Novel Antibiotics for Gram-Negative Nosocomial Pneumonia
Abstract
:1. Introduction
- Altered protein concentrations and hypoalbuminemia in critical illness lead to differences in protein binding of antibiotics. The alveolar membrane is relatively impermeable due to tight junctions, and therefore the passive diffusion of an antibiotic into the ELF is largely only possible if the drug is not protein-bound [16,17].
Author (Year), Trial Type, Dose and Regimen | Population Included Age of Participants (In Years) | CrCl (mL/ min) | Antibiotic | AUC (ELF/ Total Plasma; AUCE/TP) Concentration Ratio | AUC (ELF/ Free Plasma; AUCE/FP) Concentration Ratio | Cmax (Plasma) | Cmax (ELF) | Tmax (Plasma) | Tmax (ELF) | t½ (Plasma), Hours |
---|---|---|---|---|---|---|---|---|---|---|
Nicolau (2015) [21]. Trial: Phase 1, open-label study, healthy subjects. Regimen: 3 days (9 doses) of IV ceftazidime–avibactam q8 h at - 2000/500 mg; - 3000/1000 mg. | n = 43 healthy adult subjects (age 18–50). Mean age ± SD: - For 2000/500 mg: 30 ± 8 - For 3000/1000 mg: 33 ± 9 | Not provided | Mean AUCE/TP | Mean AUCE/FP | Mean (mg/L; variation %) | Mean (mg/L) | Median (range), hours | Median (hours) | Mean ± SD (hours) | |
Ceftazidime | Overall: 31–32% 2000 mg: 31.3% 3000 mg: 32.4% | Not provided | 2000 mg: 90.1 (13.3) 3000 mg: 140 (9.6) | 2000 mg: 23.2 3000 mg: 32.7 | 2000 mg: 2.00 (1.97–2.02) 3000 mg: 2.00 (1.97–2.03) | 2 h | 2000 mg: 2.86 ± 0.294 3000 mg: 2.94 ± 0.318 | |||
Avibactam | Overall: 32–35% 500 mg: 34.9% 1000 mg: 32.0% | Not provided | 500 mg: 14.5 (9.7) 1000 mg: 28.5 (10.2) | 500 mg: 5.1 1000 mg: 7.9 | 500 mg: 2.00 (1.97–2.02) 1000 mg: 2.00 (1.97–2.03) | 2 h | 500 mg: 3.29 ± 0.82 1000 mg: 3.61± 0.47 | |||
Wenzler (2015) [22]. Trial: Phase I, randomized, open-label, multiple-dose study. Regimen: 3 doses of 2 g IV meropenem and 2 g IV vaborbactam (RPX7009) q8 h. | n = 25 healthy adult males and females (18–55 y). Mean age ± SD: 39.0 ± 10.6 | Mean (SD): 93.9 ± 22.8 | Mean AUC0–8, E/TP | Mean AUC0–8, E/FP | Mean ± SD (μ g/mL) | Mean ± SD(μ g/mL) | Mean (hours)Φ | Mean (hours)Φ | Mean ± SD (hours) | |
Meropenem | 63% | 65% | 58.2 ± 10.8 | 28.3 ± 6.69 * | 3.25 Φ | 3 h Φ | 1.03 ± 0.15 | |||
Vaborbactam (RPX7009) | 53%. | 79% | 59.0 ± 8.4 | 26.1 ± 7.12 * | 3.25Φ | 3 hΦ | 1.27 ± 0.21 | |||
Rizk (2018) [23]. Trial: Phase I open-label, randomized, parallel-group study. Regimen: 5 doses of IV relebactam with imipenem–cilastatin, 250 mg/500 mg, q6 h. | Study group: n = 17 healthy adult subjects (n = 16 completed the study). Age range: 24–42 years | All patients had CrCl ≥ 80 | Mean AUC00-∞;E/TP | Mean AUC00-∞;E/FP | Mean (μM) | Mean (μM) | Mean (hours) | Mean (hours) | Mean (hours) | |
Imipenem–cilastatin | 44.2% | 55.2% | 99.6 μM | 32.6 μM | 0.5 | 0.5 | Plasma—0.95 ELF—1.03 | |||
Relebactam (MK-7655) | 43.0% | 53.7% | 47.9 μM | 15.3 μM | 0.5 | 0.5 | Plasma—1.24 ELF—1.29 | |||
Katsube (2019) [24]. Trial: Phase I, single-center, open-label study. Regimen: A single dose of 2 g IV cefiderocol. | n = 20 healthy adult male subjects aged 20 to 40 years. Mean age ± SD: 26 ± 4 | Mean ± SD: 123 ± 16 | Mean AUC0–6, E/TP | Mean AUC0–6, E/FP | Mean (mg/L) | Mean (mg/L) | Median (hours) | Median (hours) | Mean (hours) | |
Cefiderocol | 10.1%. | 23.9% | 142 mg/L | 13.8 mg/L | 1.0 | 1.0 | Plasma—1.79 h ELF—1.76 h | |||
Caro (2020) [25]. Trial: Open-label, multicenter phase 1 trial in patients with VAP. Regimen: 4–6 doses of IV 3 g ceftolozane–tazobactam (2 g/1 g) q8 h. Doses adjusted for renal function. | n = 26 critically ill mechanically ventilated adult patients (>18 y) in intensive care, with proven/ suspected pneumonia. Mean age ± SD: 63.0 ± 16.3 | Mean ± SD: 121.5 ± 76.6 mL/min | AUC0–8, E/TP | AUC0–8; E/FP | Cmax (plasma) | Cmax (ELF) | Median (range), hours | Median (hours) | Mean (variation; %), hours | |
Ceftolozane | Not provided | 50% | Not provided | Not provided | After first dose: 1.00 (0.88–2.00) After last dose: 1.00 (0.92–2.17) | 6 | After first dose: 4.15 (56.1) After last dose: 4.86 (61.5) | |||
Tazobactam | Not provided | 62% | Not provided | Not provided | After first dose: 1.00 (0.88–1.12) After last dose: 1.00 (0.92–2.17) | 2 | After first dose: 2.15 (56.4) After last dose: 2.33 (49.7) | |||
Rodvold (2018) [19]. Trial: Phase 1, multiple-dose, open-label pharmacokinetic study in healthy adult male and female subjects. Regimen: 3 doses of IV 1 g durlobactam (ETX2514) and 1 g sulbactam, q6 h. | n = 30 healthy adult subjects. Mean age ± SD: 42 ± 11 | Mean ± SD: 110 ± 22 | AUC0–6, E/TP ratio (mean/median) | AUC0–6; E/FP (mean/median) | Mean ± SD (mg/L) after 3rd dose | Mean ELF Cmax (mg/L) | Mean (range), hours | Mean (range), hours | Mean ± SD (hours) | |
Sulbactam | Mean: 50% Median: 50% | Mean: 81% Median: 80% | 23.10 ± 7.61 | Not provided | 2.56 (2.0 to 3.05) hours | Not provided | Plasma: 1.12 ± 0.14 | |||
Durlobactam (ETX2514) | Mean: 37% Median: 36% | Mean: 41% Median: 40% | 33.41 ± 8.99 | Not provided | 2.62 (2.0 to 3.05) hours | Not provided | Plasma: 1.40 ± 0.18 |
Author (Year) | Trial | Antibiotic and Regimen * | Study Region and Study Date | Treatment Setting and Pathogens | Initial Randomized Sample Size | Subgroup for Which Data Extracted | Age of Participants in Subgroup | ICU Admissions (%) and APACHE II at Randomization in Subgroup | Efficacy Outcome |
---|---|---|---|---|---|---|---|---|---|
Kollef (2019) [26]. | ASPECT-NP Trial: Randomized, controlled, double-blind, phase 3, non-inferiority trial | IV 3 g CEFT-TAZ q8 h for 8–14 days versus IV 1 g MERO q8 h for 8–14 days. | 263 hospitals in 34 countries in Europe, Australia, New Zealand, North America, South America, Asia/Pacific, Africa. Study date: Jan 2015–April 2018. | Hospitalized adults (≥18 years), who were intubated and mechanically ventilated, and had VAP or ventilated HAP. Pathogen: Gram-negative (monomicrobial and polymicrobial). | n = 726 randomized, of which CEFT-TAZ: n = 362 (49.9%) MERO, n = 364 (50.1%) | ITT population 1, n = 726 CEFT-TAZ: n = 362 (49.9%) MERO, n = 364 (50.1%) | Mean age (years) ± SD: CEFT-TAZ: 60.5 ± 16.7 MERO: 59.5 ± 17.2 | Admitted to ICU: n = 668/726 (92%) APACHE II; Mean ± SD CEFT-TAZ: 17.5 ± 5.2 MERO: 17.4 ± 5.7 | CEFT-TAZ was non-inferior to MERO in terms of 28-day all-cause mortality and clinical cure at test-of-cure. |
Torres (2018) [27]. | REPROVE Trial: Multinational, phase 3, double-blind, non-inferiority trial | IV 2 g/500 mg CEF-AVI q8 h versus IV 1 g MERO q8 h for 7–14 days. | 136 centers in 23 countries (Europe, Asia, South America, Asia, Africa). Study date: April 2013–Dec 2015. | Hospitalized adults (18–90 years), with nosocomial pneumonia including VAP and non-VAP (all patients with nosocomial pneumonia who did not have VAP). Pathogen: Gram-negative (monomicrobial and polymicrobial). | n = 879 randomized (of which 62 were excluded, leaving n = 817): CEF-AVI: n = 409 (50%) MERO: n = 408 (50%) | Clinically modified-ITT population (cMITT) 2, n = 726: CEF-AVI, n = 356 (49%) MERO, n = 370 (51%) | Mean age ± SD: CEF-AVI: 62.1 ± 16.6 MERO: 62.1 ± 16.6 | Mechanically ventilated Ƭ: n = 313/726 (43%) APACHE II; Mean ± SD CEF-AVI: 14.5 ± 4.01 MERO: 14.9 ± 4.05 | CEF-AVI was non-inferior to meropenem in the treatment of nosocomial pneumonia. |
Wunderink (2018) [28]. | TANGO II Trial: Phase 3, multinational, open-label, randomized controlled trial | IV 2 g/2 g MERO-VAB q8 h for 7–14 days versus BAT Φ. | Multinational study across North America, Europe, Asia/Pacific, South America (and others). Study date: 2014 to 2017. | Hospitalized adults (>18) with confirmed or suspected CRE infections including complicated UTI, acute pyelonephritis, complicated intra-abdominal infection, HABP/VABP, and CRE bacteremia. Pathogen: Gram-negative CREs including K. pneumoniae, E. coli, E. cloacae sp., P. mirabilis, and S. marcescens. | n = 77 randomized, of which MERO-VAB, n = 52 (67.5%) BAT, n = 25 (32.5%) | Microbiologically confirmed CRE infection (mCRE-MITT) 3: n = 47 MERO-VAB, n = 32 (68.1%) BAT, n = 15 (31.9%) | Mean age ± SD: Overall: 62.5 ± 13.7 MERO-VAB: 63.5 ± 14.1 BAT: 60.2 ± 13.0 | Admitted to ICU: n = 8/47 (17%) APACHE II: no data provided | MERO-VAB monotherapy for CRE infection was associated with increased clinical cure, decreased mortality, and reduced nephrotoxicity compared with BAT. |
