Environmental Antimicrobial Resistance: Implications for Food Safety and Public Health
Abstract
:1. Introduction
2. Development and Spread of AMR in Environmental Niches
2.1. Soil Environments
2.2. Aquatic Environments
2.3. Food Production Systems
3. Implications of Environmental Antimicrobial Resistance on Food Safety
3.1. Transmission of Resistant Bacteria Through Food Chains
3.1.1. Contamination During Food Processing and Handling
3.1.2. Intentionally Introducing Microorganisms into Food as Supplementary Substances
3.2. Risk Assessment of Resistant Bacteria in Food Products
Outbreaks of Foodborne Illnesses Caused by Resistant Bacteria, Europe as a Case Study
4. Public Health Impact and Human Health Risks of AMR
4.1. Global Landscape of AMR
4.2. Public Health Impact of AMR
4.2.1. Increased Morbidity and Mortality
4.2.2. Complications in Medical Procedures
4.2.3. Economic Burden
4.2.4. Impact on Global Health Security
4.2.5. Reduced Effectiveness of Antibiotics
4.2.6. Impact on Vulnerable Populations
4.3. Human Health Risks of AMR
Infections Caused by Resistant Bacteria and Challenges in Treatment and Increased Healthcare Costs
Infection Category | Common Resistant Bacteria | Notable Antibiotic Resistance Types | Impact and Challenges |
---|---|---|---|
Respiratory Infections | Streptococcus pneumonia, Mycobacterium tuberculosis, Haemophilus influenzae, and Pseudomonas aeruginosa | Penicillin resistance, MDR-TB, XDR-TB, and β-lactam resistance, and carbapenem resistance | Increased morbidity and mortality, limited treatment options, and high treatment costs |
Urinary Tract Infections | Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Enterococcus faecalis | ESBL-producing strains, carbapenem resistance, and vancomycin resistance | High recurrence rates, complicated infections in healthcare settings, and difficult management in vulnerable populations |
Skin and Soft Tissue Infections | Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Acinetobacter baumannii | Methicillin resistance, carbapenem resistance, and multidrug resistance | Difficult to treat, high transmission rates in community and hospital settings, and increased treatment costs |
Gastrointestinal Infections | Salmonella spp., Clostridium difficile, Shigella spp., and Campylobacter jejuni | Fluoroquinolone resistance, multidrug resistance, and macrolide resistance | Severe diarrhea and colitis, high relapse rates, and increased healthcare burden |
Bloodstream Infections | Enterococcus faecium, Klebsiella pneumoniae, Staphylococcus aureus (MRSA), and Acinetobacter baumannii | Vancomycin resistance, carbapenem resistance, methicillin resistance, and multidrug resistance | High mortality rates, challenges in infection control, and prolonged hospital stays |
Sexually Transmitted Infections | Neisseria gonorrhoeae and Treponema pallidum | Resistance to cephalosporins, resistance to azithromycin, and resistance to penicillin | Increasing prevalence, limited treatment options, and public health implications |
Hospital-acquired Infections | Pseudomonas aeruginosa, Enterobacter spp., Acinetobacter baumannii, and Escherichia coli | Carbapenem resistance, multidrug resistance, and ESBL-producing strains | Prolonged hospital stays, increased healthcare costs, and difficult to control outbreaks |
Gastrointestinal Infections | Helicobacter pylori and Vibrio cholera | Clarithromycin resistance and tetracycline resistance | Complicated treatment and increased morbidity |
Central Nervous System Infections | Neisseria meningitidis and Streptococcus pneumonia | Penicillin resistance and ciprofloxacin resistance | High fatality rates and complicated treatment |
Bone and Joint Infections | Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa | Methicillin resistance and carbapenem resistance | Prolonged treatment and high recurrence rates |
4.4. Public Health Policies Addressing AMR
4.4.1. Antimicrobial Stewardship
- o
- o
- Stewardship programs are implemented in healthcare settings to educate healthcare providers and patients about the responsible use of antimicrobials [128].
4.4.2. Infection Prevention and Control
- o
- o
- Vaccination programs are also promoted to reduce the incidence of infections that might otherwise require antibiotic treatment [130].
4.4.3. Research and Development
- o
- Public health regulations support research into new antibiotics, alternative treatments, and rapid diagnostic tools. This is critical for staying ahead of evolving resistant strains and ensuring that effective treatments remain available [131].
- o
- Incentives for pharmaceutical companies to develop new antimicrobials and support for public-private partnerships are often part of these strategies [126].
4.4.4. Education and Awareness
- o
- o
- Training programs for healthcare providers ensure that they are equipped with the knowledge and tools to combat AMR effectively [128].
4.4.5. Surveillance, Monitoring, and Reporting Systems
4.4.6. Regulatory Frameworks
- o
- o
- Regulations also encompass the agricultural sector, limiting the use of antibiotics in livestock and promoting the use of alternatives to enhance animal health and productivity without contributing to resistance [135].
4.5. Importance of AMR Policies and Regulations
4.5.1. Protecting Public Health
4.5.2. Promoting Sustainable Healthcare
4.5.3. Enhancing Global Health Security
4.5.4. Encouraging Responsible Practices
5. Combatting AMR Through Innovations in Antibiotic Development and Strategic Enhancements
5.1. Mechanisms of Resistance
5.2. Design and Synthesis of New Antibiotics Against Resistant Microorganisms
5.3. Strategies to Enhance Efficacy and Reduce Resistance
6. Environmental and Ecological Perspectives
6.1. Environmental Reservoirs of Resistant Genes
6.1.1. Climate
6.1.2. Habitats
6.1.3. Environmental Contaminants
6.2. Impact of Human Activities
7. Integrated Strategies to Combat AMR
7.1. Multidisciplinary Approaches
7.2. Development of Comprehensive AMR Mitigation Strategies
7.3. Policy and Regulatory Frameworks
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Antimicrobial Resistance; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.R.M.; Mitra, S.; Emran, T.B.; Dhama, K.; Ripon, M.K.H.; Gajdács, M.; Sahibzada, M.U.K. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, C.; Grohmann, E. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics 2023, 12, 328. [Google Scholar] [CrossRef] [PubMed]
- Gajdács, M.; Albericio, F. Antibiotic resistance: From the bench to patients. Antibiotics 2019, 8, 129. [Google Scholar] [CrossRef] [PubMed]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin. Microbiol. Rev. 2019, 32, e00031-19. [Google Scholar] [CrossRef]
- Günther, G. Multidrug-resistant and extensively drug-resistant tuberculosis: A review of current concepts and future challenges. Clin. Med. 2014, 14, 279–285. [Google Scholar] [CrossRef]
- Hamido, A.J.; Sirika, N.B.; Omar, I.A. Literature review on antibiotics. Clin. Med. Health Res. J. 2022, 2, 174–182. [Google Scholar] [CrossRef]
- Thorpe, K.E.; Joski, P.; Johnston, K.J. Antibiotic-resistant infection treatment costs have doubled since 2002, now exceeding $2 billion annually. Health Aff. 2018, 37, 662–669. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Baris, E.; Go, D.S.; Lofgren, H.; Osorio-Rodarte, I.; Thierfelder, K. Assessing the Global Economic and Poverty Effects of Antimicrobial Resistance; World Bank Policy Research Working Paper; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Pantea, L.; Croitoru, C.; Burduniuc, P.O.; Balan, G.; Anton, B.M. Features of the economic impact of antimicrobial resistance elucidated in scientific publications. Arta Medica 2023, 89, 35–45. [Google Scholar]
- Edwards, M.; Hamilton, R.; Nicola, O.; Fitzgibbon, S.; Samarasekera, R. Antibiotic Resistance: Modeling the Impact on Mortality and Morbidity; Institute and Faculty of Actuaries: London, UK, 2019. [Google Scholar]
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef]
- WHO. 10 Global Health Issues to Track in 2021; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Khan, S. Antimicrobial Resistance in Environment and Antimicrobial Stewardship; IntechOpen: London, UK, 2023. [Google Scholar]
- Stavropoulou, E.; Tsigalou, C.; Bezirtzoglou, E. Spreading of antimicrobial resistance across clinical borders. J. Clin. Pract. Res. 2019, 41, 238. [Google Scholar]
- Felis, E.; Kalka, J.; Sochacki, A.; Kowalska, K.; Bajkacz, S.; Harnisz, M.; Korzeniewska, E. Antimicrobial pharmaceuticals in the aquatic environment-occurrence and environmental implications. Eur. J. Pharmacol. 2020, 866, 172813. [Google Scholar] [CrossRef] [PubMed]
- Pruden, A.; Larsson, D.J.; Amézquita, A.; Collignon, P.; Brandt, K.K.; Graham, D.W.; Lazorchak, J.M.; Suzuki, S.; Silley, P.; Snape, J.R. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ. Health Perspect. 2013, 121, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Baquero, F.; Martinez, J.L.; Lanza, V.F.; Rodríguez-Beltrán, J.; Galán, J.C.; San Millán, A.; Cantón, R.; Coque, T.M. Evolutionary pathways and trajectories in antibiotic resistance. Clin. Microbiol. Rev. 2021, 34, e00050-19. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. Efsa J. 2021, 19, e06651. [Google Scholar]
