9% vs. 26% (dif = 2.9%; −3.2%−9.1%) 13.1 vs. 8.7 days (p < 0.001) | 1. No dif in 28 d mortality and recurrence rate 2. NF-GNB VAP: higher recurrence rate with short course 3. Less recurrences from MDRO in the short course |
3.1. Community-Acquired Pneumonia
3.1.1. Evidence on Antibiotic Treatment Duration of CAP
3.1.2. Shorter Course of Antibiotic Treatment for CAP in Real-Life Clinical Practice
3.2. Hospital-Acquired Pneumonia
Evidence on Antibiotic Treatment Duration of HAP
3.3. Ventilator-Associated Pneumonia
3.3.1. Treatment Duration of VAP Caused by Non-Fermenting Gram-Negative Bacteria
3.3.2. Procalcitonin to Guide Shorter Course of Antibiotic Treatment for VAP
3.3.3. Clinical Application of Current Evidence
4. Methods
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mackenzie, G. The Definition and Classification of Pneumonia. Pneumonia 2016, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Troeger, C.; Blacker, B.; Khalil, I.A.; Rao, P.C.; Cao, J.; Zimsen, S.R.M.; Albertson, S.B.; Deshpande, A.; Farag, T.; Abebe, Z.; et al. Estimates of the Global, Regional, and National Morbidity, Mortality, and Aetiologies of Lower Respiratory Infections in 195 Countries, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018, 18, 1191–1210. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Pneumonia. Available online: https://www.who.int/Health-Topics/Pneumonia/#tab=tab_1 (accessed on 19 October 2024).
- Ramirez, J.A.; Wiemken, T.L.; Peyrani, P.; Arnold, F.W.; Kelley, R.; Mattingly, W.A.; Nakamatsu, R.; Pena, S.; Guinn, B.E.; Furmanek, S.P.; et al. Adults Hospitalized with Pneumonia in the United States: Incidence, Epidemiology, and Mortality. Clin. Infect. Dis. 2017, 65, 1806–1812. [Google Scholar] [CrossRef] [PubMed]
- Suetens, C.; Latour, K.; Kärki, T.; Ricchizzi, E.; Kinross, P.; Moro, M.L.; Jans, B.; Hopkins, S.; Hansen, S.; Lyytikäinen, O.; et al. Prevalence of Healthcare-Associated Infections, Estimated Incidence and Composite Antimicrobial Resistance Index in Acute Care Hospitals and Long-Term Care Facilities: Results from Two European Point Prevalence Surveys, 2016 to 2017. Eurosurveillance 2018, 23, 1800516. [Google Scholar] [CrossRef]
- Feet, J.A.; Müller, K.E.; Grewal, H.M.S.; Ulvestad, E.; Heggelund, L. A Retrospective Study of Non-Ventilator Hospital-Acquired Pneumonia in a Norwegian Hospital: A Serious Medical Condition in Need of Better and Timelier Microbiological Diagnostics. Infect. Dis. 2024, 56, 965–973. [Google Scholar] [CrossRef]
- Fally, M.; Haseeb, F.; Kouta, A.; Hansel, J.; Robey, R.C.; Williams, T.; Welte, T.; Felton, T.; Mathioudakis, A.G. Unravelling the Complexity of Ventilator-Associated Pneumonia: A Systematic Methodological Literature Review of Diagnostic Criteria and Definitions Used in Clinical Research. Crit. Care 2024, 28, 214. [Google Scholar] [CrossRef]
- López-Alcalde, J.; Rodriguez-Barrientos, R.; Redondo-Sánchez, J.; Muñoz-Gutiérrez, J.; Molero García, J.M.; Rodríguez-Fernández, C.; Heras-Mosteiro, J.; Marin-Cañada, J.; Casanova-Colominas, J.; Azcoaga-Lorenzo, A.; et al. Short-Course versus Long-Course Therapy of the Same Antibiotic for Community-Acquired Pneumonia in Adolescent and Adult Outpatients. Cochrane Database Syst. Rev. 2018, 9, CD009070. [Google Scholar] [CrossRef]
- Peng, Z.; Jin, D.; Kim, H.B.; Stratton, C.W.; Wu, B.; Tang, Y.-W.; Sun, X. Update on Antimicrobial Resistance in Clostridium Difficile: Resistance Mechanisms and Antimicrobial Susceptibility Testing. J. Clin. Microbiol. 2017, 55, 1998–2008. [Google Scholar] [CrossRef]
- Metlay, J.P.; Waterer, G.W.; Long, A.C.; Anzueto, A.; Brozek, J.; Crothers, K.; Cooley, L.A.; Dean, N.C.; Fine, M.J.; Flanders, S.A.; et al. Diagnosis and Treatment of Adults with Community-Acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med. 2019, 200, e45–e67. [Google Scholar] [CrossRef]
- Tucker, E.; O’Sullivan, M.; Waddell, L. Controversies in the Management of Community-Acquired Pneumonia in Adults. Aust. Prescr. 2024, 47, 80–84. [Google Scholar] [CrossRef]
- Vaughn, V.M.; Flanders, S.A.; Snyder, A.; Conlon, A.; Rogers, M.A.M.; Malani, A.N.; McLaughlin, E.; Bloemers, S.; Srinivasan, A.; Nagel, J.; et al. Excess Antibiotic Treatment Duration and Adverse Events in Patients Hospitalized with Pneumonia: A Multihospital Cohort Study. Ann. Intern. Med. 2019, 171, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Powell, N.; Stephens, J.; Rule, R.; Phillips, R.; Morphew, M.; Garry, E.; Askaroff, N.; Hiley, D.; Strachan, C.; Sheehan, M.; et al. Potential to Reduce Antibiotic Use in Secondary Care: Single-Centre Process Audit of Prescription Duration Using NICE Guidance for Common Infections. Clin. Med. 2021, 21, e39–e44. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam Elshenawy, R.; Umaru, N.; Aslanpour, Z. Shorter and Longer Antibiotic Durations for Respiratory Infections: To Fight Antimicrobial Resistance—A Retrospective Cross-Sectional Study in a Secondary Care Setting in the UK. Pharmaceuticals 2024, 17, 339. [Google Scholar] [CrossRef]
- Costantini, E.; Allara, E.; Patrucco, F.; Faggiano, F.; Hamid, F.; Balbo, P.E. Adherence to Guidelines for Hospitalized Community-Acquired Pneumonia over Time and Its Impact on Health Outcomes and Mortality. Intern. Emerg. Med. 2016, 11, 929–940. [Google Scholar] [CrossRef]
- Alessa, M.; Almangour, T.A.; Alhassoun, A.; Alajaji, I.; Almangour, A.; Alsalem, A.; Alhifany, A.A. Adherence to Evidence-Based Guidelines for the Management of Pneumonia in a Tertiary Teaching Hospital in Riyadh. Saudi Pharm. J. 2023, 31, 101678. [Google Scholar] [CrossRef]
- Pflanzner, S.; Phillips, C.; Mailman, J.; Vanstone, J.R. AMS in the ICU: Empiric Therapy and Adherence to Guidelines for Pneumonia. BMJ Open Qual. 2019, 8, e000554. [Google Scholar] [CrossRef]
- USA Centers for Disease Prevention and Control Antibiotic Resistance Threats in the United States 2021–2022. Available online: https://www.cdc.gov/antimicrobial-resistance/data-research/threats/update-2022.html (accessed on 19 October 2024).