Motsch (2020) [29]. | RESTORE-IMI 1 Trial: Phase 3, randomized, double-blind study | IV 500/250 mg IMI/REL q6 h versus colistin (IV loading dose, followed by maintenance doses q12 h), plus IMI (500 mg q6 h), 5–21 days. | 16 sites from 11 countries in South America, Europe, USA, and Turkey. Study date: October 2015 and September 2017. | Hospitalized adult (>18) patients with imipenem-non-susceptible (but colistin- and IMI/REL-susceptible) Gram-negative bacterial infections, including HAP, VAP, cUTIs, or cIAIs. Pathogen: Gram-negative pathogens including P. aeruginosa, K. spp., C. freundii, and other Enterobacteriaceae. | n = 47 randomized, of which IMI/REL, n = 31 (66%) Colistin–imipenem, n = 16 (34%) | Microbiologic modified ITT (mMITT) 4, n = 31: IMI/REL, n = 21 (67.7%) Colistin–imipenem, n = 10 (32.3%) | Median age (range): Overall: 59 (19–80) IMI/REL: 59 (19–80) COL + IMI: 61 (49–80) | Admitted to ICU: no data provided APACHE II score, Median (range) HAP/VAP: 18 (0, 26) cIAI: 16 (14, 19) cUTI: 5.5 (0, 17) | Imipenem–relebactam is an efficacious and well-tolerated treatment option for carbapenem-non-susceptible infections. |
Titov (2021) [30]. | RESTORE-IMI 2 Trial: Phase 3 randomized, double-blind, non-inferiority trial | IV 500/500/250 mg IMI/REL at q6 h for 7–14 days versus IV 4 g/500 mg PIP/TAZ q6 h for 7–14 days. | 113 hospitals in 27 countries (Americas, Europe, Asia, Australia). Study date: January 2016 and April 2019. | Hospitalized adult (>18) patients with nonventilated HABP, ventilated HABP, or VABP. Pathogen: Gram-negative pathogens (K. pneumoniae, P. aeruginosa, Acinetobacter calcoaceticus–baumannii complex, E. coli). | n = 537 randomized, of which IMI/REL, n = 268 (49.9%) PIP/TAZ, n = 269 (50.1%) | Modified ITT population (MITT) 5, n = 531: IMI-REL, n = 264 (49.7%) PIP-TAZ, n = 267 (50.3%) | Mean age ± SD: IMI/REL: 60.5 ± 16.9 PIP/TAZ: 58.8 ± 18.4 | Admitted to ICU: n = 351/531 (66.1%) APACHE II; Mean ± SD Overall: 14.7 (6.4) IMI/REL: 14.6 ± 6.2 PIP/Taz: 14.8 >±6.7 | IMI/REL is an appropriate treatment option for Gram-negative HABP/VABP, including critically ill, high-risk patients. |
Wunderink (2021) [31]. | APEKS-NP Trial: Phase 3 randomized, controlled, double-blind, parallel-group non-inferiority trial | IV 2 g CEF versus IV 2 g MERO q8 h for 7–14 days. | 76 centers in 17 countries in Asia/Pacific, Europe, and North America. Study date: Oct 2017, and April 2019. | Hospitalized adult (≥18 y) patients with acute bacterial pneumonia in the form of HAP, VAP, or healthcare-associated Gram-negative pneumonia (HCAP). Pathogen: Gram-negative pathogens including K. pneumoniae, P. aeruginosa, Acinetobacter baumannii, E. coli, E. cloacae, and others. | n = 300 randomized, of which CEF, n = 148 (49%) MERO, n = 152 (51%) | Modified ITT population (mITT) 6, n = 292: CEF: n = 145 (49.7%) MERO: n = 147 (50.3%) | Mean age ± SD: CEF: 64.6 ± 14.6 MERO: 65.4 ± 15.1 | Admitted to ICU: n = 199/292 (68%) APACHE II; Mean ± SD CEF: 16.0 ± 6.1 MERO: 16.4 ± 6.9 | Cefiderocol was non-inferior to high-dose meropenem in terms of all-cause mortality on day 14 in patients with Gram-negative nosocomial pneumonia. |
Bassetti (2021) [32]. | CREDIBLE-CR Trial: Phase 3, randomized, open-label, multicenter, pathogen-focused, descriptive trial | IV 2 g CEF q8 h (+/−adjunctive treatment for pneumonia or sepsis) versus BAT ʊ for 7–14 days. | 95 hospitals in 16 countries in North America, South America, Europe, and Asia. Study date: Sept 2016, and April 2019. | Hospitalized adult patients (≥18) with nosocomial pneumonia (HAP, VAP, HCAP), bloodstream infections or sepsis, or complicated UTI, and evidence of a carbapenem-resistant Gram-negative pathogen. Pathogen: Gram-negative pathogens including Acinetobacter baumannii, K. pneumoniae, P. aeruginosa, S. Maltophilia, A. nosocomialis, E. cloacae, and E. coli. | n= 152 randomized, of which CEF, n = 101 (66.4%) BAT, n = 51 (33.6%) | ITT population and safety population 7, n = 150: n = 101 cefiderocol (67.3%) n = 49 BAT (32.7%) | Mean age ± SD: CEF: 63.1 ± 19.0 BAT: 63.0 ± 16.7 | Admitted to ICU: n = 78/150 (52%) APACHE II; Mean ± SD CEF: 15.3 ± 6.5 BAT: 15.4 ± 6.2 | Cefiderocol had similar clinical and microbiological efficacy to best available therapy in infections caused by carbapenem-resistant Gram-negative bacteria. |
Kaye (2023) [33]. | ATTACK Trial: Phase 3, randomized trial This study had 2 arms—SUL-DUR A, and SUL-DUR B (observational arm) | IV 1 g/1 g SUL-DUR q6 h versus IV colistin (loading dose followed by 2.5 mg/kg q12 h) for 7–14 days All patients received IMI (1 g/1 g q6 h) as background therapy. | 59 clinical sites in 16 countries in North America, Europe, Latin America, Asia/Pacific, and China. Study date: Sept 2019 to July 2021. | Part A: Hospitalized adult (≥18) patients with a confirmed diagnosis of HABP, VABP, ventilated pneumonia, or bloodstream infections known to be caused by ABC based on cultures. Part B: Same as above, but including complicated UTIs, acute pyelonephritis, and surgical or post-traumatic wound infections caused by ABC known to be resistant to colistin or polymyxin B. | n = 181 randomized (Part A): SUL-DUR (A), n = 92 COL (A), n = 89 n = 26 (Part B) | Carbapenem-resistant ABC microbiologically modified ITT (CR-ABC-mMITT) 8, n = 156: SUL-DUR (A): n = 64 Colistin: n = 64 Sul-DUR (B): n = 28 | Mean age (IQR): SUL-DUR (A): 62 (54–75) Colistin: 66 (53–80) Sul-DUR (B): 59 (46–67) | Admitted to ICU: n = 45/156 (28.8%) APACHE II; Mean ± SD SUL-DUR (A): 16 ± 5 Colistin: 17 ± 5 SUL-DUR (B): 18 ± 5 | SUL-DUR was non-inferior to colistin for the primary endpoint of 28-day all-cause mortality. |
Specified Subgroups
2. Ceftolozane–Tazobactam
2.1. In Vitro Activity
2.2. Clinical Trials
3. Ceftazidime–Avibactam
3.1. In Vitro Activity
3.2. Clinical Trials
4. Meropenem–Vaborbactam
4.1. In Vitro Activity
4.2. Clinical Trials
5. Imipenem–Cilastatin–Relebactam (Imipenem–Relebactam)
5.1. In Vitro Activity
5.2. Clinical Trials
6. Cefiderocol
6.1. In Vitro Activity
6.2. Clinical Trials
7. Sulbactam–Durlobactam
Clinical Trials
8. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Walter, J.; Haller, S.; Quinten, C.; Kärki, T.; Zacher, B.; Eckmanns, T.; Abu Sin, M.; Plachouras, D.; Kinross, P.; Suetens, C. Healthcare-associated pneumonia in acute care hospitals in European Union/European Economic Area countries: An analysis of data from a point prevalence survey, 2011 to 2012. Euro Surveill. 2018, 23, 1700843. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Bassi, G.L.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European. Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 388–416. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef] [PubMed]
- Koulenti, D.; Vandana, K.E.; Rello, J. Current viewpoint on the epidemiology of nonfermenting Gram-negative bacterial strains. Curr. Opin. Infect. Dis. 2023, 36, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Karvouniaris, M.; Almyroudi, M.P.; Abdul-Aziz, M.H.; Blot, S.; Paramythiotou, E.; Tsigou, E.; Koulenti, D. Novel Antimicrobial Agents for Gram-Negative Pathogens. Antibiotics 2023, 12, 761. [Google Scholar] [CrossRef]
- World Health Organization. WHO Bacterial Priority. Available online: https://iris.who.int/bitstream/handle/10665/376776/9789240093461-eng.pdf?sequence=1 (accessed on 1 June 2024).