- Zalewska, M.; Błażejewska, A.; Czapko, A.; Popowska, M. Antibiotics and antibiotic resistance genes in animal manure–consequences of its application in agriculture. Front. Microbiol. 2021, 12, 610656. [Google Scholar] [CrossRef]
- Van Epps, A.; Blaney, L. Antibiotic residues in animal waste: Occurrence and degradation in conventional agricultural waste management practices. Curr. Pollut. Rep. 2016, 2, 135–155. [Google Scholar] [CrossRef]
- Kaur, K.; Reddy, S.; Barathe, P.; Oak, U.; Shriram, V.; Kharat, S.S.; Govarthanan, M.; Kumar, V. Microplastic-associated pathogens and antimicrobial resistance in environment. Chemosphere 2022, 291, 133005. [Google Scholar] [CrossRef]
- Rauseo, J.; Caracciolo, A.B.; Ademollo, N.; Cardoni, M.; Di Lenola, M.; Gaze, W.; Stanton, I.; Grenni, P.; Pescatore, T.; Spataro, F. Dissipation of the antibiotic sulfamethoxazole in a soil amended with anaerobically digested cattle manure. J. Hazard. Mater. 2019, 378, 120769. [Google Scholar] [CrossRef]
- Markowicz, A.; Bondarczuk, K.; Cycoń, M.; Sułowicz, S. Land application of sewage sludge: Response of soil microbial communities and potential spread of antibiotic resistance. Environ. Pollut. 2021, 271, 116317. [Google Scholar] [CrossRef]
- Shi, H.; Hu, X.; Li, W.; Zhang, J.; Hu, B.; Lou, L. Soil component: A potential factor affecting the occurrence and spread of antibiotic resistance genes. Antibiotics 2023, 12, 333. [Google Scholar] [CrossRef]
- Demaneche, S.; Jocteur-Monrozier, L.; Quiquampoix, H.; Simonet, P. Evaluation of biological and physical protection against nuclease degradation of clay-bound plasmid DNA. Appl. Environ. Microbiol. 2001, 67, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Chen, J.; Zhu, J.; Hao, X.; Dao, G.; Chen, W.; Cai, P.; Huang, Q. Divergent bacterial transformation exerted by soil minerals. Sci. Total Environ. 2021, 784, 147173. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Liu, Z.; Hu, B.; Zhu, L. Effects of iron mineral adhesion on bacterial conjugation: Interfering the transmission of antibiotic resistance genes through an interfacial process. J. Hazard. Mater. 2022, 435, 128889. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Ren, P.; Wu, Y.; Liu, J.; Huang, Q.; Cai, P. Effects of hematite on the dissemination of antibiotic resistance in pathogens and underlying mechanisms. J. Hazard. Mater. 2022, 431, 128537. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri Nezhad Fard, R.; Barton, M.; Heuzenroeder, M. Bacteriophage-mediated transduction of antibiotic resistance in enterococci. Lett. Appl. Microbiol. 2011, 52, 559–564. [Google Scholar] [CrossRef]
- Peterson, E.; Kaur, P. Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol. 2018, 9, 2928. [Google Scholar] [CrossRef]
- Zhou, C.; Pan, Y.; Ge, S.; Coulon, F.; Yang, Z. Rapid methods for antimicrobial resistance diagnosis in contaminated soils for effective remediation strategy. TrAC Trends Anal. Chem. 2021, 137, 116203. [Google Scholar] [CrossRef]
- Li, X.; Gu, A.Z.; Zhang, Y.; Xie, B.; Li, D.; Chen, J. Sub-lethal concentrations of heavy metals induce antibiotic resistance via mutagenesis. J. Hazard. Mater. 2019, 369, 9–16. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, S.; Zhao, D.; Xiong, J.; Li, C.; Ma, Y.; Li, S.; Huang, B.; Pan, X. Molybdenum disulfide nanosheets promote the plasmid-mediated conjugative transfer of antibiotic resistance genes. J. Environ. Manag. 2024, 358, 120827. [Google Scholar] [CrossRef]
- McEachran, A.D.; Blackwell, B.R.; Hanson, J.D.; Wooten, K.J.; Mayer, G.D.; Cox, S.B.; Smith, P.N. Antibiotics, bacteria, and antibiotic resistance genes: Aerial transport from cattle feed yards via particulate matter. Environ. Health Perspect. 2015, 123, 337–343. [Google Scholar] [CrossRef]
- Memesh, R.; Yasir, M.; Ledder, R.G.; Zowawi, H.; McBain, A.J.; Azhar, E.I. An update on the prevalence of colistin and carbapenem-resistant Gram-negative bacteria in aquaculture: An emerging threat to public health. J. Appl. Microbiol. 2024, 135, lxad288. [Google Scholar] [CrossRef]
- Nguyen, T.G.; Huynh, N.T.H. Characterization of groundwater quality and human health risk assessment. Civ. Eng. J. 2023, 9, 618–628. [Google Scholar] [CrossRef]
- Avendaño-Herrera, R.; Mancilla, M.; Miranda, C.D. Use of antimicrobials in Chilean Salmon farming: Facts, myths and perspectives. Rev. Aquac. 2023, 15, 89–111. [Google Scholar] [CrossRef]
- Leal, J.F.; Santos, E.B.; Esteves, V.I. Oxytetracycline in intensive aquaculture: Water quality during and after its administration, environmental fate, toxicity and bacterial resistance. Rev. Aquac. 2019, 11, 1176–1194. [Google Scholar] [CrossRef]
- Shigei, M.; Assayed, A.; Hazaymeh, A.; Dalahmeh, S.S. Pharmaceutical and antibiotic pollutant levels in wastewater and the waters of the Zarqa River, Jordan. Appl. Sci. 2021, 11, 8638. [Google Scholar] [CrossRef]
- Kortesmäki, E.; Östman, J.R.; Meierjohann, A.; Brozinski, J.M.; Eklund, P.; Kronberg, L. Occurrence of antibiotics in influent and effluent from 3 major wastewater-treatment plants in Finland. Environ. Toxicol. Chem. 2020, 39, 1774–1789. [Google Scholar] [CrossRef]
- Zubareva, V.; Sokolova, O.; Bezborodova, N.; Shkuratova, I.; Krivinogova, A.; Bytov, M. Molecular mechanisms and genetic determinants of resistance to antibacterial drugs in microorganisms. J. Agric. Biol. 2022, 57, 237–256. [Google Scholar] [CrossRef]
- Zhang, K.; Xin, R.; Zhao, Z.; Ma, Y.; Zhang, Y.; Niu, Z. Antibiotic resistance genes in drinking water of China: Occurrence, distribution and influencing factors. Ecotoxicol. Environ. Saf. 2020, 188, 109837. [Google Scholar] [CrossRef]
- Alexander, J.; Hembach, N.; Schwartz, T. Evaluation of antibiotic resistance dissemination by wastewater treatment plant effluents with different catchment areas in Germany. Sci. Rep. 2020, 10, 8952. [Google Scholar] [CrossRef]
- Amarasiri, M.; Sano, D.; Suzuki, S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2016–2059. [Google Scholar] [CrossRef]
- Adegoke, A.A.; Amoah, I.D.; Stenström, T.A.; Verbyla, M.E.; Mihelcic, J.R. Epidemiological evidence and health risks associated with agricultural reuse of partially treated and untreated wastewater: A review. Front. Public Health 2018, 6, 337. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.; Kaur, K.; Barathe, P.; Shriram, V.; Govarthanan, M.; Kumar, V. Antimicrobial resistance in urban river ecosystems. Microbiol. Res. 2022, 263, 127135. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Ellabaan, M.M.H.; Charusanti, P.; Munck, C.; Blin, K.; Tong, Y.; Weber, T.; Sommer, M.O.; Lee, S.Y. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat. Commun. 2017, 8, 15784. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Zhou, Y.; Fu, J.; Qi, X.; Wang, Z.; Li, J.; Zhang, P.; Zong, G.; Cao, G. Cadmium stress efficiently enhanced meropenem degradation by the meropenem-and cadmium-resistant strain Pseudomonas putida R51. J. Hazard. Mater. 2022, 429, 128354. [Google Scholar] [CrossRef] [PubMed]
- WHO. Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Yu, Q.; Feng, T.; Yang, J.; Su, W.; Zhou, R.; Wang, Y.; Zhang, H.; Li, H. Seasonal distribution of antibiotic resistance genes in the Yellow River water and tap water, and their potential transmission from water to human. Environ. Pollut. 2022, 292, 118304. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Y.; Li, L.; Liu, J.; Yan, X. Distribution, sources, and potential risks of antibiotic resistance genes in wastewater treatment plant: A review. Environ. Pollut. 2022, 310, 119870. [Google Scholar] [CrossRef]
- Singh, A.; Amod, A.; Pandey, P.; Bose, P.; Pingali, M.S.; Shivalkar, S.; Varadwaj, P.K.; Sahoo, A.K.; Samanta, S.K. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies. Biomed. Mater. 2022, 17, 022003. [Google Scholar] [CrossRef]
- Miranda, C.D.; Godoy, F.A.; Lee, M.R. Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Front. Microbiol. 2018, 9, 1284. [Google Scholar] [CrossRef]
- Tortorella, E.; Tedesco, P.; Palma Esposito, F.; January, G.G.; Fani, R.; Jaspars, M.; De Pascale, D. Antibiotics from deep-sea microorganisms: Current discoveries and perspectives. Mar. Drugs 2018, 16, 355. [Google Scholar] [CrossRef]
- Karunasagar, I. Public health and trade impact of antimicrobial use in aquaculture. In Improving Biosecurity Through Prudent and Responsible Use of Veterinary Medicines in Aquatic Food Production; Bondad-Reantaso, M.G., Arthur, J.R., Subasinghe, R.P., Eds.; FAO Fisheries and Aquaculture Technical Paper No. 547; FAO: Rome, Italy, 2012; pp. 1–9. [Google Scholar]
- Von Wintersdorff, C.J.; Penders, J.; Van Niekerk, J.M.; Mills, N.D.; Majumder, S.; Van Alphen, L.B.; Savelkoul, P.H.; Wolffs, P.F. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef]
- Mshana, S.E.; Sindato, C.; Matee, M.I.; Mboera, L.E. Antimicrobial use and resistance in agriculture and food production systems in Africa: A systematic review. Antibiotics 2021, 10, 976. [Google Scholar] [CrossRef] [PubMed]
- Lekshmi, M.; Ammini, P.; Kumar, S.; Varela, M.F. The food production environment and the development of antimicrobial resistance in human pathogens of animal origin. Microorganisms 2017, 5, 11. [Google Scholar] [CrossRef] [PubMed]
- de Alcântara Rodrigues, I.; Ferrari, R.G.; Panzenhagen, P.H.N.; Mano, S.B.; Conte-Junior, C.A. Antimicrobial resistance genes in bacteria from animal-based foods. Adv. Appl. Microbiol. 2020, 112, 143–183. [Google Scholar] [PubMed]
