Association between Empirical Anti-Pseudomonal Antibiotics and Progression to Thoracic Surgery and Death in Empyema: Database Research
Abstract
:1. Introduction
2. Results
2.1. Descriptive Analysis
2.2. Bias Analysis
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Patient Selection
4.3. Data Extraction
4.4. Exposure
4.5. Outcome
4.6. Covariates
4.7. Statistical Analysis
- A specific pair of bias parameters was set: the prevalence of a binary unmeasured confounder C among the empirical anti-pseudomonal antibiotics () group () and the empirical non-anti-pseudomonal () antibiotics group () and risk ratio of C and death at 90 days (), that is . These values were set based on the risk ratios between the measured confounders and death (median: 3.2; IQR: 2.0–3.5).
- Probability distribution was assigned to each bias parameter to consider the uncertainty of the bias parameter: , , and where and parameters were defined based on the mean ( and ) and their plausible 2.5–9.5th percentile ( and ).
- A random sample of bias parameters from the specified distributions in Step 2 was used.
- The probability of having a confounder within the levels of treatment and outcome was calculated: , , , and .
- Bernoulli distribution was assigned to , , , and to consider the uncertainty.
- The probability of having a confounder from the specified distribution in step 4 was randomly sampled.
- A new column of C in the original dataset was created.
- The same subgroup analysis with robust standard error was performed.
- Calculating a bias-adjusted estimate was calculated.
- Steps 1–9 were repeated for 100.000 iterations and the median and 95% CI were categorize.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, M.E.; Rahman, N.M.; Maskell, N.A.; Bibby, A.C.; Blyth, K.G.; Corcoran, J.P.; Edey, A.; Evison, M.; de Fonseka, D.; Hallifax, R.; et al. British Thoracic Society Guideline for pleural disease. Thorax 2023, 78, s1–s42. [Google Scholar] [CrossRef] [PubMed]
- Scarci, M.; Abah, U.; Solli, P.; Page, A.; Waller, D.; van Schil, P.; Melfi, F.; Schmid, R.A.; Athanassiadi, K.; Sousa Uva, M.; et al. EACTS expert consensus statement for surgical management of pleural empyema. Eur. J. Cardiothorac. Surg. 2015, 48, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.R.; Bribriesco, A.; Crabtree, T.; Denlinger, C.; Eby, J.; Eiken, P.; Jones, D.R.; Keshavjee, S.; Maldonado, F.; Paul, S.; et al. The American Association for Thoracic Surgery consensus guidelines for the management of empyema. J. Thorac. Cardiovasc. Surg. 2017, 153, e129–e146. [Google Scholar] [CrossRef] [PubMed]
- Redden, M.D.; Chin, T.Y.; van Driel, M.L. Surgical versus non-surgical management for pleural empyema. Cochrane Database Syst. Rev. 2017, 3, CD010651. [Google Scholar] [CrossRef] [PubMed]
- Altmann, E.S.; Crossingham, I.; Wilson, S.; Davies, H.R. Intra-pleural fibrinolytic therapy versus placebo, or a different fibrinolytic agent, in the treatment of adult parapneumonic effusions and empyema. Cochrane Database Syst. Rev. 2019, 2019, CD002312. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.J.; Sorensen, J.; Jephson, A.; Mecham, I.; Dean, N.C. Broad-spectrum antibiotic use and poor outcomes in community-onset pneumonia: A cohort study. Eur. Respir. J. 2019, 54, 1900057. [Google Scholar] [CrossRef] [PubMed]
- Shiroshita, A.; Miyakoshi, C.; Tsutsumi, S.; Shiba, H.; Shirakawa, C.; Sato, K.; Matsushita, S.; Kimura, Y.; Tomii, K.; Ohgiya, M.; et al. Effectiveness of empirical anti-pseudomonal antibiotics in patients with recurrent COPD exacerbation: A multicenter retrospective cohort study. Sci. Rep. 2021, 11, 20066. [Google Scholar] [CrossRef] [PubMed]
- Baggs, J.; Jernigan, J.A.; Halpin, A.L.; Epstein, L.; Hatfield, K.M.; McDonald, L.C. Risk of Subsequent Sepsis within 90 Days After a Hospital Stay by Type of Antibiotic Exposure. Clin. Infect. Dis. 2018, 66, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Shehab, N.; Patel, P.R.; Srinivasan, A.; Budnitz, D.S. Emergency department visits for antibiotic-associated adverse events. Clin. Infect. Dis. 2008, 47, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Shiroshita, A.; Kimura, Y.; Yamada, A.; Shirakawa, C.; Yue, C.; Suzuki, H.; Anan, K.; Sato, K.; Nakashima, K.; Takeshita, M.; et al. Prognostic Value of Computed Tomography in Empyema: A Multicenter Retrospective Cohort Study. Ann. Am. Thorac. Soc. 2023, 20, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Maskell, N.A.; Batt, S.; Hedley, E.L.; Davies, C.W.; Gillespie, S.H.; Davies, R.J. The bacteriology of pleural infection by genetic and standard methods and its mortality significance. Am. J. Respir. Crit. Care Med. 2006, 174, 817–823. [Google Scholar] [CrossRef]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014; Available online: https://iris.who.int/handle/10665/112642 (accessed on 31 January 2024).