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Davey, P.; Marwick, C.A.; Scott, C.L.; Charani, E.; McNeil, K.; Brown, E.; Gould, I.M.; Ramsay, C.R.; Michie, S. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst. Rev. 2017, 2, CD003543. [Google Scholar] [CrossRef]
- Varley, A.J.; Williams, H.; Fletcher, S. Antibiotic resistance in the intensive care unit. Contin. Educ. Anaesth. Crit. Care Pain 2009, 9, 114–118. [Google Scholar] [CrossRef]
- Edwardson, S.; Cairns, C. Nosocomial infections in the ICU. Anaesth. Intensive Care Med. 2019, 20, 14–18. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef] [PubMed]
- Terreni, M.; Taccani, M.; Pregnolato, M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules 2021, 26, 2671. [Google Scholar] [CrossRef] [PubMed]
- Viale, P.; Sandrock, C.E.; Ramirez, P.; Rossolini, G.M.; Lodise, T.P. Treatment of critically ill patients with cefiderocol for infections caused by multidrug-resistant pathogens: Review of the evidence. Ann. Intensive Care 2023, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Rodvold, K.A.; George, J.M.; Yoo, L. Penetration of anti-infective agents into pulmonary epithelial lining fluid: Focus on antibacterial agents. Clin. Pharmacokinet. 2011, 50, 637–664. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Abdul-Aziz, M.H.; Lipman, J.; Mouton, J.W.; Vinks, A.A.; Felton, T.W.; Hope, W.W.; Farkas, A.; Neely, M.N.; Schentag, J.J.; et al. Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions. Lancet Infect. Dis. 2014, 14, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Blot, S.; Ruppé, E.; Harbarth, S.; Asehnoune, K.; Poulakou, G.; Luyt, C.-E.; Rello, J.; Klompas, M.; Depuydt, P.; Eckmann, C.; et al. Healthcare-associated infections in adult intensive care unit patients: Changes in epidemiology, diagnosis, prevention and contributions of new technologies. Intensive Crit. Care Nurs. 2022, 70, 103227. [Google Scholar] [CrossRef] [PubMed]
- Rodvold, K.A.; Gotfried, M.H.; Isaacs, R.D.; O’Donnell, J.P.; Stone, E. Plasma and Intrapulmonary Concentrations of ETX2514 and Sulbactam following Intravenous Administration of ETX2514SUL to Healthy Adult Subjects. Antimicrob. Agents Chemother. 2018, 62, e01089-18. [Google Scholar] [CrossRef] [PubMed]
- Katsube, T.; Nicolau, D.P.; Rodvold, K.A.; Wunderink, R.G.; Echols, R.; Matsunaga, Y.; Menon, A.; Portsmouth, S.; Wajima, T. Intrapulmonary pharmacokinetic profile of cefiderocol in mechanically ventilated patients with pneumonia. J. Antimicrob. Chemother. 2021, 76, 2902–2905. [Google Scholar] [CrossRef]
- Nicolau, D.P.; Siew, L.; Armstrong, J.; Li, J.; Edeki, T.; Learoyd, M.; Das, S. Phase 1 study assessing the steady-state concentration of ceftazidime and avibactam in plasma and epithelial lining fluid following two dosing regimens. J. Antimicrob. Chemother. 2015, 70, 2862–2869. [Google Scholar] [CrossRef]
- Wenzler, W.E.; Gotfried, M.H.; Loutit, J.S.; Durso, S.; Griffith, D.C.; Dudley, M.N.; Rodvold, K.A. Meropenem-RPX7009 Concentrations in Plasma, Epithelial Lining Fluid, and Alveolar Macrophages of Healthy Adult Subjects. Antimicrob Agents Chemother. 2015, 59, 7232–7239. [Google Scholar] [CrossRef] [PubMed]
- Rizk, M.L.; Rhee, E.G.; Jumes, P.A.; Gotfried, M.H.; Zhao, T.; Mangin, E.; Bi, S.; Chavez-Eng, C.M.; Zhang, Z.; Butterton, J.R. Intrapulmonary Pharmacokinetics of Relebactam, a Novel β-Lactamase Inhibitor, Dosed in Combination with Imipenem-Cilastatin in Healthy Subjects. Antimicrob. Agents Chemother. 2018, 62, e01411-17. [Google Scholar] [CrossRef] [PubMed]
- Katsube, T.; Saisho, Y.; Shimada, J.; Furuie, H. Intrapulmonary pharmacokinetics of cefiderocol, a novel siderophore cephalosporin, in healthy adult subjects. J. Antimicrob. Chemother. 2019, 74, 1971–1974. [Google Scholar] [CrossRef] [PubMed]
- Caro, L.; Nicolau, D.P.; De Waele, J.J.; Kuti, J.L.; Larson, K.B.; Gadzicki, E.; Yu, B.; Zeng, Z.; Adedoyin, A.; Rhee, E.G. Lung penetration, bronchopulmonary pharmacokinetic/pharmacodynamic profile and safety of 3 g of ceftolozane/tazobactam administered to ventilated, critically ill patients with pneumonia. J. Antimicrob. Chemother. 2020, 75, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Kollef, M.H.; Nováček, M.; Kivistik, Ü.; Réa-Neto, Á.; Shime, N.; Martin-Loeches, I.; Timsit, J.-F.; Wunderink, R.G.; Bruno, C.J.; Huntington, J.A.; et al. Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): A randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2019, 19, 1299–1311. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Zhong, N.; Pachl, J.; Timsit, J.-F.; Kollef, M.; Chen, Z.; Song, J.; Taylor, D.; Laud, P.J.; Stone, G.G.; et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): A randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect. Dis. 2018, 18, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Wunderink, R.G.; Giamarellos-Bourboulis, E.J.; Rahav, G.; Mathers, A.J.; Bassetti, M.; Vazquez, J.; Cornely, O.A.; Solomkin, J.; Bhowmick, T.; Bishara, J.; et al. Effect and Safety of Meropenem-Vaborbactam versus Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections: The TANGO II Randomized Clinical Trial. Infect. Dis. Ther. 2018, 7, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Motsch, J.; de Oliveira, C.M.; Stus, V.; Köksal, I.; Lyulko, O.; Boucher, H.W.; Kaye, K.S.; File, T.M.; Brown, M.L.; Khan, I.; et al. RESTORE-IMI 1: A Multicenter, Randomized, Double-blind Trial Comparing Efficacy and Safety of Imipenem/Relebactam vs Colistin Plus Imipenem in Patients with Imipenem-nonsusceptible Bacterial Infections. Clin. Infect. Dis. 2020, 70, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Titov, I.; Wunderink, R.G.; Roquilly, A.; Gonzalez, D.R.; David-Wang, A.; Boucher, H.W.; Kaye, K.S.; Losada, M.C.; Du, J.; Tipping, R.; et al. A Randomized, Double-blind, Multicenter Trial Comparing Efficacy and Safety of Imipenem/Cilastatin/Relebactam Versus Piperacillin/Tazobactam in Adults with Hospital-acquired or Ventilator-associated Bacterial Pneumonia (RESTORE-IMI 2 Study). Clin. Infect. Dis. 2021, 73, e4539–e4548. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2021, 21, 213–225. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Shorr, A.F.; Wunderink, R.G.; Du, B.; Poirier, G.E.; Rana, K.; Miller, A.; Lewis, D.; O’Donnell, J.; Chen, L.; et al. Efficacy and safety of sulbactam-durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii-calcoaceticus complex: A multicentre, randomised, active-controlled, phase 3, non-inferiority clinical tri. Lancet Infect. Dis. 2023, 23, 1072–1084. [Google Scholar] [CrossRef] [PubMed]
- Karlowsky, J.A.; Lob, S.H.; Young, K.; Motyl, M.R.; Sahm, D.F. Activity of ceftolozane/tazobactam against Gram-negative isolates from patients with lower respiratory tract infections—SMART United States 2018–2019. BMC Microbiol. 2021, 21, 74. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Patel, Y.T.; Zhang, Z.; Johnson, M.G.; Fiedler-Kelly, J.; Bruno, C.J.; Rhee, E.G.; De Anda, C.; Feng, H.-P. Ceftolozane/Tazobactam Probability of Target Attainment in Patients with Hospital-Acquired or Ventilator-Associated Bacterial Pneumonia. J. Clin. Pharmacol. 2023, 63, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Shortridge, D.; Harris, K.A.; Garrison, M.W.; DeRyke, C.A.; DePestel, D.D.; Moise, P.A.; Sader, H.S. Ceftolozane-tazobactam activity against clinical isolates of Pseudomonas aeruginosa from ICU patients with pneumonia: United States, 2015–2018. Int. J. Infect. Dis. 2021, 112, 321–326. [Google Scholar] [CrossRef]