- Gomes, B.; Dias, M.; Cervantes, R.; Pena, P.; Santos, J.; Vasconcelos Pinto, M.; Viegas, C. One health approach to tackle microbial contamination on poultries—A systematic review. Toxics 2023, 11, 374. [Google Scholar] [CrossRef] [PubMed]
- Cabello, F.C.; Godfrey, H.P.; Tomova, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschmann, A.H. Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A. Antibiotic resistance: One health one world outlook. Front. Cell. Infect. Microbiol. 2021, 11, 771510. [Google Scholar] [CrossRef]
- Verraes, C.; Van Boxstael, S.; Van Meervenne, E.; Van Coillie, E.; Butaye, P.; Catry, B.; De Schaetzen, M.-A.; Van Huffel, X.; Imberechts, H.; Dierick, K. Antimicrobial resistance in the food chain: A review. Int. J. Environ. Res. Public Health 2013, 10, 2643–2669. [Google Scholar] [CrossRef]
- Kläui, A.; Bütikofer, U.; Naskova, J.; Wagner, E.; Marti, E. Fresh produce as a reservoir of antimicrobial resistance genes: A case study of Switzerland. Sci. Total Environ. 2024, 907, 167671. [Google Scholar] [CrossRef]
- Samtiya, M.; Matthews, K.R.; Dhewa, T.; Puniya, A.K. Antimicrobial resistance in the food chain: Trends, mechanisms, pathways, and possible regulation strategies. Foods 2022, 11, 2966. [Google Scholar] [CrossRef]
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2017, 57, 2857–2876. [Google Scholar] [CrossRef]
- Zarzecka, U.; Zadernowska, A.; Chajęcka-Wierzchowska, W.; Adamski, P. Effect of high pressure processing on changes in antibiotic resistance genes expression among strains from commercial starter cultures. Food Microbiol. 2023, 110, 104169. [Google Scholar] [CrossRef] [PubMed]
- Le Devendec, L.; Jouy, E.; Kempf, I. Evaluation of resistance gene transfer from heat-treated Escherichia coli. Int. J. Food Microbiol. 2018, 270, 39–43. [Google Scholar] [CrossRef] [PubMed]
- James, C.; Dixon, R.; Talbot, L.; James, S.J.; Williams, N.; Onarinde, B.A. Assessing the impact of heat treatment of food on antimicrobial resistance genes and their potential uptake by other bacteria—A critical review. Antibiotics 2021, 10, 1440. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Foodborne antimicrobial resistance as a biological hazard-Scientific Opinion of the Panel on Biological Hazards. EFSA J. 2008, 6, 765. [Google Scholar] [CrossRef]
- Ayivi, R.D.; Gyawali, R.; Krastanov, A.; Aljaloud, S.O.; Worku, M.; Tahergorabi, R.; Silva, R.C.d.; Ibrahim, S.A. Lactic acid bacteria: Food safety and human health applications. Dairy 2020, 1, 202–232. [Google Scholar] [CrossRef]
- Florez-Cuadrado, D.; Moreno, M.A.; Ugarte-Ruíz, M.; Domínguez, L. Antimicrobial resistance in the food chain in the European Union. Adv. Food Nutr. Res. 2018, 86, 115–136. [Google Scholar]
- Cheng, G.; Ning, J.; Ahmed, S.; Huang, J.; Ullah, R.; An, B.; Hao, H.; Dai, M.; Huang, L.; Wang, X. Selection and dissemination of antimicrobial resistance in Agri-food production. Antimicrob. Resist. Infect. Control 2019, 8, 158. [Google Scholar] [CrossRef]
- Gadde, U.; Kim, W.; Oh, S.; Lillehoj, H.S. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Anim. Health Res. Rev. 2017, 18, 26–45. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.; Duffy, G.; Nally, P.; O’mahony, R.; McDowell, D.; Fanning, S. Transfer of ampicillin resistance from Salmonella Typhimurium DT104 to Escherichia coli K12 in food. Lett. Appl. Microbiol. 2008, 46, 210–215. [Google Scholar] [CrossRef]
- Toomey, N.; Monaghan, A.; Fanning, S.; Bolton, D.J. Assessment of antimicrobial resistance transfer between lactic acid bacteria and potential foodborne pathogens using in vitro methods and mating in a food matrix. Foodborne Pathog. Dis. 2009, 6, 925–933. [Google Scholar] [CrossRef]
- Jose, N.M.; Bunt, C.R.; Hussain, M.A. Implications of antibiotic resistance in probiotics. Food Rev. Int. 2015, 31, 52–62. [Google Scholar] [CrossRef]
- Campedelli, I.; Mathur, H.; Salvetti, E.; Clarke, S.; Rea, M.C.; Torriani, S.; Ross, R.P.; Hill, C.; O’Toole, P.W. Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl. Environ. Microbiol. 2019, 85, e01738-18. [Google Scholar] [CrossRef] [PubMed]
- Abriouel, H.; Muñoz, M.d.C.C.; Lerma, L.L.; Montoro, B.P.; Bockelmann, W.; Pichner, R.; Kabisch, J.; Cho, G.-S.; Franz, C.M.; Gálvez, A. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res. Int. 2015, 78, 465–481. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.d.C.C.; Benomar, N.; Lerma, L.L.; Gálvez, A.; Abriouel, H. Antibiotic resistance of Lactobacillus pentosus and Leuconostoc pseudomesenteroides isolated from naturally-fermented Aloreña table olives throughout fermentation process. Int. J. Food Microbiol. 2014, 172, 110–118. [Google Scholar] [CrossRef]
- Thumu, S.C.R.; Halami, P.M. Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Antonie Van Leeuwenhoek 2012, 102, 541–551. [Google Scholar] [CrossRef]
- Colomer-Lluch, M.; Jofre, J.; Muniesa, M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS ONE 2011, 6, e17549. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. CDC Antibiotic Resistance Threats in the United States; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. [Google Scholar]
- Asai, T.; Hiki, M.; Ozawa, M.; Koike, R.; Eguchi, K.; Kawanishi, M.; Kojima, A.; Endoh, Y.S.; Hamamoto, S.; Sakai, M. Control of the development and prevalence of antimicrobial resistance in bacteria of food animal origin in Japan: A new approach for risk management of antimicrobial veterinary medicinal products in Japan. Foodborne Pathog. Dis. 2014, 11, 171–176. [Google Scholar] [CrossRef]
- Aarestrup, F.M. The livestock reservoir for antimicrobial resistance: A personal view on changing patterns of risks, effects of interventions and the way forward. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140085. [Google Scholar] [CrossRef]
- Beyene, T.; Hayishe, H.; Gizaw, F.; Beyi, A.F.; Abunna, F.; Mammo, B.; Ayana, D.; Waktole, H.; Abdi, R.D. Prevalence and antimicrobial resistance profile of Staphylococcus in dairy farms, abattoir and humans in Addis Ababa, Ethiopia. BMC Res. Notes 2017, 10, 1–9. [Google Scholar] [CrossRef]
- Hiroi, M.; Kawamori, F.; Harada, T.; Sano, Y.; Miwa, N.; Sugiyama, K.; Hara-Kudo, Y.; Masuda, T. Antibiotic resistance in bacterial pathogens from retail raw meats and food-producing animals in Japan. J. Food Prot. 2012, 75, 1774–1782. [Google Scholar] [CrossRef]
- Conceição, S.; Queiroga, M.C.; Laranjo, M. Antimicrobial resistance in Bacteria from meat and meat products: A one health perspective. Microorganisms 2023, 11, 2581. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Rensing, C.; Vestergaard, G.; Arumugam, M.; Nesme, J.; Gupta, S.; Brejnrod, A.D.; Sørensen, S.J. Metagenomic evidence for co-occurrence of antibiotic, biocide and metal resistance genes in pigs. Environ. Int. 2022, 158, 106899. [Google Scholar] [CrossRef] [PubMed]
- Bouchami, O.; Fraqueza, M.J.; Faria, N.A.; Alves, V.; Lawal, O.U.; de Lencastre, H.; Miragaia, M. Evidence for the dissemination to humans of methicillin-resistant Staphylococcus aureus ST398 through the pork production chain: A study in a Portuguese slaughterhouse. Microorganisms 2020, 8, 1892. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Bougouffa, S.; Park, T.-J.; Lau, A.; Tong, M.-K.; Chow, K.-H.; Ho, P.-L. Sharing of antimicrobial resistance genes between humans and food animals. MSystems 2022, 7, e00775-22. [Google Scholar] [CrossRef] [PubMed]
- Coipan, C.E.; Friesema, I.H.; van den Beld, M.J.; Bosch, T.; Schlager, S.; van der Voort, M.; Frank, C.; Lang, C.; Fruth, A.; Franz, E. Sporadic Occurrence of Enteroaggregative Shiga Toxin–Producing Escherichia coli O104: H4 Similar to 2011 Outbreak Strain. Emerg. Infect. Dis. 2022, 28, 1890. [Google Scholar] [CrossRef]
- Bielaszewska, M.; Mellmann, A.; Zhang, W.; Köck, R.; Fruth, A.; Bauwens, A.; Peters, G.; Karch, H. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: A microbiological study. Lancet Infect. Dis. 2011, 11, 671–676. [Google Scholar] [CrossRef]
- Karch, H.; Denamur, E.; Dobrindt, U.; Finlay, B.B.; Hengge, R.; Johannes, L.; Ron, E.Z.; Tønjum, T.; Sansonetti, P.J.; Vicente, M. The enemy within us: Lessons from the 2011 European Escherichia coli O104: H4 outbreak. EMBO Mol. Med. 2012, 4, 841–848. [Google Scholar] [CrossRef]
- EFSA-ECDC. The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, e07666. [Google Scholar]
- EFSA. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J. 2021, 19. [Google Scholar] [CrossRef]
- Adil, M.; Deeba, F.; Saeed, Z.; Ukasha, M.; Ashfaq, K. Tauseef-ur-Rahman and Murtaza G, 2023. Role of Escherichia coli, Staphylococcus, Salmonella and Brucella species in spread of antimicrobial resistance across species. Zoonosis Unique Sci. Publ. Faisalabad Pak. 2023, 4, 121–131. [Google Scholar]
- Joh, H.S.; Dolabella, B.; Early, E.; Stelling, J.; Ak, G.; Upadhyaya, M.K.; Rahman, A.; Chuki, P.; MacWright, W.R.; Ondoa, P. CAPTURA Regional Workshop Proceedings (28–30 June 2022, Virtual). Clin. Infect. Dis. 2023, 77, S536–S542. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Consumption Database (ESAC-Net). 2009. Available online: https://www.ecdc.europa.eu/en/antimicrobial-consumption/surveillance-and-disease-data/database (accessed on 24 September 2024).