- Marks, D.J.; Fisk, M.D.; Koo, C.Y.; Pavlou, M.; Peck, L.; Lee, S.F.; Lawrence, D.; Macrae, M.B.; Wilson, A.P.; Brown, J.S.; et al. Thoracic Empyema: A 12-Year Study from a UK Tertiary Cardiothoracic Referral Centre. PLoS ONE 2012, 7, e30074. [Google Scholar] [CrossRef] [PubMed]
- Bobbio, A.; Bouam, S.; Frenkiel, J.; Zarca, K.; Fournel, L.; Canny, E.; Icard, P.; Porcher, R.; Alifano, M. Epidemiology and prognostic factors of pleural empyema. Thorax 2021, 76, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.J.; Dascomb, K.; Stenehjem, E.; Dean, N. Predicting risk of drug-resistant organisms in pneumonia: Moving beyond the HCAP model. Respir. Med. 2015, 109, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.C.; Chang, H.Y.; Chen, C.W.; Lee, C.H.; Hsiue, T.R. Predicting factors for outcome of tube thoracostomy in complicated parapneumonic effusion for empyema. Chest 1999, 115, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Khemasuwan, D.; Sorensen, J.; Griffin, D.C. Predictive Variables for Failure in Administration of Intrapleural Tissue Plasminogen Activator/Deoxyribonuclease in Patients with Complicated Parapneumonic Effusions/Empyema. Chest 2018, 154, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Himelman, R.B.; Callen, P.W. The prognostic value of loculations in parapneumonic pleural effusions. Chest 1986, 90, 852–856. [Google Scholar] [CrossRef] [PubMed]
- Benchimol, E.I.; Smeeth, L.; Guttmann, A.; Harron, K.; Moher, D.; Petersen, I.; Sørensen, H.T.; von Elm, E.; Langan, S.M.; RECORD Working Committee. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. PLoS Med. 2015, 12, e1001885. [Google Scholar] [CrossRef] [PubMed]
- Yasunaga, H. Real World Data in Japan: Chapter II the Diagnosis Procedure Combination Database. Ann. Clin. Epidemiol. 2019, 1, 76–79. [Google Scholar] [CrossRef]
- Farjah, F.; Symons, R.G.; Krishnadasan, B.; Wood, D.E.; Flum, D.R. Management of pleural space infections: A population-based analysis. J. Thorac. Cardiovasc. Surg. 2007, 133, 346–351.e1. [Google Scholar] [CrossRef]
- El Solh, A.A.; Alhajjhasan, A.; Ramadan, F.H.; Pineda, L.A. A comparative study of community- and nursing home-acquired empyema thoracis. J. Am. Geriatr. Soc. 2007, 55, 1847–1852. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.M.; Kahan, B.C.; Miller, R.F.; Gleeson, F.V.; Nunn, A.J.; Maskell, N.A. A clinical score (RAPID) to identify those at risk for poor outcome at presentation in patients with pleural infection. Chest 2014, 145, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Touray, S.; Sood, R.N.; Lindstrom, D.; Holdorf, J.; Ahmad, S.; Knox, D.B.; Sosa, A.F. Risk Stratification in Patients with Complicated Parapneumonic Effusions and Empyema Using the RAPID Score. Lung 2018, 196, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Lau, B.; Cole, S.R.; Gange, S.J. Competing Risk Regression Models for Epidemiologic Data. Am. J. Epidemiol. 