- Carvalhaes, C.G.; Castanheira, M.; Sader, H.S.; Flamm, R.K.; Shortridge, D. Antimicrobial activity of ceftolozane-tazobactam tested against gram-negative contemporary (2015–2017) isolates from hospitalized patients with pneumonia in US medical centers. Diagn. Microbiol. Infect. Dis. 2019, 94, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Kollef, M.H.; Timsit, J.-F.; Martin-Loeches, I.; Wunderink, R.G.; Huntington, J.A.; Jensen, E.H.; Yu, B.; Bruno, C.J. Outcomes in participants with failure of initial antibacterial therapy for hospital-acquired/ventilator-associated bacterial pneumonia prior to enrollment in the randomized, controlled phase 3 ASPECT-NP trial of ceftolozane/tazobactam versus meropenem. Crit. Care. 2022, 26, 373. [Google Scholar] [CrossRef] [PubMed]
- Paterson, D.L.; Bassetti, M.; Motyl, M.; Johnson, M.G.; Castanheira, M.; Jensen, E.H.; Huntington, J.A.; Yu, B.; Wolf, D.J.; Bruno, C.J. Ceftolozane/tazobactam for hospital-acquired/ventilator-associated bacterial pneumonia due to ESBL-producing Enterobacterales: A subgroup analysis of the ASPECT-NP clinical trial. J. Antimicrob. Chemother. 2022, 77, 2522–2531. [Google Scholar] [CrossRef] [PubMed]
- Puzniak, L.; Dillon, R.; Palmer, T.; Collings, H.; Enstone, A. Systematic Literature Review of Real-world Evidence of Ceftolozane/Tazobactam for the Treatment of Respiratory Infections. Infect. Dis. Ther. 2021, 10, 1227–1252. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Giacobbe, D.R.; Falcone, M.; Tiseo, G.; Giannella, M.; Pascale, R.; Meschiari, M.; Digaetano, M.; Oliva, A.; et al. Ceftolozane/Tazobactam for Treatment of Severe ESBL-Producing Enterobacterales Infections: A Multicenter Nationwide Clinical Experience (CEFTABUSE II Study). Open Forum Infect. Dis. 2020, 7, ofaa139. [Google Scholar] [CrossRef]
- Holger, D.J.; Rebold, N.S.; Alosaimy, S.; Morrisette, T.; Lagnf, A.; Belza, A.C.; Coyne, A.J.K.; El Ghali, A.; Veve, M.P.; Rybak, M.J. Impact of Ceftolozane-Tazobactam vs. Best Alternative Therapy on Clinical Outcomes in Patients with Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Lower Respiratory Tract Infections. Infect. Dis. Ther. 2022, 11, 1965–1980. [Google Scholar] [CrossRef] [PubMed]
- Pogue, J.M.; Kaye, K.S.; Veve, M.P.; Patel, T.S.; Gerlach, A.T.; Davis, S.L.; Puzniak, L.A.; File, T.M.; Olson, S.; Dhar, S.; et al. Ceftolozane/Tazobactam vs Polymyxin or Aminoglycoside-based Regimens for the Treatment of Drug-resistant Pseudomonas aeruginosa. Clin. Infect. Dis. 2020, 71, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Rubio, A.M.; Kline, E.G.; Jones, C.E.; Chen, L.; Kreiswirth, B.N.; Nguyen, M.H.; Clancy, C.J.; Cooper, V.S.; Haidar, G.; Van Tyne, D.; et al. In Vitro Susceptibility of Multidrug-Resistant Pseudomonas aeruginosa following Treatment-Emergent Resistance to Ceftolozane-Tazobactam. Antimicrob. Agents Chemother. 2021, 65, e00084-21. [Google Scholar] [CrossRef]
- Haidar, G.; Philips, N.J.; Shields, R.K.; Snyder, D.; Cheng, S.; Potoski, B.A.; Doi, Y.; Hao, B.; Press, E.G.; Cooper, V.S.; et al. Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: Clinical Effectiveness and Evolution of Resistance. Clin. Infect. Dis. 2017, 65, 110–120. [Google Scholar] [CrossRef]
- Tamma, P.D.; Beisken, S.; Bergman, Y.; Posch, A.E.; Avdic, E.; Sharara, S.L.; Cosgrove, S.E.; Simner, P.J. Modifiable Risk Factors for the Emergence of Ceftolozane-tazobactam Resistance. Clin. Infect. Dis. 2021, 73, e4599–e4606. [Google Scholar] [CrossRef] [PubMed]
- Dequin, P.-F.; Aubron, C.; Faure, H.; Garot, D.; Guillot, M.; Hamzaoui, O.; Lemiale, V.; Maizel, J.; Mootien, J.Y.; Osman, D.; et al. The place of new antibiotics for Gram-negative bacterial infections in intensive care: Report of a consensus conference. Ann. Intensive Care 2023, 13, 59. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin. Infect. Dis. 2023, ciad428. [Google Scholar] [CrossRef]
- Barbier, F.; Hraiech, S.; Kernéis, S.; Veluppillai, N.; Pajot, O.; Poissy, J.; Roux, D.; Zahar, J.-R.; French Intensive Care Society. Rationale and evidence for the use of new beta-lactam/beta-lactamase inhibitor combinations and cefiderocol in critically ill patients. Ann. Intensive Care 2023, 13, 65. [Google Scholar] [CrossRef]
- Berkhout, J.; Melchers, M.J.; van Mil, A.C.; Lagarde, C.M.; Nichols, W.W.; Mouton, J.W. Evaluation of the post-antibiotic effect in vivo for the combination of a β-lactam antibiotic and a β-lactamase inhibitor: Ceftazidime-avibactam in neutropenic mouse thigh and lung infections. J. Chemother. 2021, 33, 400–408. [Google Scholar] [CrossRef]
- Kempf, M.; Arhin, F.F.; Stone, G.; Utt, E. Ceftazidime-avibactam activity against Gram-negative respiratory isolates collected between 2018 and 2019. J. Glob. Antimicrob. Resist. 2022, 31, 239–247. [Google Scholar] [CrossRef]
- Asempa, T.E.; Nicolau, D.P.; Kuti, J.L. Carbapenem-Nonsusceptible Pseudomonas aeruginosa Isolates from Intensive Care Units in the United States: A Potential Role for New β-Lactam Combination Agents. J. Clin. Microbiol. 2019, 57, e00535-19. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Mendes, R.E.; Arends, S.J.R.; Carvalhaes, C.G.; Shortridge, D.; Castanheira, M. Comparative activity of newer β-lactam/β-lactamase inhibitor combinations against Pseudomonas aeruginosa isolates from US medical centres (2020–2021). Int. J. Antimicrob. Agents 2023, 61, 106744. [Google Scholar] [CrossRef]
- Stone, G.G.; Bradford, P.A.; Tawadrous, M.; Taylor, D.; Cadatal, M.J.; Chen, Z.; Chow, J.W. In Vitro Activity of Ceftazidime-Avibactam against Isolates from Respiratory and Blood Specimens from Patients with Nosocomial Pneumonia, Including Ventilator-Associated Pneumonia, in a Phase 3 Clinical Trial. Antimicrob. Agents Chemother. 2020, 64, e02356-19. [Google Scholar] [CrossRef]
- Shields, R.K.; Nguyen, M.H.; Chen, L.; Press, E.G.; Kreiswirth, B.N.; Clancy, C.J. Pneumonia and Renal Replacement Therapy Are Risk Factors for Ceftazidime-Avibactam Treatment Failures and Resistance among Patients with Carbapenem-Resistant Enterobacteriaceae Infections. Antimicrob. Agents Chemother. 2018, 62, e02497-17. [Google Scholar] [CrossRef] [PubMed]
- Tumbarello, M.; Raffaelli, F.; Giannella, M.; Mantengoli, E.; Mularoni, A.; Venditti, M.; De Rosa, F.G.; Sarmati, L.; Bassetti, M.; Brindicci, G.; et al. Ceftazidime-Avibactam Use for Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae Infections: A Retrospective Observational Multicenter Study. Clin. Infect. Dis. 2021, 73, 1664–1676. [Google Scholar] [CrossRef]
- van Duin, D.; Lok, J.J.; Earley, M.; Cober, E.; Richter, S.S.; Perez, F.; Salata, R.A.; Kalayjian, R.C.; Watkins, R.R.; Doi, Y.; et al. Colistin Versus Ceftazidime-Avibactam in the Treatment of Infections Due to Carbapenem-Resistant Enterobacteriaceae. Clin. Infect. Dis. 2018, 66, 163–171. [Google Scholar] [CrossRef]