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277. [Google Scholar]
- Surveillance of Antimicrobial Resistance in Europe. 2018. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/surveillance-antimicrobial-resistance-Europe-2018.pdf (accessed on 24 September 2024).
- Global Burden of Disease (GBD). 2019. Available online: https://www.healthdata.org/research-analysis/gbd (accessed on 12 September 2024).
- Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar]
- Nguyen, A.Q.; Vu, H.P.; Nguyen, L.N.; Wang, Q.; Djordjevic, S.P.; Donner, E.; Yin, H.; Nghiem, L.D. Monitoring antibiotic resistance genes in wastewater treatment: Current strategies and future challenges. Sci. Total Environ. 2021, 783, 146964. [Google Scholar] [CrossRef]
- Palmer, G.H.; Buckley, G.J. The Health and Economic Burden of Resistance. In Combating Antimicrobial Resistance and Protecting the Miracle of Modern Medicine; National Academies of Sciences, Engineering, and Medicine, Health and Medicine Division, Board on Population Health and Public Health Practice, Committee on the Long-Term Health and Economic Effects of Antimicrobial Resistance in the United States; Palmer, G.H., Buckley, G.J., Eds.; National Academies Press: Washington, DC, USA, 2021. [Google Scholar]
- WHO. Tackling the Drug-Resistant TB Crisis; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- An Estimated 1.2 Million People Died in 2019 from Antibiotic-Resistant Bacterial Infections. University of Oxford. 2022. Available online: https://www.ox.ac.uk/news/2022-01-20-estimated-12-million-people-died-2019-antibiotic-resistant-bacterial-infections (accessed on 24 September 2024).
- de Kraker, M.E. Understanding the impact of antimicrobial resistance on outcomes of bloodstream infections in low-and middle-income countries. PLoS Med. 2023, 20, e1004262. [Google Scholar] [CrossRef]
- WHO. Antimicrobial Resistance; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Shelke, Y.P.; Bankar, N.J.; Bandre, G.R.; Hawale, D.V.; Dawande, P. An Overview of Preventive Strategies and the Role of Various Organizations in Combating Antimicrobial Resistance. Cureus 2023, 15, e44666. [Google Scholar] [CrossRef]
- WHO. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- UK 5-Year Action Plan for Antimicrobial Resistance 2024 to 2029. 2024. Available online: https://www.gov.uk/government/publications/uk-5-year-action-plan-for-antimicrobial-resistance-2024-to-2029 (accessed on 5 August 2024).
- WHO. Global Action Plan on Antimicrobial Resistance; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- WHO. Integrated Surveillance of Antimicrobial Resistance in Foodborne Bacteria: Application of a One Health Approach; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- CDC. Antimicrobial Resistance; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2024. [Google Scholar]
- WHO. Global Action Plan on Antimicrobial Resistance; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Global Health Security Agenda. 2014. Available online: https://ghsagenda.org/#google_vignette (accessed on 24 July 2024).
- Antibiotic Resistance. 2005. Available online: https://www.reactgroup.org/ (accessed on 30 August 2024).
- WHO. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Mariani, F.; Galvan, E.M. Staphylococcus aureus in Polymicrobial Skinand Soft Tissue Infections: Impact of Inter-Species Interactionsin Disease Outcome. Antibiotics 2023, 12, 1164. [Google Scholar] [CrossRef]
- Fischer, G.H.; Paterek, E. Campylobacter; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- WHO. Growing Antibiotic Resistance Forces Updates to Recommended Treatment for Sexually Transmitted Infections; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef]
- Tackling Antimicrobial Resistance. 2019. Available online: https://assets.publishing.service.gov.uk/media/6261392d8fa8f523bf22ab9e/UK_AMR_5_year_national_action_plan.pdf (accessed on 24 September 2024).
- National Action Plan for Combating Antibiotic-Resistant Bacteria. 2015. Available online: https://obamawhitehouse.archives.gov/sites/default/files/docs/national_action_plan_for_combating_antibotic-resistant_bacteria.pdf (accessed on 25 September 2024).
- Responding to the Threat of Antimicrobial Resistance: Australia’s First National Antimicrobial Resistance Strategy 2015–2019. 2020. Available online: https://www.amr.gov.au/resources/responding-threat-antimicrobial-resistance-australias-first-national-antimicrobial-resistance-strategy-2015-2019 (accessed on 24 September 2024).
- Ministry of Health of Singapore. National Strategic Action Plan on Antimicrobial Resistance Singapore; Ministry of Health of Singapore: Singapore, 2017. [Google Scholar]
- Ranjalkar, J.; Chandy, S.J. India’s National Action Plan for antimicrobial resistance–An overview of the context, status, and way ahead. J. Fam. Med. Prim. Care 2019, 8, 1828–1834. [Google Scholar] [CrossRef]
- Auld, A. GARDP|Global Antibiotic Research and Development Partnership. 2016. Available online: https://gardp.org/?gad_source=1&gclid=EAIaIQobChMIxqmey_XaiQMVv24PAh32STukEAAYASAAEgKU3_D_BwE (accessed on 24 September 2024).
- Strategic Plan 2021–2025. 2021. Available online: https://www.fda.gov/media/79976/download (accessed on 24 September 2024).
- EU Action on Antimicrobial Resistance. 2023. Available online: https://health.ec.europa.eu/antimicrobial-resistance/eu-action-antimicrobial-resistance_en (accessed on 24 September 2024).
- National Action Plan on Antimicrobial Resistance (AMR). 2016. Available online: https://www.mhlw.go.jp/content/10900000/001096228.pdf (accessed on 25 September 2024).
- Antimicrobial Resistance National Strategy Framework: A One Health Approach 2017–2024. Available online: https://knowledgehub.health.gov.za/elibrary/south-african-antimicrobial-resistance-national-strategy-framework-one-health-approach (accessed on 24 September 2024).
- Global Coordination of Antimicrobial Resistance Research. 2024. Available online: https://www.jpiamr.eu (accessed on 24 September 2024).
- National Action Plan to Contain Antimicrobial Resistance (2022–2025). 2016. Available online: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc-npm/nap-library/china-national-action-plan-on-amr-(2022-2025)---eng.pdf?sfvrsn=e3bf8980_4 (accessed on 25 September 2024).
- Health-Canada. Tackling Antimicrobial Resistance and Antimicrobial Use: A Pan-Canadian Framework for Action; Health-Canada: Ottawa, ON, Canada, 2017. [Google Scholar]
- Global AMR R&D Hub: Coordinating Global Efforts in Antimicrobial Resistance Research and Development. 2022. Available online: https://www.gesundheitsforschung-bmbf.de/en/GlobalAMRHub.php (accessed on 25 September 2024).
- Thailand National Strategic Plan on Antimicrobial Resistance 2017–2021. 2017. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC169834/ (accessed on 25 September 2024).