- European Centre for Disease Prevention and Control. Antimicrobial Consumption in the EU/EEA (ESAC-Net)—Annual Epidemiological Report 2022; ECDC: Solna, Sewden, 2023. [Google Scholar]
- Craig, M.; Jernigan, D.; Laserson, K.; McBride, S.; Fairbanks, J.; Sievert, D.; Armstrong, P.A.; Ewing Ogle, H.; Zucker, H. Antimicrobial Resistance at a Crossroads: The Cost of Inaction. Lancet 2024, 404, 1083–1085. [Google Scholar] [CrossRef]
- Musher, D.M.; Thorner, A.R. Community-Acquired Pneumonia. N. Engl. J. Med. 2014, 371, 1619–1628. [Google Scholar] [CrossRef]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults with Hospital-Acquired and Ventilator-Associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef]
- Munro, S.C.; Baker, D.; Giuliano, K.K.; Sullivan, S.C.; Haber, J.; Jones, B.E.; Crist, M.B.; Nelson, R.E.; Carey, E.; Lounsbury, O.; et al. Nonventilator Hospital-Acquired Pneumonia: A Call to Action. Infect. Control. Hosp. Epidemiol. 2021, 42, 991–996. [Google Scholar] [CrossRef]
- Metersky, M.L.; Kalil, A.C. Management of Ventilator-Associated Pneumonia: Guidelines. Clin. Chest Med. 2018, 39, 797–808. [Google Scholar] [CrossRef] [PubMed]
- Howroyd, F.; Chacko, C.; MacDuff, A.; Gautam, N.; Pouchet, B.; Tunnicliffe, B.; Weblin, J.; Gao-Smith, F.; Ahmed, Z.; Duggal, N.A.; et al. Ventilator-Associated Pneumonia: Pathobiological Heterogeneity and Diagnostic Challenges. Nat. Commun. 2024, 15, 6447. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.S.; Baudouin, S.V.; George, R.C.; Hill, A.T.; Jamieson, C.; Le Jeune, I.; Macfarlane, J.T.; Read, R.C.; Roberts, H.J.; Levy, M.L.; et al. BTS Guidelines for the Management of Community Acquired Pneumonia in Adults: Update 2009. Thorax 2009, 64, iii1–iii55. [Google Scholar] [CrossRef] [PubMed]
- London: National Institute for Health and Care Excellence (NICE). Pneumonia in Adults: Diagnosis and Management. Available online: https://www.nice.org.uk/guidance/cg191 (accessed on 19 October 2024).
- Martin-Loeches, I.; Torres, A.; Nagavci, B.; Aliberti, S.; Antonelli, M.; Bassetti, M.; Bos, L.D.; Chalmers, J.D.; Derde, L.; de Waele, J.; et al. ERS/ESICM/ESCMID/ALAT Guidelines for the Management of Severe Community-Acquired Pneumonia. Intensive Care Med. 2023, 49, 615–632. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT Guidelines for the Management of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia: Guidelines for the Management of Hospital-Acquired Pneumonia (HAP)/Ventilator-Associated Pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana Del Tórax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef]
- Cao, B.; Huang, Y.; She, D.-Y.; Cheng, Q.-J.; Fan, H.; Tian, X.-L.; Xu, J.-F.; Zhang, J.; Chen, Y.; Shen, N.; et al. Diagnosis and Treatment of Community-Acquired Pneumonia in Adults: 2016 Clinical Practice Guidelines by the Chinese Thoracic Society, Chinese Medical Association. Clin. Respir. J. 2018, 12, 1320–1360. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, Y.; Zhang, T.-T.; Cao, B.; Wang, H.; Zhuo, C.; Ye, F.; Su, X.; Fan, H.; Xu, J.-F.; et al. Chinese Guidelines for the Diagnosis and Treatment of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia in Adults (2018 Edition). J. Thorac. Dis. 2019, 11, 2581–2616. [Google Scholar] [CrossRef]
- Boyles, T.H.; Brink, A.; Calligaro, G.L.; Cohen, C.; Dheda, K.; Maartens, G.; Richards, G.A.; van Zyl Smit, R.; Smith, C.; Wasserman, S.; et al. South African Guideline for the Management of Community-Acquired Pneumonia in Adults. J. Thorac. Dis. 2017, 9, 1469–1502. [Google Scholar] [CrossRef]
- Adrian Brink; Charles Feldman; Adriano Duse; Dean Gopalan; David Grolman; Mervyn Mer; Sarala Naicker; Graham Pager; Olga Perovic; Guy Richards Guideline for the Management of Nosocomial Infections in South Africa. Available online: https://pulmonology.co.za/wp-content/uploads/2016/11/Guideline_7.pdf (accessed on 19 October 2024).
- South Australian expert Advisory Group on Antimicrobial Resistance (SAAGAR) Community Acquired Pneumonia (Adults) Clinical Guideline. Available online: https://www.sahealth.sa.gov.au/wps/wcm/connect/9da8d680432af0a6a631f68cd21c605e/CAP+Clinical+Guideline+%28Adults%29_v2_FINAL_Jan2021+%282%29.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-9da8d680432af0a6a631f68cd21c605e-p4bC5NL (accessed on 19 October 2024).