- Tsolaki, V.; Mantzarlis, K.; Mpakalis, A.; Malli, E.; Tsimpoukas, F.; Tsirogianni, A.; Papagiannitsis, C.; Zygoulis, P.; Papadonta, M.-E.; Petinaki, E.; et al. Ceftazidime-Avibactam To Treat Life-Threatening Infections by Carbapenem-Resistant Pathogens in Critically Ill Mechanically Ventilated Patients. Antimicrob. Agents Chemother. 2020, 64, e02320-19. [Google Scholar] [CrossRef]
- Onorato, L.; Di Caprio, G.; Signoriello, S.; Coppola, N. Efficacy of ceftazidime/avibactam in monotherapy or combination therapy against carbapenem-resistant Gram-negative bacteria: A meta-analysis. Int. J. Antimicrob. Agents. 2019, 54, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Almangour, T.A.; Ghonem, L.; Alassiri, D.; Aljurbua, A.; Al Musawa, M.; Alharbi, A.; Almohaizeie, A.; Almuhisen, S.; Alghaith, J.; Damfu, N.; et al. Ceftolozane-Tazobactam Versus Ceftazidime-Avibactam for the Treatment of Infections Caused by Multidrug-Resistant Pseudomonas aeruginosa: A Multicenter Cohort Study. Antimicrob. Agents Chemother. 2023, 67, e00405-23. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. Interplay between β-lactamases and new β-lactamase inhibitors. Nat. Rev. Microbiol. 2019, 17, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, S.; Giacobbe, D.R.; Maraolo, A.E.; Viaggi, V.; Luzzati, R.; Bassetti, M.; Luzzaro, F.; Principe, L. Resistance to ceftazidime/avibactam in infections and colonisations by KPC-producing Enterobacterales: A systematic review of observational clinical studies. J. Glob. Antimicrob. Resist. 2021, 25, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Ackley, R.; Roshdy, D.; Meredith, J.; Minor, S.; Anderson, W.E.; Capraro, G.A.; Polk, C. Meropenem-Vaborbactam versus Ceftazidime-Avibactam for Treatment of Carbapenem-Resistant Enterobacteriaceae Infections. Antimicrob. Agents Chemother. 2020, 64, e02313-19. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Pascale, R.; Cojutti, P.G.; Rinaldi, M.; Ambretti, S.; Conti, M.; Tedeschi, S.; Giannella, M.; Viale, P.; Pea, F. A descriptive pharmacokinetic/pharmacodynamic analysis of continuous infusion ceftazidime-avibactam in a case series of critically ill renal patients treated for documented carbapenem-resistant Gram-negative bloodstream infections and/or ventilator-associ. Int. J. Antimicrob. Agents. 2023, 61, 106699. [Google Scholar] [CrossRef] [PubMed]
- Tumbarello, M.; Raffaelli, F.; Cascio, A.; Falcone, M.; Signorini, L.; Mussini, C.; De Rosa, F.G.; Losito, A.R.; De Pascale, G.; Pascale, R.; et al. Compassionate use of meropenem/vaborbactam for infections caused by KPC-producing Klebsiella pneumoniae: A multicentre study. JAC Antimicrob. Resist. 2022, 4, dlac022. [Google Scholar] [CrossRef] [PubMed]
- Bonnin, R.A.; Bernabeu, S.; Emeraud, C.; Creton, E.; Vanparis, O.; Naas, T.; Jousset, A.B.; Dortet, L. Susceptibility of OXA-48-producing Enterobacterales to imipenem/relebactam, meropenem/vaborbactam and ceftazidime/avibactam. Int. J. Antimicrob. Agents 2022, 60, 106660. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Bouvier, M.; Poirel, L. Efficacy of ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam combinations against carbapenemase-producing Enterobacterales in Switzerland. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Groft, L.M.; Claeys, K.C.; Heil, E.L. An evaluation of meropenem/vaborbactam for the treatment of nosocomial pneumonia. Expert. Opin. Pharmacother. 2021, 22, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Carvalhaes, C.G.; Shortridge, D.; Sader, H.S.; Castanheira, M. Activity of Meropenem-Vaborbactam against Bacterial Isolates Causing Pneumonia in Patients in U.S. Hospitals during 2014 to 2018. Antimicrob. Agents Chemother. 2020, 64, e02177-19. [Google Scholar] [CrossRef]
- Shortridge, D.; Carvalhaes, C.; Deshpande, L.; Castanheira, M. Activity of meropenem/vaborbactam and comparators against Gram-negative isolates from Eastern and Western European patients hospitalized with pneumonia including ventilator-associated pneumonia (2014–2019). J. Antimicrob. Chemother. 2021, 76, 2600–2605. [Google Scholar] [CrossRef]
- Sader, H.S.; Carvalhae, C.G.; Shortridge, D.; Castanheira, M. Comparative activity of newer β-lactam/β-lactamase inhibitor combinations against Pseudomonas aeruginosa from patients hospitalized with pneumonia in European medical centers in 2020. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; McCreary, E.K.; Marini, R.V.; Kline, E.G.; Jones, C.E.; Hao, B.; Chen, L.; Kreiswirth, B.N.; Doi, Y.; Clancy, C.J.; et al. Early Experience with Meropenem-Vaborbactam for Treatment of Carbapenem-resistant Enterobacteriaceae Infections. Clin. Infect. Dis. 2020, 71, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Alosaimy, S.; Jorgensen, S.C.J.; Lagnf, A.M.; Melvin, S.; Mynatt, R.P.; Carlson, T.J.; Garey, K.W.; Allen, D.; Venugopalan, V.; Veve, M.; et al. Real-world Multicenter Analysis of Clinical Outcomes and Safety of Meropenem-Vaborbactam in Patients Treated for Serious Gram-Negative Bacterial Infections. Open Forum Infect. Dis. 2020, 7, ofaa051. [Google Scholar] [CrossRef]
- Alosaimy, S.; Lagnf, A.M.; Morrisette, T.; Scipione, M.R.; Zhao, J.J.; Jorgensen, S.C.J.; Mynatt, R.; Carlson, T.J.; Jo, J.; Garey, K.W.; et al. Real-world, Multicenter Experience with Meropenem-Vaborbactam for Gram-Negative Bacterial Infections Including Carbapenem-Resistant Enterobacterales and Pseudomonas aeruginosa. Open Forum Infect. Dis. 2021, 8, ofab371. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Lob, S.H.; Akrich, B.; DeRyke, C.A.; Siddiqui, F.; Young, K.; Motyl, M.R.; Hawser, S.P.; Sahm, D.F. In Vitro activity of imipenem/relebactam against piperacillin/tazobactam-resistant and meropenem-resistant non-Morganellaceae Enterobacterales and Pseudomonas aeruginosa collected from patients with lower respiratory tract infections in Western Europe: SM. JAC Antimicrob. Resist. 2023, 5, dlad003. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, V.H.A.; Spencer, J.; van der Kamp, M.W. Antimicrobial Resistance Conferred by OXA-48 β-Lactamases: Towards a Detailed Mechanistic Understanding. Antimicrob. Agents Chemother. 2021, 65, e00184-21. [Google Scholar] [CrossRef]
- Heo, Y.-A. Imipenem/Cilastatin/Relebactam: A Review in Gram-Negative Bacterial Infections. Drugs 2021, 81, 377–388. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Lob, S.H.; Hawser, S.P.; Kothari, N.; Siddiqui, F.; Alekseeva, I.; DeRyke, C.A.; Young, K.; Motyl, M.R.; Sahm, D.F. Activity of ceftolozane/tazobactam and imipenem/relebactam against clinical isolates of Enterobacterales and Pseudomonas aeruginosa collected in central and northern Europe (Belgium, Norway, Sweden, Switzerland)—SMART 2017–2021. JAC Antimicrob. Resist. 2023, 5, dlad098. [Google Scholar] [CrossRef]
- Fraile-Ribot, P.A.; Zamorano, L.; Orellana, R.; Del Barrio-Tofiño, E.; Sánchez-Diener, I.; Cortes-Lara, S.; López-Causapé, C.; Cabot, G.; Bou, G.; Martínez-Martínez, L.; et al. Activity of Imipenem-Relebactam against a Large Collection of Pseudomonas aeruginosa Clinical Isolates and Isogenic β-Lactam-Resistant Mutants. Antimicrob. Agents Chemother. 2020, 64, e02165-19. [Google Scholar] [CrossRef]