- Mugada, V.; Mahato, V.; Andhavaram, D.; Vajhala, S.M. Evaluation of prescribing patterns of antibiotics using selected indicators for antimicrobial use in hospitals and the access, watch, reserve (AWaRe) classification by the World Health Organization. Turk. J. Pharm. Sci. 2021, 18, 282. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, H.; Pachpute, S.; Yadav, R.P. Mechanism of drug resistance in bacteria: Efflux pump modulation for designing of new antibiotic enhancers. Folia Microbiol. 2021, 66, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Kaur, R.; Verma, S.; Singh, S. Antimicrobials and antibiotic resistance genes in water bodies: Pollution, risk, and control. Front. Environ. Sci. 2022, 10, 830861. [Google Scholar] [CrossRef]
- Brüssow, H. The antibiotic resistance crisis and the development of new antibiotics. Microb. Biotechnol. 2024, 17, e14510. [Google Scholar] [CrossRef] [PubMed]
- Labby, K.J.; Garneau-Tsodikova, S. Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections. Future Med. Chem. 2013, 5, 1285–1309. [Google Scholar] [CrossRef]
- Masi, M.; Réfregiers, M.; Pos, K.M. Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat. Microbiol. 2017, 2, 17001. [Google Scholar] [CrossRef]
- Prajapati, J.D.; Kleinekathöfer, U.; Winterhalter, M. How to enter a bacterium: Bacterial porins and the permeation of antibiotics. Chem. Rev. 2021, 121, 5158–5192. [Google Scholar] [CrossRef]
- Akshay, S.D.; Deekshit, V.K.; Mohan Raj, J.; Maiti, B. Outer membrane proteins and efflux pumps mediated multi-drug resistance in Salmonella: Rising threat to antimicrobial therapy. ACS Infect. Dis. 2023, 9, 2072–2092. [Google Scholar] [CrossRef]
- Garcia, Í.R.; de Oliveira Garcia, F.A.; Pereira, P.S.; Coutinho, H.D.M.; Siyadatpanah, A.; Norouzi, R.; Wilairatana, P.; de Lourdes Pereira, M.; Nissapatorn, V.; Tintino, S.R. Microbial resistance: The role of efflux pump superfamilies and their respective substrates. Life Sci. 2022, 295, 120391. [Google Scholar] [CrossRef]
- Petchiappan, A.; Chatterji, D. Antibiotic resistance: Current perspectives. ACS Omega 2017, 2, 7400–7409. [Google Scholar] [CrossRef]
- Wilson, D.N.; Hauryliuk, V.; Atkinson, G.C.; O’Neill, A.J. Target protection as a key antibiotic resistance mechanism. Nat. Rev. Microbiol. 2020, 18, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.S.; Sharma, D.; Hussain, T.; Pati, S. Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerg. Microbes Infect. 2020, 9, 1651–1663. [Google Scholar] [CrossRef] [PubMed]
- Svetlov, M.S.; Syroegin, E.A.; Aleksandrova, E.V.; Atkinson, G.C.; Gregory, S.T.; Mankin, A.S.; Polikanov, Y.S. Structure of Erm-modified 70S ribosome reveals the mechanism of macrolide resistance. Nat. Chem. Biol. 2021, 17, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Jeremia, L.; Deprez, B.E.; Dey, D.; Conn, G.L.; Wuest, W.M. Ribosome-targeting antibiotics and resistance via ribosomal RNA methylation. RSC Med. Chem. 2023, 14, 624–643. [Google Scholar] [CrossRef]
- Lee, A.S.; De Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 1–23. [Google Scholar] [CrossRef]
- Ndagi, U.; Falaki, A.A.; Abdullahi, M.; Lawal, M.M.; Soliman, M.E. Antibiotic resistance: Bioinformatics-based understanding as a functional strategy for drug design. RSC Adv. 2020, 10, 18451–18468. [Google Scholar] [CrossRef]
- Deb Adhikari, M.; Saha, T.; Tiwary, B.K. Quest for Alternatives to Antibiotics: An Urgent Need of the Twenty-First Century. In Alternatives to Antibiotics: Recent Trends and Future Prospects; Springer: Berlin/Heidelberg, Germany, 2022; pp. 3–32. [Google Scholar]
- Lai, C.K.; Ng, R.W.; Leung, S.S.; Hui, M.; Ip, M. Overcoming the rising incidence and evolving mechanisms of antibiotic resistance by novel drug delivery approaches–an overview. Adv. Drug Deliv. Rev. 2022, 181, 114078. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Karaman, R. Design and synthesis of novel antimicrobial agents. Antibiotics 2023, 12, 628. [Google Scholar] [CrossRef]
- Yapabandara, S.; Wilkinson-White, L.; Ataide, S.; Kwan, A.H. Opportunities Offered by Fragment-Based Drug Design in Antibiotic Development. Front. Anti-Infect. Drug Discov. 2020, 8, 91. [Google Scholar]
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef]
- Moo, C.-L.; Yang, S.-K.; Yusoff, K.; Ajat, M.; Thomas, W.; Abushelaibi, A.; Lim, S.-H.-E.; Lai, K.-S. Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR. Curr. Drug Discov. Technol. 2020, 17, 430–447. [Google Scholar] [CrossRef]
- Jukič, M.; Bren, U. Machine learning in antibacterial drug design. Front. Pharmacol. 2022, 13, 864412. [Google Scholar] [CrossRef] [PubMed]
- Li, Q. Application of fragment-based drug discovery to versatile targets. Front. Mol. Biosci. 2020, 7, 180. [Google Scholar] [CrossRef] [PubMed]
- Caburet, J.; Boucherle, B.; Bourdillon, S.; Simoncelli, G.; Verdirosa, F.; Docquier, J.-D.; Moreau, Y.; Krimm, I.; Crouzy, S.; Peuchmaur, M. A fragment-based drug discovery strategy applied to the identification of NDM-1 β-lactamase inhibitors. Eur. J. Med. Chem. 2022, 240, 114599. [Google Scholar] [CrossRef]
- Bucataru, C.; Ciobanasu, C. Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiol. Res. 2024, 286, 127822. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjya, S.; Zhang, Z.; Ramamoorthy, A. LL-37: Structures, Antimicrobial Activity, and Influence on Amyloid-Related Diseases. Biomolecules 2024, 14, 320. [Google Scholar] [CrossRef]
- Lei, M.; Jayaraman, A.; Van Deventer, J.A.; Lee, K. Engineering selectively targeting antimicrobial peptides. Annu. Rev. Biomed. Eng. 2021, 23, 339–357. [Google Scholar] [CrossRef]
- León-Buitimea, A.; Garza-Cárdenas, C.R.; Garza-Cervantes, J.A.; Lerma-Escalera, J.A.; Morones-Ramírez, J.R. The demand for new antibiotics: Antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design. Front. Microbiol. 2020, 11, 1669. [Google Scholar] [CrossRef]
- Jun, W.; Yumin, S.; Heng, Y. Recent advances in quinolone hybrids with potential antibacterial activity against drug-resistant bacteria. Future Med. Chem. 2023, 15, 555–578. [Google Scholar] [CrossRef]
- Ye, J.; Chen, X. Current promising strategies against antibiotic-resistant bacterial infections. Antibiotics 2022, 12, 67. [Google Scholar] [CrossRef]
- Pulingam, T.; Parumasivam, T.; Gazzali, A.M.; Sulaiman, A.M.; Chee, J.Y.; Lakshmanan, M.; Chin, C.F.; Sudesh, K. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur. J. Pharm. Sci. 2022, 170, 106103. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tong, Z.; Shi, J.; Li, R.; Upton, M.; Wang, Z. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics 2021, 11, 4910. [Google Scholar] [CrossRef] [PubMed]
- Nyhoegen, C.; Uecker, H. Sequential antibiotic therapy in the laboratory and in the patient. J. R. Soc. Interface 2023, 20, 20220793. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Yasmeen, N.; Pandey, A.; Ahmad Chaudhary, A.; Alawam, A.S.; Ahmad Rudayni, H.; Islam, A.; Lakhawat, S.S.; Sharma, P.K.; Shahid, M. Antibiotic adjuvants: Synergistic tool to combat multi-drug resistant pathogens. Front. Cell. Infect. Microbiol. 2023, 13, 1293633. [Google Scholar] [CrossRef] [PubMed]
- Annunziato, G. Strategies to overcome antimicrobial resistance (AMR) making use of non-essential target inhibitors: A review. Int. J. Mol. Sci. 2019, 20, 5844. [Google Scholar] [CrossRef]
- Zárate, S.G.; Claure, M.L.D.l.C.; Benito-Arenas, R.; Revuelta, J.; Santana, A.G.; Bastida, A. Overcoming aminoglycoside enzymatic resistance: Design of novel antibiotics and inhibitors. Molecules 2018, 23, 284. [Google Scholar] [CrossRef]
- Alfieri, A.; Di Franco, S.; Donatiello, V.; Maffei, V.; Fittipaldi, C.; Fiore, M.; Coppolino, F.; Sansone, P.; Pace, M.C.; Passavanti, M.B. Plazomicin against multidrug-resistant bacteria: A scoping review. Life 2022, 12, 1949. [Google Scholar] [CrossRef]
- Krzemiński, P.; Markiewicz, Z.; Popowska, M. Entry routes of antibiotics and antimicrobial resistance in the environment. In Antibiotics and Antimicrobial Resistance Genes: Environmental Occurrence and Treatment Technologies; Springer: Cham, Switzerland, 2020; pp. 1–26. [Google Scholar]
- Larsson, D.; Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Ruzsa, R.; Benkő, R.; Hambalek, H.; Papfalvi, E.; Csupor, D.; Nacsa, R.; Csatordai, M.; Soós, G.; Hajdú, E.; Matuz, M. Hospital Antibiotic Consumption before and during the COVID-19 Pandemic in Hungary. Antibiotics 2024, 13, 102. [Google Scholar] [CrossRef]
- Salazar-Vizcaya, L.; Atkinson, A.; Kronenberg, A.; Plüss-Suard, C.; Kouyos, R.D.; Kachalov, V.; Troillet, N.; Marschall, J.; Sommerstein, R. The impact of public health interventions on the future prevalence of ESBL-producing Klebsiella pneumoniae: A population based mathematical modelling study. BMC Infect. Dis. 2022, 22, 487. [Google Scholar] [CrossRef]
- Chng, K.R.; Li, C.; Bertrand, D.; Ng, A.H.Q.; Kwah, J.S.; Low, H.M.; Tong, C.; Natrajan, M.; Zhang, M.H.; Xu, L. Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment. Nat. Med. 2020, 26, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Siri, Y.; Bumyut, A.; Precha, N.; Sirikanchana, K.; Haramoto, E.; Makkaew, P. Multidrug antibiotic resistance in hospital wastewater as a reflection of antibiotic prescription and infection cases. Sci. Total Environ. 2024, 908, 168453. [Google Scholar] [CrossRef] [PubMed]