- South Australian expert Advisory Group on Antimicrobial Resistance (SAAGAR) Hospital-Acquired Pneumonia & Ventilator- Associated Pneumonia (Adults) Clinical Guideline. Available online: https://www.sahealth.sa.gov.au/wps/wcm/connect/477770b0-8029-42af-9464-924fd2484219/HospAcquiredPneu%26VentilatorAssocPneu_Adults_Clinical+Guideline_v2.0.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-477770b0-8029-42af-9464-924fd2484219-oqVrpW7 (accessed on 19 October 2024).
- Mandell, L.A.; Wunderink, R.G.; Anzueto, A.; Bartlett, J.G.; Campbell, G.D.; Dean, N.C.; Dowell, S.F.; File, T.M.; Musher, D.M.; Niederman, M.S.; et al. Infectious Diseases Society of America/American Thoracic Society Consensus Guidelines on the Man-agement of Community-Acquired Pneumonia in Adults. Clin. Infect. Dis. 2007, 44 (Suppl. S2), S27–S72. [Google Scholar] [CrossRef]
- Dimopoulos, G.; Matthaiou, D.K.; Karageorgopoulos, D.E.; Grammatikos, A.P.; Athanassa, Z.; Falagas, M.E. Short- versus Long-Course Antibacterial Therapy for Community-Acquired Pneumonia: A Meta-Analysis. Drugs 2008, 68, 1841–1854. [Google Scholar] [CrossRef]
- Li, J.Z.; Winston, L.G.; Moore, D.H.; Bent, S. Efficacy of Short-Course Antibiotic Regimens for Community-Acquired Pneumonia: A Meta-Analysis. Am. J. Med. 2007, 120, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Tansarli, G.S.; Mylonakis, E. Systematic Review and Meta-Analysis of the Efficacy of Short-Course Antibiotic Treatments for Community-Acquired Pneumonia in Adults. Antimicrob. Agents Chemother. 2018, 62, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Nobre, V.; Harbarth, S.; Graf, J.-D.; Rohner, P.; Pugin, J. Use of Procalcitonin to Shorten Antibiotic Treatment Duration in Septic Patients: A Randomized Trial. Am. J. Respir. Crit. Care Med. 2008, 177, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Bouadma, L.; Luyt, C.-E.; Tubach, F.; Cracco, C.; Alvarez, A.; Schwebel, C.; Schortgen, F.; Lasocki, S.; Veber, B.; Dehoux, M.; et al. Use of Procalcitonin to Reduce Patients’ Exposure to Antibiotics in Intensive Care Units (PRORATA Trial): A Multicentre Randomised Controlled Trial. Lancet 2010, 375, 463–474. [Google Scholar] [CrossRef]
- De Jong, E.; van Oers, J.A.; Beishuizen, A.; Vos, P.; Vermeijden, W.J.; Haas, L.E.; Loef, B.G.; Dormans, T.; van Melsen, G.C.; Kluiters, Y.C.; et al. Efficacy and Safety of Procalcitonin Guidance in Reducing the Duration of Antibiotic Treatment in Critically Ill Patients: A Randomised, Controlled, Open-Label Trial. Lancet Infect. Dis. 2016, 16, 819–827. [Google Scholar] [CrossRef]
- Pugh, R.; Grant, C.; Cooke, R.P.D.; Dempsey, G. Short-Course versus Prolonged-Course Antibiotic Therapy for Hospital-Acquired Pneumonia in Critically Ill Adults. Cochrane Database Syst. Rev. 2015, 2015, CD007577. [Google Scholar] [CrossRef]
- Chastre, J.; Wolff, M.; Fagon, J.-Y.; Chevret, S.; Thomas, F.; Wermert, D.; Clementi, E.; Gonzalez, J.; Jusserand, D.; Asfar, P.; et al. Comparison of 8 vs 15 Days of Antibiotic Therapy for Ventilator-Associated Pneumonia in Adults: A Randomized Trial. JAMA 2003, 290, 2588–2598. [Google Scholar] [CrossRef]
- Dimopoulos, G.; Poulakou, G.; Pneumatikos, I.A.; Armaganidis, A.; Kollef, M.H.; Matthaiou, D.K. Short- vs Long-Duration Antibiotic Regimens for Ventilator-Associated Pneumonia: A Systematic Review and Meta-Analysis. Chest 2013, 144, 1759–1767. [Google Scholar] [CrossRef]
- Dinh, A.; Ropers, J.; Duran, C.; Davido, B.; Deconinck, L.; Matt, M.; Senard, O.; Lagrange, A.; Makhloufi, S.; Mellon, G.; et al. Discontinuing β-Lactam Treatment after 3 Days for Patients with Community-Acquired Pneumonia in Non-Critical Care Wards (PTC): A Double-Blind, Randomised, Placebo-Controlled, Non-Inferiority Trial. Lancet 2021, 397, 1195–1203. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, L.-A.; Wang, P.; Tian, G.; Ye, F.; Zhu, H.; He, B.; Zhang, B.; Shao, C.; Jie, Z.; et al. A Randomized, Open, Multicenter Clinical Study on the Short Course of Intravenous Infusion of 750 Mg of Levofloxacin and the Sequential Standard Course of Intravenous Infusion/Oral Administration of 500 Mg of Levofloxacin for Treatment of Community-Acquired Pneumonia. J. Thorac. Dis. 2016, 8, 2473–2484. [Google Scholar] [CrossRef]
- Uranga, A.; España, P.P.; Bilbao, A.; Quintana, J.M.; Arriaga, I.; Intxausti, M.; Lobo, J.L.; Tomás, L.; Camino, J.; Nuñez, J.; et al. Duration of Antibiotic Treatment in Community-Acquired Pneumonia: A Multicenter Randomized Clinical Trial. JAMA Intern. Med. 2016, 176, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Strålin, K.; Rubenson, A.; Lindroth, H.; Hagberg, S.; Bodin, L.; Stendlund, G.; Sandholm, E.; Holmberg, H. Betalactam Treatment until No Fever for 48 hours (at Least 5 Days) versus 10 Days in Community-Acquired Pneumonia: Randomised, Non-Inferiority, Open Study. Pneumonia 2014, 3, 246–281. [Google Scholar] [CrossRef]