- Lob, S.H.; DePestel, D.D.; DeRyke, C.A.; Kazmierczak, K.M.; Young, K.; Motyl, M.R.; Sahm, D.F. Ceftolozane/Tazobactam and Imipenem/Relebactam Cross-Susceptibility among Clinical Isolates of Pseudomonas aeruginosa From Patients with Respiratory Tract Infections in ICU and Non-ICU Wards-SMART United States 2017–2019. Open Forum Infect. Dis. 2021, 8, ofab320. [Google Scholar] [CrossRef]
- Zhang, H.; Jia, P.; Zhu, Y.; Zhang, G.; Zhang, J.; Kang, W.; Duan, S.; Zhang, W.; Yang, Q.; Xu, Y. Susceptibility to Imipenem/Relebactam of Pseudomonas aeruginosa and Acinetobacter baumannii Isolates from Chinese Intra-Abdominal, Respiratory and Urinary Tract Infections: SMART 2015 to 2018. Infect Drug Resist. 2021, 14, 3509–3518. [Google Scholar] [CrossRef]
- Kawaguchi, N.; Katsube, T.; Echols, R.; Wajima, T.; Nicolau, D.P. Intrapulmonary Pharmacokinetic Modeling and Simulation of Cefiderocol, a Parenteral Siderophore Cephalosporin, in Patients with Pneumonia and Healthy Subjects. J. Clin. Pharmacol. 2022, 62, 670–680. [Google Scholar] [CrossRef]
- Matsumoto, S.; Singley, C.M.; Hoover, J.; Nakamura, R.; Echols, R.; Rittenhouse, S.; Tsuji, M.; Yamano, Y. Efficacy of Cefiderocol against Carbapenem-Resistant Gram-Negative Bacilli in Immunocompetent-Rat Respiratory Tract Infection Models Recreating Human Plasma Pharmacokinetics. Antimicrob. Agents Chemother. 2017, 61, e00700-17. [Google Scholar] [CrossRef] [PubMed]
- Shortridge, D.; Streit, J.M.; Mendes, R.; Castanheira, M. In Vitro Activity of Cefiderocol against U.S. and European Gram-Negative Clinical Isolates Collected in 2020 as Part of the SENTRY Antimicrobial Surveillance Program. Microbiol. Spectr. 2022, 10, e0271221. [Google Scholar] [CrossRef] [PubMed]
- Annex I—Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/fetcroja-epar-product-information_en.pdf (accessed on 5 June 2024).
- FETROJA (Cefiderocol) for Injections, for Intravenous Use. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/209445s002lbl.pdf (accessed on 5 June 2024).
- Falcone, M.; Tiseo, G.; Leonildi, A.; Della Sala, L.; Vecchione, A.; Barnini, S.; Farcomeni, A.; Menichett, F. Cefiderocol- Compared to Colistin-Based Regimens for the Treatment of Severe Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2022, 66, e02142-21. [Google Scholar] [CrossRef]
- Pascale, R.; Pasquini, Z.; Bartoletti, M.; Caiazzo, L.; Fornaro, G.; Bussini, L.; Volpato, F.; Marchionni, E.; Rinaldi, M.; Trapani, F.; et al. Cefiderocol treatment for carbapenem-resistant Acinetobacter baumannii infection in the ICU during the COVID-19 pandemic: A multicentre cohort study. JAC Antimicrob. Resist. 2021, 3, dlab174. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Bruni, A.; Gullì, S.; Borrazzo, C.; Quirino, A.; Lionello, R.; Serapide, F.; Garofalo, E.; Serraino, R.; Romeo, F.; et al. Efficacy of cefiderocol- vs colistin-containing regimen for treatment of bacteraemic ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii in patients with COVID-19. Int. J. Antimicrob. Agents. 2023, 62, 106825. [Google Scholar] [CrossRef]
- Rando, E.; Segala, F.V.; Vargas, J.; Seguiti, C.; De Pascale, G.; Murri, R.; Fantoni, M. Cefiderocol for Severe Carbapenem-Resistant A. baumannii Pneumonia: Towards the Comprehension of Its Place in Therapy. Antibiotics 2021, 11, 3. [Google Scholar] [CrossRef]
- Gatti, M.; Bartoletti, M.; Cojutti, P.G.; Gaibani, P.; Conti, M.; Giannella, M.; Viale, P.; Pea, F. A descriptive case series of pharmacokinetic/pharmacodynamic target attainment and microbiological outcome in critically ill patients with documented severe extensively drug-resistant Acinetobacter baumannii bloodstream infection and/or ventilator-associa. J. Glob. Antimicrob. Resist. 2021, 27, 294–298. [Google Scholar] [CrossRef]
- Chou, A.; Ramsey, D.; Amenta, E.; Trautner, B.W. Real-world experience with cefiderocol therapy for Pseudomonas aeruginosa and other multidrug resistant gram-negative infections within the Veterans Health Administration, 2019–2022. Antimicrob. Steward. Heal. Epidemiol. 2023, 3, e90. [Google Scholar] [CrossRef]
- Gavaghan, V.; Miller, J.L.; Dela-Pena, J. Case series of cefiderocol for salvage therapy in carbapenem-resistant Gram-negative infections. Infection 2023, 51, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Meschiari, M.; Volpi, S.; Faltoni, M.; Dolci, G.; Orlando, G.; Franceschini, E.; Menozzi, M.; Sarti, M.; Del Fabro, G.; Fumarola, B.; et al. Real-life experience with compassionate use of cefiderocol for difficult-to-treat resistant Pseudomonas aeruginosa (DTR-P) infections. JAC Antimicrob. Resist. 2021, 3, dlab188. [Google Scholar] [CrossRef] [PubMed]
- ESCMID Global 2024: Shionogi Presents Real-World Data Demonstrating Efficacy of Fetcroja®/Fetroja® (Cefiderocol) in Critically Ill Patients with Certain Difficult-to-Treat Bacterial Infections. Available online: https://www.shionogi.com/us/en/news/2024/04/escmid-global-2024-shionogi-presents-real-world-data-demonstrating-efficacy-of-fetcroja-fetroja-cefiderocol-in-critically-ill-patients-with-certain-difficult-to-treat-bacterial-infections.html (accessed on 31 May 2024).
- Perez-Pedrero, M.; Calderon-Parra, J.; Jessica, S.; Gonzalez, A.; Verardi, S. Real-World Effectiveness and Safety of Long-Term (>28 Days) Cefiderocol Treatment in Patients with Gram-Negative Bacterial Infections in the PERSEUS Study in Spain. Abstract—Poster P2425, 34th ECCMID 2024, Barcelona, Spain. Use of Cefiderocol in the Management of Gram-Negative Infections (Perseus). Available online: https://clinicaltrials.gov/study/NCT05789199?cond=PERSEUS&term=CEFIDEROCOL&rank=1 (accessed on 2 June 2024).
- Coppi, M.; Antonelli, A.; Niccolai, C.; Bartolini, A.; Bartolini, L.; Grazzini, M.; Mantengoli, E.; Farese, A.; Pieralli, F.; Mechi, M.T.; et al. Nosocomial outbreak by NDM-1-producing Klebsiella pneumoniae highly resistant to cefiderocol, Florence, Italy, August 2021 to June 2022. Eurosurveillance 2022, 27, 2200795. [Google Scholar] [CrossRef]
- Choby, J.E.; Ozturk, T.; Satola, S.W.; Jacob, J.T.; Weiss, D.S. Widespread cefiderocol heteroresistance in carbapenem-resistant Gram-negative pathogens. Lancet Infect. Dis. 2021, 21, 597–598. [Google Scholar] [CrossRef]
- McLeod, S.M.; Moussa, S.H.; Hackel, M.A.; Miller, A.A. In Vitro Activity of Sulbactam-Durlobactam against Acinetobacter baumannii-calcoaceticus Complex Isolates Collected Globally in 2016 and 2017. Antimicrob. Agents Chemother. 2020, 64, e02534-19. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.; Tanudra, A.; Chen, A.; Miller, A.A.; McLeod, S.M.; Tommasi, R. In vitro pharmacokinetics/pharmacodynamics of the β-lactamase inhibitor, durlobactam, in combination with sulbactam against Acinetobacter baumannii-calcoaceticus complex. Antimicrob. Agents Chemother. 2024, 68, e00312-23. [Google Scholar] [CrossRef] [PubMed]
- Iovleva, A.; McElheny, C.L.; Fowler, E.L.; Cober, E.; Herc, E.S.; Arias, C.A.; Hill, C.; Baum, K.; Fowler, V.G., Jr.; Chambers, H.F.; et al. In vitro activity of sulbactam-durlobactam against colistin-resistant and/or cefiderocol-non-susceptible, carbapenem-resistant Acinetobacter baumannii collected in U.S. hospitals. Antimicrob. Agents Chemother. 2024, 68, e01258-23. [Google Scholar] [CrossRef]
- Highlights of Prescribing Information. Available online: https://www.merck.com/product/usa/pi_circulars/z/zerbaxa/zerbaxa_pi.pdf (accessed on 5 April 2024).