- Pärnänen, K.M.; Narciso-da-Rocha, C.; Kneis, D.; Berendonk, T.U.; Cacace, D.; Do, T.T.; Elpers, C.; Fatta-Kassinos, D.; Henriques, I.; Jaeger, T. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci. Adv. 2019, 5, eaau9124. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Silva, L.; Laranjeiro, C.; Lino, C.; Pena, A. Selected pharmaceuticals in different aquatic compartments: Part I—Source, fate and occurrence. Molecules 2020, 25, 1026. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cai, M.; Du, P.; Li, X. Wastewater surveillance for antibiotics and resistance genes in a river catchment: Spatiotemporal variations and the main drivers. Water Res. 2024, 251, 121090. [Google Scholar] [CrossRef]
- Tiwari, A.; Gomez-Alvarez, V.; Siponen, S.; Sarekoski, A.; Hokajärvi, A.-M.; Kauppinen, A.; Torvinen, E.; Miettinen, I.T.; Pitkänen, T. Bacterial genes encoding resistance against antibiotics and metals in well-maintained drinking water distribution systems in Finland. Front. Microbiol. 2022, 12, 803094. [Google Scholar] [CrossRef]
- Reverter, M.; Sarter, S.; Caruso, D.; Avarre, J.-C.; Combe, M.; Pepey, E.; Pouyaud, L.; Vega-Heredía, S.; De Verdal, H.; Gozlan, R.E. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat. Commun. 2020, 11, 1870. [Google Scholar] [CrossRef]
- Hamilton, K.A.; Njoroge, S.M.; Momanyi, K.; Murungi, M.K.; Odinga, C.O.; Bor, N.; Ogendo, A.F.; Odaba, J.; Ogola, J.G.; Fèvre, E.M. Antimicrobial resistance in slaughterhouses, Kenya. Emerg. Infect. Dis. 2023, 29, 2155. [Google Scholar] [CrossRef]
- Alsultan, A.; Al-Sallami, D.; Alsaadi, M. Antibiotic resistance genes in farm animal slaughterhouse wastes in Al-Dewanyiah province, Iraq. Vet. Integr. Sci. 2023, 21, 577–586. [Google Scholar] [CrossRef]
- Gekenidis, M.-T.; Walsh, F.; Drissner, D. Tracing antibiotic resistance genes along the irrigation water chain to chive: Does tap or surface water make a difference? Antibiotics 2021, 10, 1100. [Google Scholar] [CrossRef]
- Kampouris, I.D.; Agrawal, S.; Orschler, L.; Cacace, D.; Kunze, S.; Berendonk, T.U.; Klümper, U. Antibiotic resistance gene load and irrigation intensity determine the impact of wastewater irrigation on antimicrobial resistance in the soil microbiome. Water Res. 2021, 193, 116818. [Google Scholar] [CrossRef] [PubMed]
- Bagra, K.; Kneis, D.; Padfield, D.; Szekeres, E.; Teban-Man, A.; Coman, C.; Singh, G.; Berendonk, T.U.; Klümper, U. Contrary effects of increasing temperatures on the spread of antimicrobial resistance in river biofilms. Msphere 2024, 9, e00573-23. [Google Scholar] [CrossRef] [PubMed]
- Van Eldijk, T.J.; Sheridan, E.A.; Martin, G.; Weissing, F.J.; Kuipers, O.P.; Van Doorn, G.S. Temperature dependence of the mutation rate towards antibiotic resistance. JAC-Antimicrob. Resist. 2024, 6, dlae085. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, C.; Ho, H.C.; Shi, L.; Zeng, Y.; Yang, X.; Xia, H.; Zhang, W.; Huang, C.; Yang, L. Estimating the effect of increasing ambient temperature on antimicrobial resistance in China: A nationwide ecological study with the difference-in-differences approach. Sci. Total Environ. 2023, 882, 163518. [Google Scholar] [CrossRef] [PubMed]
- Pagaling, E.; Hough, R.; Avery, L.; Robinson, L.; Freitag, T.; Coull, M.; Zhou, X.; Su, J.-Q.; Peshkur, T.; Zhu, Y.-G. Antibiotic resistance patterns in soils across the Scottish landscape. Commun. Earth Environ. 2023, 4, 403. [Google Scholar] [CrossRef]
- Zahra, Q.; Gul, J.; Shah, A.R.; Yasir, M.; Karim, A.M. Antibiotic resistance genes prevalence prediction and interpretation in beaches affected by urban wastewater discharge. One Health 2023, 17, 100642. [Google Scholar] [CrossRef]
- Dželalija, M.; Fredotović, Ž.; Udiković-Kolić, N.; Kalinić, H.; Jozić, S.; Šamanić, I.; Ordulj, M.; Maravić, A. Large-Scale Biogeographical Shifts of Abundance of Antibiotic Resistance Genes and Marine Bacterial Communities as Their Carriers along a Trophic Gradient. Int. J. Mol. Sci. 2024, 25, 654. [Google Scholar] [CrossRef]
- Azuma, T.; Hayashi, T. Effects of natural sunlight on antimicrobial-resistant bacteria (AMRB) and antimicrobial-susceptible bacteria (AMSB) in wastewater and river water. Sci. Total Environ. 2021, 766, 142568. [Google Scholar] [CrossRef]
- Khan, S.J.; Osborn, A.M.; Eswara, P.J. Effect of sunlight on the efficacy of commercial antibiotics used in agriculture. Front. Microbiol. 2021, 12, 645175. [Google Scholar] [CrossRef]
- Kormos, D.; Lin, K.; Pruden, A.; Marr, L.C. Critical review of antibiotic resistance genes in the atmosphere. Environ. Sci. Process. Impacts 2022, 24, 870–883. [Google Scholar] [CrossRef]
- Klümper, U.; Gionchetta, G.; Catão, E.; Bellanger, X.; Dielacher, I.; Elena, A.X.; Fang, P.; Galazka, S.; Goryluk-Salmonowicz, A.; Kneis, D. Environmental microbiome diversity and stability is a barrier to antimicrobial resistance gene accumulation. Commun. Biol. 2024, 7, 706. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Yang, F.; Shen, S.; Mu, M.; Zhang, K. Effects of soil habitat changes on antibiotic resistance genes and related microbiomes in paddy fields. Sci. Total Environ. 2023, 895, 165109. [Google Scholar] [CrossRef] [PubMed]
- Reichert, G.; Hilgert, S.; Alexander, J.; de Azevedo, J.C.R.; Morck, T.; Fuchs, S.; Schwartz, T. Determination of antibiotic resistance genes in a WWTP-impacted river in surface water, sediment, and biofilm: Influence of seasonality and water quality. Sci. Total Environ. 2021, 768, 144526. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Zhao, Z.; Grossart, H.-P.; Ju, F.; Zhao, Y.; Gadd, G.M.; Korzeniewska, E.; Yang, Y. Health risk ranking of antibiotic resistance genes in the Yangtze River. Environ. Sci. Ecotechnology 2024, 21, 100388. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Shen, P.; Lu, Z.; Mo, F.; Liao, Y.; Wen, X. Metagenomics reveals the abundance and accumulation trend of antibiotic resistance gene profile under long-term no tillage in a rainfed agroecosystem. Front. Microbiol. 2023, 14, 1238708. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, M.; Yu, C.; Wu, Q.; Mao, Z.; Li, H.; Ren, L.; Zeng, J.; Xing, P.; Zhou, L.-J. Unexpected enrichment of antibiotic resistance genes and organic remediation genes in high-altitude lakes at Eastern Tibetan Plateau. Sci. Total Environ. 2023, 874, 162554. [Google Scholar] [CrossRef]
- Komijani, M.; Shamabadi, N.S.; Shahin, K.; Eghbalpour, F.; Tahsili, M.R.; Bahram, M. Heavy metal pollution promotes antibiotic resistance potential in the aquatic environment. Environ. Pollut. 2021, 274, 116569. [Google Scholar] [CrossRef]
- Edet, U.O.; Bassey, I.U.; Joseph, A.P. Heavy metal co-resistance with antibiotics amongst bacteria isolates from an open dumpsite soil. Heliyon 2023, 9, e13457. [Google Scholar] [CrossRef]
- Liao, H.; Li, X.; Yang, Q.; Bai, Y.; Cui, P.; Wen, C.; Liu, C.; Chen, Z.; Tang, J.; Che, J. Herbicide selection promotes antibiotic resistance in soil microbiomes. Mol. Biol. Evol. 2021, 38, 2337–2350. [Google Scholar] [CrossRef]
- Zhao, J.; Duan, G.; Zhu, D.; Li, J.; Zhu, Y. Microbial-influenced pesticide removal co-occurs with antibiotic resistance gene variation in soil-earthworm-maize system. Environ. Pollut. 2024, 342, 123010. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, D.; Ding, J.; Zheng, F.; Zhou, S.; Lu, T.; Zhu, Y.-G.; Qian, H. The fungicide azoxystrobin perturbs the gut microbiota community and enriches antibiotic resistance genes in Enchytraeus crypticus. Environ. Int. 2019, 131, 104965. [Google Scholar] [CrossRef] [PubMed]
- Maurya, A.P.; Rajkumari, J.; Pandey, P. Enrichment of antibiotic resistance genes (ARGs) in polyaromatic hydrocarbon–contaminated soils: A major challenge for environmental health. Environ. Sci. Pollut. Res. 2021, 28, 12178–12189. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, D.; Tang, J.; Liu, F.; Wang, L. Effect of dissolved biochar on the transfer of antibiotic resistance genes between bacteria. Environ. Pollut. 2021, 288, 117718. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Weng, Y.; Luo, T.; Wang, Q.; Yang, G.; Jin, Y. Antimicrobial and the resistances in the environment: Ecological and health risks, influencing factors, and mitigation strategies. Toxics 2023, 11, 185. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, J.; Wu, J.; Wang, J.; Luo, Y. Potential risks of microplastics combined with superbugs: Enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system. Ecotoxicol. Environ. Saf. 2020, 187, 109852. [Google Scholar] [CrossRef]
- Feng, G.; Huang, H.; Chen, Y. Effects of emerging pollutants on the occurrence and transfer of antibiotic resistance genes: A review. J. Hazard. Mater. 2021, 420, 126602. [Google Scholar] [CrossRef]
- Domínguez, D.C.; Meza-Rodriguez, S.M. Development of antimicrobial resistance: Future challenges. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 383–408. [Google Scholar]
- Kisoo, L.; Muloi, D.M.; Oguta, W.; Ronoh, D.; Kirwa, L.; Akoko, J.; Fèvre, E.M.; Moodley, A.; Wambua, L. Practices and drivers for antibiotic use in cattle production systems in Kenya. One Health 2023, 17, 100646. [Google Scholar] [CrossRef]
- Adebowale, O.; Makanjuola, M.; Bankole, N.; Olasoju, M.; Alamu, A.; Kperegbeyi, E.; Oladejo, O.; Fasanmi, O.; Adeyemo, O.; Fasina, F.O. Multi-drug resistant Escherichia coli, biosecurity and anti-microbial use in live bird markets, Abeokuta, Nigeria. Antibiotics 2022, 11, 253. [Google Scholar] [CrossRef]