- File, T.M.; Mandell, L.A.; Tillotson, G.; Kostov, K.; Georgiev, O. Gemifloxacin Once Daily for 5 Days versus 7 Days for the Treatment of Community-Acquired Pneumonia: A Randomized, Multicentre, Double-Blind Study. J. Antimicrob. Chemother. 2007, 60, 112–120. [Google Scholar] [CrossRef] [PubMed]
- El Moussaoui, R.; de Borgie, C.A.J.M.; van den Broek, P.; Hustinx, W.N.; Bresser, P.; van den Berk, G.E.L.; Poley, J.-W.; van den Berg, B.; Krouwels, F.H.; Bonten, M.J.M.; et al. Effectiveness of Discontinuing Antibiotic Treatment after Three Days versus Eight Days in Mild to Moderate-Severe Community Acquired Pneumonia: Randomised, Double Blind Study. BMJ 2006, 332, 1355. [Google Scholar] [CrossRef]
- Léophonte, P.; File, T.; Feldman, C. Gemifloxacin Once Daily for 7 Days Compared to Amoxicillin/Clavulanic Acid Thrice Daily for 10 Days for the Treatment of Community-Acquired Pneumonia of Suspected Pneumococcal Origin. Respir. Med. 2004, 98, 708–720. [Google Scholar] [CrossRef]
- Tellier, G.; Niederman, M.S.; Nusrat, R.; Patel, M.; Lavin, B. Clinical and Bacteriological Efficacy and Safety of 5 and 7 Day Regimens of Telithromycin Once Daily Compared with a 10 Day Regimen of Clarithromycin Twice Daily in Patients with Mild to Moderate Community-Acquired Pneumonia. J. Antimicrob. Chemother. 2004, 54, 515–523. [Google Scholar] [CrossRef]
- Dunbar, L.M.; Wunderink, R.G.; Habib, M.P.; Smith, L.G.; Tennenberg, A.M.; Khashab, M.M.; Wiesinger, B.A.; Xiang, J.X.; Zadeikis, N.; Kahn, J.B. High-Dose, Short-Course Levofloxacin for Community-Acquired Pneumonia: A New Treatment Paradigm. Clin. Infect. Dis. 2003, 37, 752–760. [Google Scholar] [CrossRef]
- Léophonte, P.; Choutet, P.; Gaillat, J.; Petitpretz, P.; Portier, H.; Montestruc, F.; Pecking, M.; De Bels, F. Efficacité Comparée de La Ceftriaxone Dans Un Traitement de Dix Jours versus Un Traitement Raccourci de Cinq Jours Des Pneumonies Aigues Communautaires de l’adulte Hospitalisé Avec Facteur de Risque. Med. Mal. Infect. 2002, 32, 369–381. [Google Scholar] [CrossRef]
- Siegel, R.E.; Alicea, M.; Lee, A.; Blaiklock, R. Comparison of 7 versus 10 Days of Antibiotic Therapy for Hospitalized Patients with Uncomplicated Community-Acquired Pneumonia: A Prospective, Randomized, Double-Blind Study. Am. J. Ther. 1999, 6, 217–222. [Google Scholar] [CrossRef]
- Fekih Hassen, M.; Ayed, S.; Ben Sik Ali, H.; Gharbi, R.; Marghli, S.; Elatrous, S. [Duration of Antibiotic Therapy for Ventilator-Associated Pneumonia: Comparison of 7 and 10 Days. A Pilot Study]. Ann. Fr. Anesth. Reanim. 2009, 28, 16–23. [Google Scholar] [CrossRef]
- Capellier, G.; Mockly, H.; Charpentier, C.; Annane, D.; Blasco, G.; Desmettre, T.; Roch, A.; Faisy, C.; Cousson, J.; Limat, S.; et al. Early-Onset Ventilator-Associated Pneumonia in Adults Randomized Clinical Trial: Comparison of 8 versus 15 Days of Antibiotic Treatment. PLoS ONE 2012, 7, e41290. [Google Scholar] [CrossRef] [PubMed]
- Bouglé, A.; Tuffet, S.; Federici, L.; Leone, M.; Monsel, A.; Dessalle, T.; Amour, J.; Dahyot-Fizelier, C.; Barbier, F.; Luyt, C.-E.; et al. Comparison of 8 versus 15 Days of Antibiotic Therapy for Pseudomonas aeruginosa Ventilator-Associated Pneumonia in Adults: A Randomized, Controlled, Open-Label Trial. Intensive Care Med. 2022, 48, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Booraphun, S.; Li, A.Y.; Domthong, P.; Kayastha, G.; Lau, Y.H.; Chetchotisakd, P.; Limmathurotsakul, D.; Tambyah, P.A.; Cooper, B.S.; et al. Individualised, Short-Course Antibiotic Treatment versus Usual Long-Course Treatment for Ventilator-Associated Pneumonia (REGARD-VAP): A Multicentre, Individually Randomised, Open-Label, Non-Inferiority Trial. Lancet Respir. Med. 2024, 12, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Rogers, P.; Atwood, C.W.; Wagener, M.M.; Yu, V.L. Short-Course Empiric Antibiotic Therapy for Patients with Pulmonary Infiltrates in the Intensive Care Unit. A Proposed Solution for Indiscriminate Antibiotic Prescription. Am. J. Respir. Crit. Care Med. 2000, 162, 505–511. [Google Scholar] [CrossRef]
- Kollef, M.H.; Chastre, J.; Clavel, M.; Restrepo, M.I.; Michiels, B.; Kaniga, K.; Cirillo, I.; Kimko, H.; Redman, R. A Randomized Trial of 7-Day Doripenem versus 10-Day Imipenem-Cilastatin for Ventilator-Associated Pneumonia. Crit. Care 2012, 16, R218. [Google Scholar] [CrossRef]
- Furlan, L.; Erba, L.; Trombetta, L.; Sacco, R.; Colombo, G.; Casazza, G.; Solbiati, M.; Montano, N.; Marta, C.; Sbrojavacca, R.; et al. Short- vs Long-Course Antibiotic Therapy for Pneumonia: A Comparison of Systematic Reviews and Guidelines for the SIMI Choosing Wisely Campaign. Intern. Emerg. Med. 2019, 14, 377–394. [Google Scholar] [CrossRef]
- Furukawa, Y.; Luo, Y.; Funada, S.; Onishi, A.; Ostinelli, E.; Hamza, T.; Furukawa, T.A.; Kataoka, Y. Optimal Duration of Antibiotic Treatment for Community-Acquired Pneumonia in Adults: A Systematic Review and Duration-Effect Meta-Analysis. BMJ Open 2023, 13, e061023. [Google Scholar] [CrossRef]