- Bakdach, D.; Elajez, R.; Bakdach, A.R.; Awaisu, A.; De Pascale, G.; Hssain, A.A. Pharmacokinetics, Pharmacodynamics, and Dosing Considerations of Novel β-Lactams and β-Lactam/β-Lactamase Inhibitors in Critically Ill Adult Patients: Focus on Obesity, Augmented Renal Clearance, Renal Replacement Therapies, and Extracorporeal Membrane Oxygenation. J. Clin. Med. 2022, 11, 6898. [Google Scholar] [CrossRef]
- Highlights of Prescribing Information. Available online: https://www.ema.europa.eu/en/documents/product-information/zavicefta-epar-product-information_en.pdf (accessed on 5 April 2024).
- Gorham, J.; Taccone, F.S.; Hites, M. Drug Regimens of Novel Antibiotics in Critically Ill Patients with Varying Renal Functions: A Rapid Review. Antibiotics 2022, 11, 546. [Google Scholar] [CrossRef]
- Vaborem 1 g/1 g Powder for Concentrate for Solution for Infusion—Summary of Product Characteristics (SmPC)—Print Friendly—(EMC). Available online: https://www.medicines.org.uk/emc/product/10813/smpc/print (accessed on 27 May 2024).
- Highlights of Prescribing Information. Available online: https://www.merck.com/product/usa/pi_circulars/r/recarbrio/recarbrio_pi.pdf (accessed on 5 April 2024).
- Fratoni, A.J.; Mah, J.W.; Nicolau, D.P.; Kuti, J.L. Imipenem/cilastatin/relebactam pharmacokinetics in critically ill patients with augmented renal clearance. J. Antimicrob. Chemother. 2022, 77, 2992–2999. [Google Scholar] [CrossRef]
- Fetcroja 1 g Powder—Summary of Product Characteristics (SmPC)—Print Friendly—(EMC). Available online: https://www.medicines.org.uk/emc/product/11771/smpc/print (accessed on 27 April 2024).
- Highlights of Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/216974Orig1s000Correctedlbl.pdf (accessed on 5 April 2024).
- Sime, F.B.; Lassig-Smith, M.; Starr, T.; Stuart, J.; Pandey, S.; Parker, S.L.; Wallis, S.C.; Lipman, J.; Roberts, J.A. A Population Pharmacokinetic Model-Guided Evaluation of Ceftolozane-Tazobactam Dosing in Critically Ill Patients Undergoing Continuous Venovenous Hemodiafiltration. Antimicrob. Agents Chemother. 2020, 64, e01655-19. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, G.; Ferriols, R.; Martínez-Castro, S.; Ezquer, C.; Pastor, E.; Carbonell, J.A.; Alós, M.; Navarro, D. Optimizing ceftolozane-tazobactam dosage in critically ill patients during continuous venovenous hemodiafiltration. Crit. Care 2019, 23, 145. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Rinaldi, M.; Gaibani, P.; Siniscalchi, A.; Tonetti, T.; Giannella, M.; Viale, P.; Pea, F. A descriptive pharmacokinetic/pharmacodynamic analysis of continuous infusion ceftazidime-avibactam for treating DTR gram-negative infections in a case series of critically ill patients undergoing continuous veno-venous haemodiafiltration (CVVHDF). J. Crit. Care 2023, 76, 154301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-S.; Wang, Y.-Z.; Shi, D.-W.; Xu, F.-M.; Yu, J.-H.; Chen, J.; Lin, G.-Y.; Zhang, C.-H.; Yu, X.-B.; Tang, C.-R. Efficacy and Pharmacodynamic Target Attainment for Ceftazidime–Avibactam Off-Label Dose Regimens in Patients with Continuous or Intermittent Venovenous Hemodialysis: Two Case Reports. Infect. Dis. Ther. 2022, 11, 2311–2319. [Google Scholar] [CrossRef] [PubMed]
- Wenzler, E.; Butler, D.; Tan, X.; Katsube, T.; Wajima, T. Pharmacokinetics, Pharmacodynamics, and Dose Optimization of Cefiderocol during Continuous Renal Replacement Therapy. Clin. Pharmacokinet. 2021, 61, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.M.; Yessayan, L.; Dean, M.; Costello, G.; Katwaru, R.; Mueller, B.A. Imipenem/Relebactam Ex Vivo Clearance during Continuous Renal Replacement Therapy. Antibiotics 2021, 10, 1184. [Google Scholar] [CrossRef]
- Kufel, W.D.; Eranki, A.P.; Paolino, K.M.; Call, A.; Miller, C.D.; Mogle, B.T. In vivo pharmacokinetic analysis of meropenem/vaborbactam during continuous venovenous haemodialysis. J. Antimicrob. Chemother. 2019, 74, 2117–2118. [Google Scholar] [CrossRef]
- Eucast Version 14.0, Valid from 2024-01-01. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_14.0_Breakpoint_Tables.pdf (accessed on 26 June 2024).
- CLSI M100-ED34:2024 Performance Standards for Antimicrobial Susceptibility Testing, 34th Edition. Available online: https://em100.edaptivedocs.net/GetDoc.aspx?doc=CLSI%20M100%20ED34:2024&xormat=SPDF&src=BB (accessed on 26 June 2024).
- Abniki, R.; Tashakor, A.; Masoudi, M.; Mansury, D. Global Resistance of Imipenem/Relebactam against Gram-Negative Bacilli: Systematic Review and Meta-Analysis. Curr. Ther. Res. 2024, 100, 100723. [Google Scholar] [CrossRef]
- Andersson, D.I.; Nicoloff, H.; Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 2019, 17, 479–496. [Google Scholar] [CrossRef]
- Candel, F.J.; Henriksen, A.S.; Longshaw, C.; Yamano, Y.; Oliver, A. In vitro activity of the novel siderophore cephalosporin, cefiderocol, in Gram-negative pathogens in Europe by site of infection. Clin. Microbiol. Infect. 2022, 28, 447.e1–447.e6. [Google Scholar] [CrossRef]
- Castanheira, M.; Johnson, M.G.; Yu, B.; Huntington, J.A.; Carmelitano, P.; Bruno, C.; Rhee, E.G.; Motyl, M. Molecular Characterization of Baseline Enterobacterales and Pseudomonas aeruginosa Isolates from a Phase 3 Nosocomial Pneumonia (ASPECT-NP) Clinical Trial. Antimicrob. Agents Chemother. 2021, 65, e02461-20. [Google Scholar] [CrossRef] [PubMed]
- Duda-Madej, A.; Viscardi, S.; Topola, E. Meropenem/Vaborbactam: β-Lactam/β-Lactamase Inhibitor Combination, the Future in Eradicating Multidrug Resistance. Antibiotics 2023, 12, 1612. [Google Scholar] [CrossRef] [PubMed]
- Granata, G.; Taglietti, F.; Schiavone, F.; Petrosillo, N. Durlobactam in the Treatment of Multidrug-Resistant Acinetobacter baumannii Infections: A Systematic Review. J. Clin. Med. 2022, 11, 3258. [Google Scholar] [CrossRef] [PubMed]
- Iregui, A.; Khan, Z.; Landman, D.; Quale, J. Activity of Cefiderocol Against Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii Endemic to Medical Centers in New York City. Microb. Drug Resist. 2020, 26, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Kanj, S.S.; Bassetti, M.; Kiratisin, P.; Rodrigues, C.; Villegas, M.V.; Yu, Y.; van Duin, D. Clinical data from studies involving novel antibiotics to treat multidrug-resistant Gram-negative bacterial infections. Int. J. Antimicrob. Agents 2022, 60, 106633. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Rousaki, M.; Kritsotakis, E.I. Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics 2022, 11, 723. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Rousaki, M.; Vassilopoulou, L.; Kritsotakis, E.I. Global prevalence of cefiderocol non-susceptibility in Enterobacterales, Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2024, 30, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M.; Warner, M.; Mushtaq, S. Activity of MK-655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2013, 68, 2286–2290. [Google Scholar] [CrossRef]
- Robin, F.; Auzou, M.; Bonnet, R.; Lebreuilly, R.; Isnard, C.; Cattoir, V.; Guérin, F. In Vitro Activity of Ceftolozane-Tazobactam against Enterobacter cloacae Complex Clinical Isolates with Different β-Lactam Resistance Phenotypes. Antimicrob. Agents Chemother. 2018, 62, e00675-18. [Google Scholar] [CrossRef]
- Shortridge, D.; Kantro, V.; Castanheira, M. Meropenem-Vaborbactam Activity against U.S. Multidrug-Resistant Enterobacterales Strains, Including Carbapenem-Resistant. Isol. Microbiol. Spectr. 2023, 11, e0450722. [Google Scholar] [CrossRef]