- Bedekelabou, A.P.; Talaki, E.; Dzogbema, K.F.-X.; Dolou, M.; Savadogo, M.; Seko, M.O.; Alambedji, R.B. Assessing farm biosecurity and farmers’ knowledge and practices concerning antibiotics and antibiotic resistance in poultry and pig farms in Southern Togo. Vet. World 2022, 15, 1727. [Google Scholar] [CrossRef]
- Mdegela, R.H.; Mwakapeje, E.R.; Rubegwa, B.; Gebeyehu, D.T.; Niyigena, S.; Msambichaka, V.; Nonga, H.E.; Antoine-Moussiaux, N.; Fasina, F.O. Antimicrobial use, residues, resistance and governance in the food and agriculture sectors, Tanzania. Antibiotics 2021, 10, 454. [Google Scholar] [CrossRef]
- Mankhomwa, J.; Tolhurst, R.; M’biya, E.; Chikowe, I.; Banda, P.; Mussa, J.; Mwasikakata, H.; Simpson, V.; Feasey, N.; MacPherson, E.E. A qualitative study of antibiotic use practices in intensive small-scale farming in urban and peri-urban blantyre, malawi: Implications for antimicrobial resistance. Front. Vet. Sci. 2022, 9, 876513. [Google Scholar] [CrossRef] [PubMed]
- Paintsil, E.K.; Ofori, L.A.; Akenten, C.W.; Fosu, D.; Ofori, S.; Lamshöft, M.; May, J.; Danso, K.O.; Krumkamp, R.; Dekker, D. Antimicrobial usage in commercial and domestic poultry farming in two communities in the Ashanti region of Ghana. Antibiotics 2021, 10, 800. [Google Scholar] [CrossRef] [PubMed]
- Van, T.T.H.; Yidana, Z.; Smooker, P.M.; Coloe, P.J. Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. J. Glob. Antimicrob. Resist. 2020, 20, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Carruth, L.; Roess, A.A.; Terefe, Y.; Hosh, F.M.; Salman, M. Antimicrobial resistance and food safety in Africa. Lancet Infect. Dis. 2017, 17, 575–576. [Google Scholar] [CrossRef] [PubMed]
- Muleme, J.; Ssempebwa, J.C.; Musoke, D.; Kankya, C.; Wafula, S.T.; Okello, J.; Ninsiima, L.R.; Wambi, R.; Baguma, J.N.; Lubega, G. Antimicrobial resistance among farming communities in Wakiso District, Central Uganda: A knowledge, awareness and practice study. PLoS ONE 2023, 18, e0284822. [Google Scholar] [CrossRef]
- Tangcharoensathien, V.; Chanvatik, S.; Kosiyaporn, H.; Kirivan, S.; Kaewkhankhaeng, W.; Thunyahan, A.; Lekagul, A. Population knowledge and awareness of antibiotic use and antimicrobial resistance: Results from national household survey 2019 and changes from 2017. BMC Public Health 2021, 21, 2188. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Li, Z.; Guo, S.; Li, K.; Xu, P.; Ok, Y.S.; Jones, D.L.; Zou, J. Antibiotics and antibiotic resistance genes in agricultural soils: A systematic analysis. Crit. Rev. Environ. Sci. Technol. 2023, 53, 847–864. [Google Scholar] [CrossRef]
- Smith, R.P.; May, H.E.; AbuOun, M.; Stubberfield, E.; Gilson, D.; Chau, K.K.; Crook, D.W.; Shaw, L.P.; Read, D.S.; Stoesser, N. A longitudinal study reveals persistence of antimicrobial resistance on livestock farms is not due to antimicrobial usage alone. Front. Microbiol. 2023, 14, 1070340. [Google Scholar] [CrossRef]
- Capone, D.; Cumming, O.; Flemister, A.; Ilevbare, V.; Irish, S.R.; Keenum, I.; Knee, J.; Nala, R.; Brown, J. Sanitation in urban areas may limit the spread of antimicrobial resistance via flies. PLoS ONE 2024, 19, e0298578. [Google Scholar] [CrossRef]
- WHO. Drinking Water; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Ugoeze, K.; Alalor, C.; Ibezim, C.; Chinko, B.; Owonaro, P.; Anie, C.; Okoronkwo, N.; Mgbahurike, A.; Ofomata, C.; Alfred-Ugbenbo, D. Environmental and Human Health Impact of Antibiotics Waste Mismanagement: A Review. Adv. Environ. Eng. Res. 2024, 5, 1–21. [Google Scholar] [CrossRef]
- Barathe, P.; Kaur, K.; Reddy, S.; Shriram, V.; Kumar, V. Antibiotic pollution and associated antimicrobial resistance in the environment. J. Hazard. Mater. Lett. 2024, 5, 100105. [Google Scholar] [CrossRef]
- Wagner, C.E.; Prentice, J.A.; Saad-Roy, C.M.; Yang, L.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Economic and behavioral influencers of vaccination and antimicrobial use. Front. Public Health 2020, 8, 614113. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Villamañán, A.; San Millán, Á.; Carrilero, L. Tackling AMR from a multidisciplinary perspective: A primer from education and psychology. Int. Microbiol. 2023, 26, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Majumder, M.A.A.; Rahman, S.; Cohall, D.; Bharatha, A.; Singh, K.; Haque, M.; Gittens-St Hilaire, M. Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health. Infect. Drug Resist. 2020, 13, 4713–4738. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.H.; Moore, L.S.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Brown, K.; Uwiera, R.R.; Kalmokoff, M.L.; Brooks, S.P.; Inglis, G.D. Antimicrobial growth promoter use in livestock: A requirement to understand their modes of action to develop effective alternatives. Int. J. Antimicrob. Agents 2017, 49, 13. [Google Scholar] [CrossRef]
- Ma, Z.; Lee, S.; Jeong, K.C. Mitigating antibiotic resistance at the livestock-environment interface: A review. J. Microbiol. Biotechnol. 2019, 29, 1683–1692. [Google Scholar] [CrossRef]
- Da Costa, P.M.; Loureiro, L.; Matos, A.J. Transfer of multidrug-resistant bacteria between intermingled ecological niches: The interface between humans, animals and the environment. Int. J. Environ. Res. Public Health 2013, 10, 278–294. [Google Scholar] [CrossRef]
- Antimicrobial Use and Resistance in Animal Agriculture in the United States: Summary Report, 2016–2019. 2022. Available online: https://www.fda.gov/media/159544/download (accessed on 4 November 2024).
- Step, D.; Giedt, E.J.; Whitworth, B. Veterinary Feed Directive; Oklahoma Cooperative Extension Service, Division of Agricultural Sciences and Natural Resources, Oklahoma State University: Stillwater, OK, USA, 2015. [Google Scholar]
- Mir, R.A.; Weppelmann, T.A.; Johnson, J.A.; Archer, D.; Morris, J.G., Jr.; Jeong, K.C. Identification and characterization of cefotaxime resistant bacteria in beef cattle. PLoS ONE 2016, 11, e0163279. [Google Scholar] [CrossRef]
- Renault, V.; Humblet, M.-F.; Saegerman, C. Biosecurity concept: Origins, evolution and perspectives. Animals 2021, 12, 63. [Google Scholar] [CrossRef]
- Mudenda, S.; Chabalenge, B.; Daka, V.; Mfune, R.L.; Salachi, K.I.; Mohamed, S.; Mufwambi, W.; Kasanga, M.; Matafwali, S.K. Global strategies to combat antimicrobial resistance: A one health perspective. Pharmacol. Pharm. 2023, 14, 271–328. [Google Scholar] [CrossRef]
- Raffatellu, M. Learning from bacterial competition in the host to develop antimicrobials. Nat. Med. 2018, 24, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Karp, B.E.; Tate, H.; Plumblee, J.R.; Dessai, U.; Whichard, J.M.; Thacker, E.L.; Hale, K.R.; Wilson, W.; Friedman, C.R.; Griffin, P.M. National antimicrobial resistance monitoring system: Two decades of advancing public health through integrated surveillance of antimicrobial resistance. Foodborne Pathog. Dis. 2017, 14, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Keitoku, K.; Nishimura, Y.; Hagiya, H.; Koyama, T.; Otsuka, F. Impact of the World Antimicrobial Awareness Week on public interest between 2015 and 2020: A Google Trends analysis. Int. J. Infect. Dis. 2021, 111, 12–20. [Google Scholar] [CrossRef]
- Phan, H.T.; Zingg, W.; Tran, H.T.T.; Dinh, A.P.P.; Pittet, D. Sustained effects of a multimodal campaign aiming at hand hygiene improvement on compliance and healthcare-associated infections in a large gynaecology/obstetrics tertiary-care centre in Vietnam. Antimicrob. Resist. Infect. Control 2020, 9, 51. [Google Scholar] [CrossRef]
- Pollack, L.A.; Srinivasan, A. Core elements of hospital antibiotic stewardship programs from the Centers for Disease Control and Prevention. Clin. Infect. Dis. 2014, 59, S97–S100. [Google Scholar] [CrossRef]
- Wald-Dickler, N.; Spellberg, B. Short-Course Antibiotic Therapy—Replacing Constantine Units with “Shorter Is Better”; Oxford University Press: New York, NY, USA, 2019; pp. 1476–1479. [Google Scholar]
- Teshome, B.F.; Vouri, S.M.; Hampton, N.; Kollef, M.H.; Micek, S.T. Duration of exposure to antipseudomonal β-lactam antibiotics in the critically ill and development of new resistance. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2019, 39, 261–270. [Google Scholar] [CrossRef]
- Lim, C.; Ashley, E.A.; Hamers, R.L.; Turner, P.; Kesteman, T.; Akech, S.; Corso, A.; Mayxay, M.; Okeke, I.N.; Limmathurotsakul, D. Surveillance strategies using routine microbiology for antimicrobial resistance in low-and middle-income countries. Clin. Microbiol. Infect. 2021, 27, 1391–1399. [Google Scholar] [CrossRef]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef]
- Berman, T.S.; Barnett-Itzhaki, Z.; Berman, T.; Marom, E. Antimicrobial resistance in food-producing animals: Towards implementing a one health based national action plan in Israel. Isr. J. Health Policy Res. 2023, 12, 18. [Google Scholar] [CrossRef]
- Schnall, J.; Rajkhowa, A.; Ikuta, K.; Rao, P.; Moore, C.E. Surveillance and monitoring of antimicrobial resistance: Limitations and lessons from the GRAM project. BMC Med. 2019, 17, 176. [Google Scholar] [CrossRef] [PubMed]
- Wertheim, H.F.; Huong, V.T.L.; Kuijper, E.J. Clinical microbiology laboratories in low-resource settings, it is not only about equipment and reagents, but also good governance for sustainability. Clin. Microbiol. Infect. 2021, 27, 1389–1390. [Google Scholar] [CrossRef] [PubMed]
- We’re Backing the AMR Action Fund—This Is What It Means for Antibiotic Innovation. 2021. Available online: https://wellcome.org/news/were-backing-amr-action-fund-what-it-means-antibiotic-innovation (accessed on 14 August 2024).