- Colmerauer, J.L.; Linder, K.E.; Dempsey, C.J.; Kuti, J.L.; Nicolau, D.P.; Bilinskaya, A. Impact of Order-Set Modifications and Provider Education Following Guideline Updates on Broad-Spectrum Antibiotic Use in Patients Admitted With Community Acquired Pneumonia. Hosp. Pharm. 2022, 57, 496–503. [Google Scholar] [CrossRef]
- Schaub, C.; Barnsteiner, S.; Schönenberg, L.; Bloch, N.; Dräger, S.; Albrich, W.C.; Conen, A.; Osthoff, M. Antibiotic Treatment Durations for Common Infectious Diseases in Switzerland: Comparison between Real-Life and Local and International Guideline Recommendations. J. Glob. Antimicrob. Resist. 2023, 32, 11–17. [Google Scholar] [CrossRef]
- Montassier, E.; Javaudin, F.; Moustafa, F.; Nandjou, D.; Maignan, M.; Hardouin, J.-B.; Annoot, C.; Ogielska, M.; Orer, P.-L.; Schotté, T.; et al. Guideline-Based Clinical Assessment Versus Procalcitonin-Guided Antibiotic Use in Pneumonia: A Pragmatic Randomized Trial. Ann. Emerg. Med. 2019, 74, 580–591. [Google Scholar] [CrossRef]
- Wussler, D.; Kozhuharov, N.; Tavares Oliveira, M.; Bossa, A.; Sabti, Z.; Nowak, A.; Murray, K.; du Fay de Lavallaz, J.; Badertscher, P.; Twerenbold, R.; et al. Clinical Utility of Procalcitonin in the Diagnosis of Pneumonia. Clin. Chem. 2019, 65, 1532–1542. [Google Scholar] [CrossRef] [PubMed]
- Christ-Crain, M.; Stolz, D.; Bingisser, R.; Müller, C.; Miedinger, D.; Huber, P.R.; Zimmerli, W.; Harbarth, S.; Tamm, M.; Müller, B. Procalcitonin Guidance of Antibiotic Therapy in Community-Acquired Pneumonia: A Randomized Trial. Am. J. Respir. Crit. Care Med. 2006, 174, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Long, W.; Deng, X.; Zhang, Y.; Lu, G.; Xie, J.; Tang, J. Procalcitonin Guidance for Reduction of Antibiotic Use in Low-Risk Outpatients with Community-Acquired Pneumonia. Respirology 2011, 16, 819–824. [Google Scholar] [CrossRef]
- Duijkers, R.; Prins, H.J.; Kross, M.; Snijders, D.; van den Berg, J.W.K.; Werkman, G.M.; van der Veen, N.; Schoorl, M.; Bonten, M.J.M.; van Werkhoven, C.H.; et al. Biomarker Guided Antibiotic Stewardship in Community Acquired Pneumonia: A Randomized Controlled Trial. PLoS ONE 2024, 19, e0307193. [Google Scholar] [CrossRef]
- Akagi, T.; Nagata, N.; Wakamatsu, K.; Harada, T.; Miyazaki, H.; Takeda, S.; Ushijima, S.; Aoyama, T.; Yoshida, Y.; Yatsugi, H.; et al. Procalcitonin-Guided Antibiotic Discontinuation Might Shorten the Duration of Antibiotic Treatment Without Increasing Pneumonia Recurrence. Am. J. Med. Sci. 2019, 358, 33–44. [Google Scholar] [CrossRef]
- Schuetz, P.; Christ-Crain, M.; Thomann, R.; Falconnier, C.; Wolbers, M.; Widmer, I.; Neidert, S.; Fricker, T.; Blum, C.; Schild, U.; et al. Effect of Procalcitonin-Based Guidelines vs Standard Guidelines on Antibiotic Use in Lower Respiratory Tract Infections: The ProHOSP Randomized Controlled Trial. JAMA 2009, 302, 1059–1066. [Google Scholar] [CrossRef]
- Lhopitallier, L.; Kronenberg, A.; Meuwly, J.-Y.; Locatelli, I.; Mueller, Y.; Senn, N.; D’Acremont, V.; Boillat-Blanco, N. Procalcitonin and Lung Ultrasonography Point-of-Care Testing to Determine Antibiotic Prescription in Patients with Lower Respiratory Tract Infection in Primary Care: Pragmatic Cluster Randomised Trial. BMJ 2021, 374, n2132. [Google Scholar] [CrossRef]
- Walsh, T.L.; DiSilvio, B.E.; Hammer, C.; Beg, M.; Vishwanathan, S.; Speredelozzi, D.; Moffa, M.A.; Hu, K.; Abdulmassih, R.; Makadia, J.T.; et al. Impact of Procalcitonin Guidance with an Educational Program on Management of Adults Hospitalized with Pneumonia. Am. J. Med. 2018, 131, 201.e1–201.e8. [Google Scholar] [CrossRef]
- Ranzani, O.T.; De Pascale, G.; Park, M. Diagnosis of Nonventilated Hospital-Acquired Pneumonia: How Much Do We Know? Curr. Opin. Crit. Care 2018, 24, 339–346. [Google Scholar] [CrossRef]
- Nicholls, T.M.; Morris, A.J. Nosocomial Infection in Auckland Healthcare Hospitals. N. Z. Med. J. 1997, 110, 314–316. [Google Scholar]
- Giuliano, K.K.; Baker, D.; Quinn, B. The Epidemiology of Nonventilator Hospital-Acquired Pneumonia in the United States. Am. J. Infect. Control 2018, 46, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Coque, T.M.; Cantón, R.; Pérez-Cobas, A.E.; Fernández-de-Bobadilla, M.D.; Baquero, F. Antimicrobial Resistance in the Global Health Network: Known Unknowns and Challenges for Efficient Responses in the 21st Century. Microorganisms 2023, 11, 1050. [Google Scholar] [CrossRef] [PubMed]
- Ewan, V.C.; Witham, M.D.; Kiernan, M.; Simpson, A.J. Hospital-Acquired Pneumonia Surveillance-an Unmet Need. Lancet Respir. Med. 2017, 5, 771–772. [Google Scholar] [CrossRef] [PubMed]
- Isac, C.; Samson, H.R.; John, A. Prevention of VAP: Endless Evolving Evidences-Systematic Literature Review. Nurs. Forum 2021, 56, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Lukasewicz Ferreira, S.A.; Hubner Dalmora, C.; Anziliero, F.; de Souza Kuchenbecker, R.; Klarmann Ziegelmann, P. Factors Predicting Non-Ventilated Hospital-Acquired Pneumonia: Systematic Review and Meta-Analysis. J. Hosp. Infect. 2022, 119, 64–76. [Google Scholar] [CrossRef]