- Wi, Y.M.; Greenwood-Quaintance, K.E.; Schuetz, A.N.; Ko, K.S.; Peck, K.R.; Song, J.-H.; Patel, R. Activity of Ceftolozane-Tazobactam against Carbapenem-Resistant, Non-Carbapenemase-Producing Pseudomonas aeruginosa and Associated Resistance Mechanisms. Antimicrob. Agents Chemother. 2017, 62, e01970-17. [Google Scholar] [CrossRef] [PubMed]
Antibiotic | Approval | Indications |
---|---|---|
Ceftolazone–tazobactam | FDA initial approval 2014. FDA approval HAP/VAP 2019. EMA initial approval 2015. EMA approval HAP/VAP 2019. | FDA and EMA: HAP/VAP, cIAIs, cUTIs. |
Ceftazidime–avibactam | FDA initial approval 2015. FDA approval HAP/VAP 2018. EMA initial approval 2016. EMA approval HAP/VAP 2016. | FDA and EMA: HAP/VAP, cIAIs, cUTIs. EMA: + associated bacteremia, aerobic GNB with limited treatment options. |
Meropenem–vaborbactam | FDA approval 2017. EMA approval 2018. | FDA: cUTIs. EMA: HAP/VAP, cUTIs, cIAIs, associated bacteremia, aerobic GNB with limited treatment options. |
Imipenem–relebactam | FDA initial approval 2019. FDA approval for HAP/VAP 2020. EMA approval 2020. | FDA and EMA: HAP/VAP. FDA: + cUTIs, cIAIs. EMA: + bacteremia associated with HAP/VAP, aerobic GNB with limited treatment options. |
Cefiderocol | FDA initial approval 2019. FDA approval for HAP/VAP 2020. EMA approval 2020. | FDA: HAP/VAP, cUTIs. EMA: aerobic GNB with limited treatment options. |
Sulbactam–durlobactam | FDA approval for HAP/VAP 2023. | FDA: HAP/VAP caused by susceptible strains of Acinetobacter baumannii–calcoaceticus complex. |
IDSA 2023 Guidance on Gram-Negative Bacteria Infections ^ | |
---|---|
Extended-spectrum β-lactamase-producing Enterobacterales (ESBL-Es) | The panel suggests preferentially preserving CEF-AVI, MERO-VAB, IMI-REL, and CEF for organisms exhibiting carbapenem resistance. |
AmpC β-lactamase-producing Enterobacterales (AmpC-Es) | The panel suggests against the use of CEFT-TAZO for ESBL-E and AmpC-E infections, with the possible exception of polymicrobial infections. |
Carbapenem-resistant Enterobacterales (CREs) | Where carbapenemase testing is not available or negative, CEF-AVI, MERO-VAB, and IMI-REL are preferred treatment options for CRE infections. In specific cases, CEF-AVI plus aztreonam, or CEF monotherapy, is recommended whilst awaiting antimicrobial sensitivity testing, and carbapenemase testing. These cases include (1) Patients with CRE infections who have received medical care in countries with a high prevalence of MBL-producing organisms in the past 12 months. (2) Patients with a culture positive for an MBL-producing isolate. Treatment of NDM/other MBL-producing infections: Panel recommends CEF-AVI in combination with aztreonam, or CEF as monotherapy. KPC-producing infections: Panel recommends MERO-VAB, CEF-AVI, and IMI-REL. CEF is an alternative option. OXA-48-like-producing infections: Panel recommends CEF-AVI. CEF is an alternative option. Note: Combination antibiotic therapy (i.e., a β-lactam agent with an aminoglycoside, fluoroquinolone, tetracycline, or polymyxin) is not suggested for the treatment of infections caused by CRE. |
Pseudomonas aeruginosa with difficult-to-treat resistance (DTR P. aeruginosa) | CEFT-TAZO, CEF-AVI, and IMI-REL are preferred options for DTR P. aeruginosa infections. CEF is an alternative treatment option. For MBL-producing DTR P. aeruginosa isolates, the preferred treatment is CEF. Note: Combination antibiotic therapy is not suggested for infections caused by DTR P. aeruginosa if susceptibility to CEFT-TAZO, CEF-AVI, IMI-REL, or CEF has been confirmed. |
Carbapenem-resistant Acinetobacter baumannii (CRAB) | Combination therapy with at least 2 active agents, wherever possible, is suggested for CRAB infections, at least until clinical improvement is observed. CEF should be limited to CRAB infections refractory to other antibiotics or in cases where intolerance or resistance to other agents precludes their use. When CEF is used, the panel suggests prescribing the agent as part of a combination regimen. |
Stenotrophomonas maltophilia | Two main approaches are recommended for treatment of S. maltophilia: (1) Preferred therapy is with CEF as a component of combination therapy (with TMP-SMX, minocycline–tigecycline, or levofloxacin) at least until clinical improvement is observed. (2) Combination therapy with CEF-AVI and aztreonam, especially when critical illness is evident, or intolerance or inactivity of other agents is observed. |
ESCMID 2022 Guidelines for MDR GNB (endorsed by ESICM) | |
Third-generation cephalosporin-resistant Enterobacterales (3GCephREs) | Avoid use of new β-lactam–β-lactamase inhibitor (BLBLI) for 3GCephRE infections; reserve them for extensively resistant bacteria (good practice statement). |
Carbapenem-resistant Enterobacterales | For severe infections due to CRE, the guidelines suggest MERO-VAB or CEF-AVI if active in vitro (conditional recommendation, moderate and low certainty of evidence). There is no evidence to recommend for or against the use of IMI-REL monotherapy for CRE. For severe infections due to MBL-producing CRE and/or organisms resistant to all other antibiotics (including CEF-AVI and MERO-VEB), the panel conditionally recommends treatment with CEF (conditional recommendation, low certainty of evidence) or aztreonam and CEF-AVI combination therapy (conditional recommendation, moderate certainty of evidence). For CRE infections susceptible to and treated with CEF-AVI, MERO-VAB, or CEF, the panel does not recommend combination therapy (strong recommendation against use, low certainty of evidence) |
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) | In patients with severe infections due to DTR-CRPA, the panel suggests therapy with CEFT-TAZO if active in vitro (conditional recommendation for use, very low certainty of evidence). Insufficient evidence is available for IMI-REL, CEF, and CEF-AVI. There is not enough evidence to recommend for or against the use of combination therapy with the new BLBLI (CEF-AVI and CEFT-TAZO) or CEF for CRPA infections. |
Carbapenem-resistant Acinetobacter baumannii (CRAB) | For patients with CRAB susceptible to sulbactam and HAP/VAP, the panel suggests ampicillin–sulbactam (conditional recommendation, low certainty of evidence). Guidelines conditionally recommend against CEF for the treatment of infections caused by CRAB (conditional recommendations, low certainty of evidence) For patients with severe and high-risk CRAB infections, the guidelines suggest combination therapy including two in vitro active antibiotics among the available antibiotics (polymyxin, aminoglycoside, tigecycline, sulbactam combinations) (conditional recommendation, very low certainty of evidence). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almyroudi, M.P.; Chang, A.; Andrianopoulos, I.; Papathanakos, G.; Mehta, R.; Paramythiotou, E.; Koulenti, D. Novel Antibiotics for Gram-Negative Nosocomial Pneumonia. Antibiotics 2024, 13, 629. https://doi.org/10.3390/antibiotics13070629
Almyroudi MP, Chang A, Andrianopoulos I, Papathanakos G, Mehta R, Paramythiotou E, Koulenti D. Novel Antibiotics for Gram-Negative Nosocomial Pneumonia. Antibiotics. 2024; 13(7):629. https://doi.org/10.3390/antibiotics13070629
Chicago/Turabian StyleAlmyroudi, Maria Panagiota, Aina Chang, Ioannis Andrianopoulos, Georgios Papathanakos, Reena Mehta, Elizabeth Paramythiotou, and Despoina Koulenti. 2024. "Novel Antibiotics for Gram-Negative Nosocomial Pneumonia" Antibiotics 13, no. 7: 629. https://doi.org/10.3390/antibiotics13070629
APA StyleAlmyroudi, M. P., Chang, A., Andrianopoulos, I., Papathanakos, G., Mehta, R., Paramythiotou, E., & Koulenti, D. (2024). Novel Antibiotics for Gram-Negative Nosocomial Pneumonia. Antibiotics, 13(7), 629. https://doi.org/10.3390/antibiotics13070629