2009, 170, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vidal, C.; Almagro, P.; Romaní, V.; Rodríguez-Carballeira, M.; Cuchi, E.; Canales, L.; Blasco, D.; Heredia, J.L.; Garau, J. Pseudomonas aeruginosa in patients hospitalised for COPD exacerbation: A prospective study. Eur. Respir. J. 2009, 34, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Shindo, Y.; Ito, R.; Kobayashi, D.; Ando, M.; Ichikawa, M.; Shiraki, A.; Goto, Y.; Fukui, Y.; Iwaki, M.; Okumura, J.; et al. Risk factors for drug-resistant pathogens in community-acquired and healthcare-associated pneumonia. Am. J. Respir. Crit. Care Med. 2013, 188, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Lash, T.L.; Fox, M.P.; MacLehose, R.F.; Maldonado, G.; McCandless, L.C.; Greenland, S. Good practices for quantitative bias analysis. Int. J. Epidemiol. 2014, 43, 1969–1985. [Google Scholar] [CrossRef]
- Banack, H.R.; Hayes-Larson, E.; Mayeda, E.R. Monte Carlo Simulation Approaches for Quantitative Bias Analysis: A Tutorial. Epidemiol. Rev. 2022, 43, 106–117. [Google Scholar] [CrossRef] [PubMed]
Empirical Non-Anti-Pseudomonal Antibiotics (N a = 584) | Empirical Anti-Pseudomonal Antibiotics (N = 271) | Overall (N = 855) | |
---|---|---|---|
Age (mean (SD ‡)) | 75.5 (12.5) | 74.7 (11.8) | 75.2 (12.3) |
Male | 463 (79.3) | 217 (80.1) | 680 (79.5) |
Number of beds (%) | |||
≥100–<300 | 59 (10.1) | 28 (10.3) | 87 (10.2) |
≥300–<500 | 239 (40.9) | 121 (44.6) | 360 (42.1) |
≥500 | 286 (49.0) | 122 (45.0) | 408 (47.7) |
Source of infection (%) | |||
Community-acquired | 468 (80.1) | 208 (76.8) | 676 (79.1) |
Nursing care-acquired | 51 (8.7) | 20 (7.4) | 71 (8.3) |
Hospital-acquired | 65 (11.1) | 43 (15.9) | 108 (12.6) |
Body mass index (%) | |||
<18.5 kg/m2 | 114 (19.5) | 74 (27.3) | 188 (22.0) |
≥18.5–<25 kg/m2 | 275 (47.1) | 118 (43.5) | 393 (46.0) |
≥25 kg/m2 | 89 (15.2) | 44 (16.2) | 133 (15.6) |
Missing | 106 (18.2) | 35 (12.9) | 141 (16.5) |
Activity of daily living (%) | |||
Full support | 132 (22.6) | 79 (29.2) | 211 (24.7) |
Partially dependent | 84 (14.4) | 28 (10.3) | 112 (13.1) |
Independent | 368 (63.0) | 164 (60.5) | 532 (62.2) |
Altered mental status (%) | 131 (22.4) | 67 (24.7) | 198 (23.2) |
Missing | 4 (0.7) | 4 (1.5) | 8 (0.9) |
Exercise tolerability (%) | |||
Low | 214 (36.6) | 89 (32.8) | 303 (35.4) |
Missing | 3 (0.5) | 3 (1.1) | 6 (0.7) |
Immunodeficiency (%) | 127 (21.7) | 84 (31.0) | 211 (24.7) |
Home oxygen therapy (%) | 8 (1.4) | 4 (1.5) | 12 (1.4) |
Smoking (%) | 340 (58.2) | 161 (59.4) | 501 (58.6) |
Charlson Comorbidity Score (median [IQR §]) | 4.0 [3.0, 6.0] | 4.0 [3.0, 6.0] | 4.0 [3.0, 6.0] |
Previous antibiotics use within 90 days before admission | 94 (16.1) | 54 (19.9) | 148 (17.3) |
Dialysis at baseline (%) | 3 (0.5) | 2 (0.7) | 5 (0.6) |
Blood urea nitrogen (%) | |||
<14 mg/dL | 208 (35.6) | 99 (36.5) | 307 (35.9) |
≥14–<22.4 mg/dL | 209 (35.8) | 88 (32.5) | 297 (34.7) |
≤22.4 mg/dL | 162 (27.7) | 81 (29.9) | 243 (28.4) |
Missing | 5 (0.9) | 3 (1.1) | 8 (0.9) |
Serum albumin (%) | |||
≤2.7 g/dL | 90 (15.4) | 28 (10.3) | 118 (13.8) |
Missing | 31 (5.3) | 16 (5.9) | 47 (5.5) |