- Jones, B.E.; Sarvet, A.L.; Ying, J.; Jin, R.; Nevers, M.R.; Stern, S.E.; Ocho, A.; McKenna, C.; McLean, L.E.; Christensen, M.A.; et al. Incidence and Outcomes of Non-Ventilator-Associated Hospital-Acquired Pneumonia in 284 US Hospitals Using Electronic Surveillance Criteria. JAMA Netw. Open 2023, 6, e2314185. [Google Scholar] [CrossRef]
- Tesoro, M.; Peyser, D.J.; Villarente, F. A Retrospective Study of Non-Ventilator-Associated Hospital Acquired Pneumonia Incidence and Missed Opportunities for Nursing Care. J. Nurs. Adm. 2018, 48, 285–291. [Google Scholar] [CrossRef]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; et al. Multistate Point-Prevalence Survey of Health Care-Associated Infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef]
- Delijani, K.; Price, M.C.; Little, B.P. Community and Hospital Acquired Pneumonia. Semin. Roentgenol. 2022, 57, 3–17. [Google Scholar] [CrossRef]
- Bassetti, M.; Mularoni, A.; Giacobbe, D.R.; Castaldo, N.; Vena, A. New Antibiotics for Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia. Semin. Respir. Crit. Care Med. 2022, 43, 280–294. [Google Scholar] [CrossRef]
- Miron, M.; Blaj, M.; Ristescu, A.I.; Iosep, G.; Avădanei, A.-N.; Iosep, D.-G.; Crișan-Dabija, R.; Ciocan, A.; Perțea, M.; Manciuc, C.D.; et al. Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia: A Literature Review. Microorganisms 2024, 12, 213. [Google Scholar] [CrossRef] [PubMed]
- Spellberg, B.; Rice, L.B. Duration of Antibiotic Therapy: Shorter Is Better. Ann. Intern. Med. 2019, 171, 210–211. [Google Scholar] [CrossRef] [PubMed]
- Wald-Dickler, N.; Spellberg, B. Short-Course Antibiotic Therapy-Replacing Constantine Units With “Shorter Is Better”. Clin. Infect. Dis. 2019, 69, 1476–1479. [Google Scholar] [CrossRef] [PubMed]
- Palin, V.; Welfare, W.; Ashcroft, D.M.; van Staa, T.P. Shorter and Longer Courses of Antibiotics for Common Infections and the Association With Reductions of Infection-Related Complications Including Hospital Admissions. Clin. Infect. Dis. 2021, 73, 1805–1812. [Google Scholar] [CrossRef]
- Pugh, R.J.; Cooke, R.P.D.; Dempsey, G. Short Course Antibiotic Therapy for Gram-Negative Hospital-Acquired Pneumonia in the Critically Ill. J. Hosp. Infect. 2010, 74, 337–343. [Google Scholar] [CrossRef]
- Tan, Y.X.; Wong, G.W.; Tan, Y.H. Superinfection Associated with Prolonged Antibiotic Use in Non-Ventilator Associated Hospital-Acquired Pneumonia. Int. J. Clin. Pharm. 2021, 43, 1555–1562. [Google Scholar] [CrossRef]
- Cowley, M.C.; Ritchie, D.J.; Hampton, N.; Kollef, M.H.; Micek, S.T. Outcomes Associated With De-Escalating Therapy for Methicillin-Resistant Staphylococcus Aureus in Culture-Negative Nosocomial Pneumonia. Chest 2019, 155, 53–59. [Google Scholar] [CrossRef]
- Dimitropoulos, D.; Karmpadakis, M.; Paraskevas, T.; Michailides, C.; Lagadinou, M.; Platanaki, C.; Pierrakos, C.; Velissaris, D. Inflammatory Biomarker-Based Clinical Practice in Patients with Pneumonia: A Systematic Review of Randomized Con-trolled Trials. Rom. J. Intern. Med. 2024, 62, 241–259. [Google Scholar] [CrossRef]
- Gavazzi, G.; Drevet, S.; Debray, M.; Bosson, J.L.; Tidadini, F.; Paccalin, M.; de Wazieres, B.; Celarier, T.; Bonnefoy, M.; Vitrat, V. Procalcitonin to Reduce Exposure to Antibiotics and Individualise Treatment in Hospitalised Old Patients with Pneumonia: A Randomised Study. BMC Geriatr. 2022, 22, 965. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, Y.; Rui, X.; Zhang, H.; Wang, Y.; Du, W. Procalcitonin Kinetics and Nosocomial Pneumonia in Older Patients. Respir. Care 2014, 59, 1258–1266. [Google Scholar] [CrossRef]
- Turkistani, R.; Aghashami, A.S.; Badhduoh, S.S.; Fadhel, R.T.; Albaity, A.O.; Malli, I.A.; Osman, S.; Alshehri, R.A.; Aldabbagh, M.A. The Effect of Ventilator-Associated Pneumonia on the Time-to-Extubation in Adult and Pediatric Intensive Care Unit Patients Requiring Mechanical Ventilation: A Retrospective Cohort Study. Cureus 2024, 16, e52070. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.M.; Tran, A.; Cheng, W.; Klompas, M.; Kyeremanteng, K.; Mehta, S.; English, S.W.; Muscedere, J.; Cook, D.J.; Torres, A.; et al. Diagnosis of Ventilator-Associated Pneumonia in Critically Ill Adult Patients-a Systematic Review and Meta-Analysis. Intensive Care Med. 2020, 46, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. Summary of the International Clinical Guidelines for the Management of Hospital-Acquired and Ventilator-Acquired Pneumonia. ERJ Open Res. 2018, 4, 00028–02018. [Google Scholar] [CrossRef]
- Ego, A.; Preiser, J.-C.; Vincent, J.-L. Impact of Diagnostic Criteria on the Incidence of Ventilator-Associated Pneumonia. Chest 2015, 147, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Koulenti, D.; Zhang, Y.; Fragkou, P.C. Nosocomial Pneumonia Diagnosis Revisited. Curr. Opin. Crit. Care 2020, 26, 442–449. [Google Scholar] [CrossRef]