- Kasimanickam, V.; Kasimanickam, M.; Kasimanickam, R. Antibiotics use in food animal production: Escalation of antimicrobial resistance: Where are we now in combating AMR? Med. Sci. 2021, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Ashiru-Oredope, D.; Budd, E.; Bhattacharya, A.; Din, N.; McNulty, C.; Micallef, C.; Ladenheim, D.; Beech, E.; Murdan, S.; Hopkins, S. Implementation of antimicrobial stewardship interventions recommended by national toolkits in primary and secondary healthcare sectors in England: TARGET and Start Smart Then Focus. J. Antimicrob. Chemother. 2016, 71, 1408–1414. [Google Scholar] [CrossRef]
- Bennani, H.; Cornelsen, L.; Stärk, K.D.; Häsler, B. Characterisation and mapping of the surveillance system for antimicrobial resistance and antimicrobial use in the United Kingdom. Vet. Rec. 2021, 188, e18. [Google Scholar] [CrossRef]
- Federal Action Plan on Antimicrobial Resistance and Use in Canada: Building on the Federal Framework for Action. 2015. Available online: https://www.canada.ca/en/health-canada/services/publications/drugs-health-products/federal-action-plan-antimicrobial-resistance-canada.html (accessed on 25 September 2024).
- McCubbin, K.D.; Anholt, R.M.; de Jong, E.; Ida, J.A.; Nóbrega, D.B.; Kastelic, J.P.; Conly, J.M.; Götte, M.; McAllister, T.A.; Orsel, K. Knowledge gaps in the understanding of antimicrobial resistance in Canada. Front. Public Health 2021, 9, 726484. [Google Scholar] [CrossRef]
- Antimicrobial Resistance. 2020. Available online: https://www.amr.gov.au/resources/australias-national-antimicrobial-resistance-strategy-2020-and-beyond (accessed on 25 September 2024).
- Elton, L.; Thomason, M.J.; Tembo, J.; Velavan, T.P.; Pallerla, S.R.; Arruda, L.B.; Vairo, F.; Montaldo, C.; Ntoumi, F.; Abdel Hamid, M.M. Antimicrobial resistance preparedness in sub-Saharan African countries. Antimicrob. Resist. Infect. Control 2020, 9, 145. [Google Scholar] [CrossRef]
- Iwu, C.D.; Patrick, S.M. An insight into the implementation of the global action plan on antimicrobial resistance in the WHO African region: A roadmap for action. Int. J. Antimicrob. Agents 2021, 58, 106411. [Google Scholar] [CrossRef]
- WHO. The WHO AWaRe (Access, Watch, Reserve) Antibiotic Book—Infographics; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Hsia, Y.; Lee, B.R.; Versporten, A.; Yang, Y.; Bielicki, J.; Jackson, C.; Newland, J.; Goossens, H.; Magrini, N.; Sharland, M. Use of the WHO Access, Watch, and Reserve classification to define patterns of hospital antibiotic use (AWaRe): An analysis of paediatric survey data from 56 countries. Lancet Glob. Health 2019, 7, e861–e871. [Google Scholar] [CrossRef]
Aspect of AMR | Summary of Studies | Key References |
---|---|---|
Antibiotic Use in Healthcare and Agriculture | Antibiotic consumption remains high globally, with variations across regions. In Europe, community consumption varies widely (11.3 to 31.9 DDD per 1000 inhabitants per day), while hospital use is substantial (2.0 DDD per 1000 inhabitants). In the US, outpatient use is prevalent (258 million courses annually). | [100] |
Factors Contributing to Resistance | Overuse and inappropriate use of antibiotics in both community and hospital settings drive resistance. Misconceptions and self-medication practices also contribute significantly to the problem, particularly in developing countries. | [101] |
Case Studies: S. aureus, NTS, K. pneumoniae | Specific pathogens like MRSA, NTS, and ESBL-producing K. pneumoniae show high resistance rates globally, affecting treatment efficacy and healthcare outcomes. | [102] |
Global Burden and Mortality | Drug-resistant infections in 2019 contributed to an estimated 4.95 million deaths globally, with 1.27 million directly attributable to AMR. AMR ranks as a leading global health concern, third in causes of death following ischemic heart disease and stroke in a hypothetical scenario without infections. | [103] |
Environmental Spread of Resistance | Environmental factors, such as wastewater contamination, contribute to the spread of antibiotic-resistant bacteria, highlighting the need for environmental stewardship and surveillance. | [104,105] |
Public Health and Economic Impact | Antibiotic-resistant infections in the US result in over 2 million illnesses and 23,000 deaths annually, with associated costs exceeding USD 55 billion, including direct healthcare expenses and lost productivity. In Europe, resistance contributes to 25,000 deaths annually, with estimated costs exceeding 1.5 billion euros. | [106] |
Tuberculosis and Drug Resistance | MDR-TB and XDR-TB pose significant challenges to global TB control efforts, with high mortality rates and limited treatment options. The development of resistance is linked to treatment non-compliance and inadequate drug regimens. | [107] |
Regional Disparities in AMR Burden | Low- and middle-income countries (LMICs), particularly in sub-Saharan Africa and South Asia, face higher AMR-related mortality rates. Factors include critical infections, inadequate healthcare infrastructure, and inappropriate antibiotic use. | [108] |
Study for Monitoring AMR Trends (SMART) | Surveillance data are available through reports in scientific and medical journals, as well as freely available on hosts’ websites (e.g., EARS-net). | [12] |
Impact on Specific Populations and Settings | AMR significantly affects vulnerable populations (e.g., cancer patients, transplant recipients, neonates) and specialized settings (e.g., neonatal intensive care units, surgical wards), leading to increased morbidity and mortality. | [109] |
Impact of Resistance to Specific Antibiotics | Resistance to fluoroquinolones and β-lactam antibiotics is prominent across various pathogens, contributing significantly to mortality rates and treatment challenges. | [110] |
Challenges and Strategies | Intervention strategies include infection prevention, vaccination, reducing unnecessary antibiotic exposure, promoting appropriate antibiotic use, and developing new antibiotics. Crucial for regions with high AMR burdens and limited healthcare resources. | [111] |
Pathogens Contributing to AMR | Six major pathogens (E. coli, S. aureus, K. pneumoniae, S. pneumoniae, A. baumannii, P. aeruginosa) are significant contributors to AMR burden. These pathogens are prioritized by WHO due to their resistance profiles and global impact. | [112] |
UK Government Actions on AMR | The UK government has implemented a 20-year vision to control and contain AMR by 2040, supported by 5-year national action plans. Achievements include reduced antibiotic use in food-producing animals, improved surveillance systems, and new payment schemes for antibiotics on the NHS. | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ifedinezi, O.V.; Nnaji, N.D.; Anumudu, C.K.; Ekwueme, C.T.; Uhegwu, C.C.; Ihenetu, F.C.; Obioha, P.; Simon, B.O.; Ezechukwu, P.S.; Onyeaka, H. Environmental Antimicrobial Resistance: Implications for Food Safety and Public Health. Antibiotics 2024, 13, 1087. https://doi.org/10.3390/antibiotics13111087
Ifedinezi OV, Nnaji ND, Anumudu CK, Ekwueme CT, Uhegwu CC, Ihenetu FC, Obioha P, Simon BO, Ezechukwu PS, Onyeaka H. Environmental Antimicrobial Resistance: Implications for Food Safety and Public Health. Antibiotics. 2024; 13(11):1087. https://doi.org/10.3390/antibiotics13111087
Chicago/Turabian StyleIfedinezi, Onyinye Victoria, Nnabueze Darlington Nnaji, Christian Kosisochukwu Anumudu, Chiemerie Theresa Ekwueme, Chijioke Christopher Uhegwu, Francis Chukwuebuka Ihenetu, Promiselynda Obioha, Blessing Oteta Simon, Precious Somtochukwu Ezechukwu, and Helen Onyeaka. 2024. "Environmental Antimicrobial Resistance: Implications for Food Safety and Public Health" Antibiotics 13, no. 11: 1087. https://doi.org/10.3390/antibiotics13111087
APA StyleIfedinezi, O. V., Nnaji, N. D., Anumudu, C. K., Ekwueme, C. T., Uhegwu, C. C., Ihenetu, F. C., Obioha, P., Simon, B. O., Ezechukwu, P. S., & Onyeaka, H. (2024). Environmental Antimicrobial Resistance: Implications for Food Safety and Public Health. Antibiotics, 13(11), 1087. https://doi.org/10.3390/antibiotics13111087