Oxygen use on admission (%) | 361 (61.8) | 169 (62.4) | 530 (62.0) |
Antibiotics | Frequency (%) |
---|---|
Anti-pseudomonal antibiotics (N * = 287) | |
Piperacillin/tazobactam | 189 (65.9) |
Carbapenem | 79 (27.5) |
Quinolone | 7 (2.4) |
Other antibiotics | 12 (4.2) |
Non-anti-pseudomonal antibiotics (N = 568) | |
Ampicillin/sulbactam | 546 (96.1) |
Ceftriaxone | 60 (10.6) |
Clindamycin | 33 (5.8) |
Vancomycin | 9 (1.6) |
Metronidazole | 3 (0.5) |
Empirical Anti-Pseudomonal Antibiotics (N * = 271) | Empirical Non-Anti-Pseudomonal Antibiotics (N = 584) | p-Value | |
---|---|---|---|
Death within 90 days from admission (%) | |||
Alive | 132 (48.7) | 312 (55.0) | |
Death | 32 (11.8) | 47 (8.0) | |
Censored | 107 (39.5) | 216 (37.0) | |
Thoracic surgery within 90 days from admission (%) | |||
No thoracic surgery | 106 (39.1) | 285 (48.8) | |
Thoracic surgery | 35 (12.9) | 54 (9.2) | |
Censored | 130 (48.0) | 245 (42.0) | |
Main analyses (N = 793) | |||
Thoracic surgery | HR ‡: 1.63 (95% CI §: 1.05–2.54) | 0.891 | |
Death | HR: 1.52 (95% CI: 0.94–2.44) | 0.420 | |
Subgroup analyses (N = 352) | |||
Thoracic surgery | HR: 1.45 (95% CI: 0.72–2.93) | 0.508 | |
Death | HR: 2.06 (95% CI: 1.03–4.13) | 0.040 | |
Exploratory analyses | |||
Intravenous vasopressor within 7 days from admission | 8 (3.0) | 6 (1.0) | 0.076 |
Intrapleural urokinase therapy during hospitalization | 97 (35.8) | 164 (28.1) | 0.028 |
Tracheal intubation within 7 days from admission | 1 (0.2) | 3 (1.1) | 0.219 |
Mechanical ventilation within 7 days from admission | 14 (2.4) | 10 (3.7) | 0.400 |
Outcome at discharge (%) | 0.780 | ||
Discharge | 262 (96.7) | 565 (96.7) | |
Transferred to another hospital | 9 (3.3) | 18 (3.1) | |
In-hospital death | 0 (0.0) | 0 (0.0) | |
Missing | 0 (0.0) | 1 (0.2) | |
Clostridioides difficile colitis (%) | 6 (2.2) | 17 (2.9) | 0.720 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiroshita, A.; Tochitani, K.; Maki, Y.; Terayama, T.; Kataoka, Y. Association between Empirical Anti-Pseudomonal Antibiotics and Progression to Thoracic Surgery and Death in Empyema: Database Research. Antibiotics 2024, 13, 383. https://doi.org/10.3390/antibiotics13050383
Shiroshita A, Tochitani K, Maki Y, Terayama T, Kataoka Y. Association between Empirical Anti-Pseudomonal Antibiotics and Progression to Thoracic Surgery and Death in Empyema: Database Research. Antibiotics. 2024; 13(5):383. https://doi.org/10.3390/antibiotics13050383
Chicago/Turabian StyleShiroshita, Akihiro, Kentaro Tochitani, Yohei Maki, Takero Terayama, and Yuki Kataoka. 2024. "Association between Empirical Anti-Pseudomonal Antibiotics and Progression to Thoracic Surgery and Death in Empyema: Database Research" Antibiotics 13, no. 5: 383. https://doi.org/10.3390/antibiotics13050383
APA StyleShiroshita, A., Tochitani, K., Maki, Y., Terayama, T., & Kataoka, Y. (2024). Association between Empirical Anti-Pseudomonal Antibiotics and Progression to Thoracic Surgery and Death in Empyema: Database Research. Antibiotics, 13(5), 383. https://doi.org/10.3390/antibiotics13050383