- Daghmouri, M.A.; Dudoignon, E.; Chaouch, M.A.; Baekgaard, J.; Bougle, A.; Leone, M.; Deniau, B.; Depret, F. Comparison of a Short versus Long-Course Antibiotic Therapy for Ventilator-Associated Pneumonia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. EClinicalMedicine 2023, 58, 101880. [Google Scholar] [CrossRef]
- Meier, M.A.; Branche, A.; Neeser, O.L.; Wirz, Y.; Haubitz, S.; Bouadma, L.; Wolff, M.; Luyt, C.E.; Chastre, J.; Tubach, F.; et al. Procalcitonin-Guided Antibiotic Treatment in Patients With Positive Blood Cultures: A Patient-Level Meta-Analysis of Randomized Trials. Clin. Infect. Dis. 2019, 69, 388–396. [Google Scholar] [CrossRef]
- Hellyer, T.P.; McAuley, D.F.; Walsh, T.S.; Anderson, N.; Conway Morris, A.; Singh, S.; Dark, P.; Roy, A.I.; Perkins, G.D.; McMullan, R.; et al. Biomarker-Guided Antibiotic Stewardship in Suspected Ventilator-Associated Pneumonia (VAPrapid2): A Randomised Controlled Trial and Process Evaluation. Lancet Respir. Med. 2020, 8, 182–191. [Google Scholar] [CrossRef]
- Albin, O.R.; Kaye, K.S.; McCreary, E.K.; Pogue, J.M. Less Is More? Antibiotic Treatment Duration in Pseudomonas aeruginosa Ventilator-Associated Pneumonia. Clin. Infect. Dis. 2023, 76, 745–749. [Google Scholar] [CrossRef]
- Metersky, M.L.; Klompas, M.; Kalil, A.C. Less Is More: A 7-Day Course of Antibiotics Is the Evidence-Based Treatment for Pseudomonas aeruginosa Ventilator-Associated Pneumonia. Clin. Infect. Dis. 2023, 76, 750–752. [Google Scholar] [CrossRef]
- Stolz, D.; Smyrnios, N.; Eggimann, P.; Pargger, H.; Thakkar, N.; Siegemund, M.; Marsch, S.; Azzola, A.; Rakic, J.; Mueller, B.; et al. Procalcitonin for Reduced Antibiotic Exposure in Ventilator-Associated Pneumonia: A Randomised Study. Eur. Respir. J. 2009, 34, 1364–1375. [Google Scholar] [CrossRef] [PubMed]
- Wongsurakiat, P.; Tulatamakit, S. Clinical Pulmonary Infection Score and a Spot Serum Procalcitonin Level to Guide Discontinuation of Antibiotics in Ventilator-Associated Pneumonia: A Study in a Single Institution with High Prevalence of Nonfermentative Gram-Negative Bacilli Infection. Ther. Adv. Respir. Dis. 2018, 12, 175346661876013. [Google Scholar] [CrossRef] [PubMed]
- Martin-Loeches, I.; Torres, A.; Rinaudo, M.; Terraneo, S.; de Rosa, F.; Ramirez, P.; Diaz, E.; Fernández-Barat, L.; Li Bassi, G.L.; Ferrer, M. Resistance Patterns and Outcomes in Intensive Care Unit (ICU)-Acquired Pneumonia. Validation of European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC) Classification of Multidrug Resistant Organisms. J. Infect. 2015, 70, 213–222. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic Society. Infectious Diseases Society of America Guidelines for the Management of Adults with Hospital-Acquired, Ventilator-Associated, and Healthcare-Associated Pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 388–416. [Google Scholar] [CrossRef]
- Combes, A.; Luyt, C.-E.; Fagon, J.-Y.; Wolff, M.; Trouillet, J.-L.; Chastre, J. Early Predictors for Infection Recurrence and Death in Patients with Ventilator-Associated Pneumonia. Crit. Care Med. 2007, 35, 146–154. [Google Scholar] [CrossRef]
- Cheema, H.A.; Ellahi, A.; Hussain, H.U.; Kashif, H.; Adil, M.; Kumar, D.; Shahid, A.; Ehsan, M.; Singh, H.; Duric, N.; et al. Short-Course versus Prolonged-Course Antibiotic Regimens for Ventilator-Associated Pneumonia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Crit. Care 2023, 78, 154346. [Google Scholar] [CrossRef]
- Schuetz, P.; Wirz, Y.; Sager, R.; Christ-Crain, M.; Stolz, D.; Tamm, M.; Bouadma, L.; Luyt, C.E.; Wolff, M.; Chastre, J.; et al. Effect of Procalcitonin-Guided Antibiotic Treatment on Mortality in Acute Respiratory Infections: A Patient Level Meta-Analysis. Lancet Infect. Dis. 2018, 18, 95–107. [Google Scholar] [CrossRef]
- Mazlan, Z.M.; Ismail, A.H.M.; Ali, S.; Salmuna, Z.N.; Wan Muhd Shukeri, W.F.; Omar, M. Efficacy and Safety of the Point-of-Care Procalcitonin Test for Determining the Antibiotic Treatment Duration in Patients with Ventilator-Associated Pneumonia in the Intensive Care Unit: A Randomised Controlled Trial. Anaesthesiol. Intensive Ther. 2021, 53, 207–214. [Google Scholar] [CrossRef]
- Choi, H.; Min, K.H.; Lee, Y.S.; Chang, Y.; Lee, B.Y.; Oh, J.Y.; Baek, A.-R.; Lee, J.; Jeon, K. Korean Guidelines for the Management and Antibiotic Therapy in Adult Patients with Hospital-Acquired Pneumonia. Tuberc. Respir. Dis. 2024. ahead of print. [Google Scholar] [CrossRef]
- Leone, M.; Bouadma, L.; Bouhemad, B.; Brissaud, O.; Dauger, S.; Gibot, S.; Hraiech, S.; Jung, B.; Kipnis, E.; Launey, Y.; et al. Hospital-Acquired Pneumonia in ICU. Anaesth. Crit. Care Pain. Med. 2018, 37, 83–98. [Google Scholar] [CrossRef]
Types of Pneumonia | Definitions |
---|---|
Community-acquired pneumonia (CAP) | Pneumonia acquired outside of the hospital or within 48 h after admission [21]. |
Hospital-acquired pneumonia (HAP) | Pneumonia in patients who have been admitted to the hospital for at least 48 h and did not have relevant symptoms at the time of admission. HAP is further classified as non-ventilator hospital-acquired pneumonia (nvHAP) and ventilator hospital-acquired pneumonia (VAP) [22,23]. |
Ventilator-associated pneumonia (VAP) | A type of pneumonia developing in patients who are on mechanical ventilation for at least 48 h [22,24,25]. |
Guidelines | Year | Duration of Antibiotic Therapy | |||
---|---|---|---|---|---|
CAP | HAP/VAP | CAP | HAP | VAP | |
British Thoracic Society (BTS) [26] | 2009 | N/A | 7 days for low/moderate severity without complications (formal combination of expert views) | N/A | N/A |
7–10 days for high severity (formal combination of expert views) | |||||
14–21 days for S. aureus or Gram-negative bacilli (formal combination of expert views) | |||||
National Institute for Health and Care Excellence (NICE) [27] | 2019 | 2019 | 5 days for all types of severity if clinical stability is achieved | 5 days for mild symptoms and lower risk of resistance, then review | N/A |
American Thoracic Society (ATS)/Infectious Diseases Society of America (IDSA) [10,22] | 2019 | 2016 | Minimum of 5 days for low, moderate, and high severity without complications (strong recommendation based on a small number of RCTs) 7 days for MRSA or P. aeruginosa (strong recommendation) Longer courses for meningitis, endocarditis or for less-common pathogens (strong recommendation) | 7-day antibiotic treatment (strong recommendation based on systematic reviews of RCTs) | 7-day antibiotic treatment (strong recommendation based on systematic reviews of RCTs) |
European Respiratory Society (ERS)/European Society of Intensive Care Medicine (ESICM)/European Society of Clinical Microbiology and Infectious Diseases (ESCMID)/Asociación Latinoamericana del Tórax (ALAT) [28,29] | 2023 | 2017 | Minimum of 5–7 days for severe CAP (sCAP) when clinical stability is achieved with the use of PCT (conditional recommendation based on RCTs) Minimum of 7 days for S. aureus CAP (strong recommendation) | 7–8 days (good practice statement based on systematic reviews of RCTs) | 7–8 days (weak recommendation—moderate quality of evidence) 7–8 days for non-fermenting Gram-negative bacteria, Acinetobacter spp., and MRSA with good clinical response |
Chinese Thoracic Society (CTS)/Chinese Medical Association (CMA) [30,31] | 2016 | 2018 | 5–7 days for mild/moderate severity | 7 days or longer for immunocompetent patients with good clinical response | 7 days or longer for immunocompetent patients with good clinical response |
Prolonged for severe CAP or with extra-pulmonary complications | |||||
10–14 days for patients with atypical pathogens | Prolonged accordingly for XDR or PDR pathogens | Prolonged accordingly for XDR or PDR pathogens | |||
14–21 days in the case of S. aureus, P. aeruginosa, Klebsiella and anaerobic bacteria | |||||
South African Thoracic Society (SATS) [32,33] | 2017 | 2006 | 5–7 days for low/moderate severity (strong recommendation based on well-designed studies) | 5–7 days | 5–7 days |
14 days for Staphylococcus aureus bacteremia (strong recommendation based on well-designed studies) | |||||
7 days for Legionella (strong recommendation based on well-designed studies) | |||||
South Australian Department of Health (SA Health) [34,35] | 2021 | 5 days for low severity | 5 days minimum and review | 5 days minimum and review | |
5–7 days for moderate severity | |||||
7 days for high severity | |||||
Consult for S. Aureus or Pseudomonas aeruginosa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimopoulou, D.; Moschopoulos, C.D.; Dimopoulou, K.; Dimopoulou, A.; Berikopoulou, M.M.; Andrianakis, I.; Tsiodras, S.; Kotanidou, A.; Fragkou, P.C. Duration of Antimicrobial Treatment in Adult Patients with Pneumonia: A Narrative Review. Antibiotics 2024, 13, 1078. https://doi.org/10.3390/antibiotics13111078
Dimopoulou D, Moschopoulos CD, Dimopoulou K, Dimopoulou A, Berikopoulou MM, Andrianakis I, Tsiodras S, Kotanidou A, Fragkou PC. Duration of Antimicrobial Treatment in Adult Patients with Pneumonia: A Narrative Review. Antibiotics. 2024; 13(11):1078. https://doi.org/10.3390/antibiotics13111078
Chicago/Turabian StyleDimopoulou, Dimitra, Charalampos D. Moschopoulos, Konstantina Dimopoulou, Anastasia Dimopoulou, Maria M. Berikopoulou, Ilias Andrianakis, Sotirios Tsiodras, Anastasia Kotanidou, and Paraskevi C. Fragkou. 2024. "Duration of Antimicrobial Treatment in Adult Patients with Pneumonia: A Narrative Review" Antibiotics 13, no. 11: 1078. https://doi.org/10.3390/antibiotics13111078
APA StyleDimopoulou, D., Moschopoulos, C. D., Dimopoulou, K., Dimopoulou, A., Berikopoulou, M. M., Andrianakis, I., Tsiodras, S., Kotanidou, A., & Fragkou, P. C. (2024). Duration of Antimicrobial Treatment in Adult Patients with Pneumonia: A Narrative Review. Antibiotics, 13(11), 1078. https://doi.org/10.3390/antibiotics13111078