Phytogenic Synthesis of Cuprous and Cupric Oxide Nanoparticles Using Black jack Leaf Extract: Antibacterial Effects and Their Computational Docking Insights
Abstract
:1. Introduction
2. Results and Discussion
2.1. UV–Visible Studies
2.2. FT-IR Studies
2.3. SEM Studies
2.4. EDX Analysis
2.5. TEM Studies
2.6. XRD Studies
2.7. In Vitro Antibacterial Effect
2.8. Docking Studies
3. Materials and Methods
3.1. Chemistry
3.2. Bidens Pilosa (BP) Extract Preparation
3.3. Biogenesis of the Cu2O NPs
3.4. Phytogenesis of CuO NPs
3.5. Characterization Studies
3.6. Antibacterial Studies
3.7. Determination of MIC
3.8. Molecular Docking
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dadi, R.; Azouani, R.; Traore, M.; Mielcarek, C.; Kanaev, A. Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 104, 109968. [Google Scholar] [CrossRef] [PubMed]
- Naika, H.R.; Lingaraju, K.; Manjunath, K.; Kumar, D.; Nagaraju, G.; Suresh, D.; Nagabhushana, H. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J. Taibah Univ. Sci. 2015, 9, 7–12. [Google Scholar] [CrossRef]
- Ahamed, M.; Alhadlaq, H.A.; Khan, M.A.M.; Karuppiah, P.; Al-Dhabi, N.A. Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J. Nanomater. 2014, 2014, 637858. [Google Scholar] [CrossRef]
- Mohamed, E.A. Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates. Heliyon 2020, 6, e03123. [Google Scholar]
- Ramzan, M.; Obodo, R.M.; Mukhtar, S.; Ilyas, S.Z.; Aziz, F.; Thovhogi, N. Green synthesis of copper oxide nanoparticles using Cedrus deodara aqueous extract for antibacterial activity. Mater. Today Proc. 2021, 36, 576–581. [Google Scholar] [CrossRef]
- Sathiyavimal, S.; Vasantharaj, S.; Veeramani, V.; Saravanan, M.; Rajalakshmi, G.; Kaliannan, T.; Al-Misned, F.A.; Pugazhendhi, A. Green chemistry route of biosynthesized copper oxide nanoparticles using Psidium guajava leaf extract and their antibacterial activity and effective removal of industrial dyes. J. Environ. Chem. Eng. 2021, 9, 105033. [Google Scholar] [CrossRef]
- Vaidehi, D.; Bhuvaneshwari, V.; Bharathi, D.; Sheetal, B.P. Antibacterial and photocatalytic activity of copper oxide nanoparticles synthesized using Solanum lycopersicum leaf extract. Mater. Res. Express 2018, 5, 085403. [Google Scholar] [CrossRef]
- Mortimer, M.; Kasemets, K.; Kahru, A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 2010, 269, 182–189. [Google Scholar] [CrossRef]
- Yuan, G.Q.; Jiang, H.F.; Lin, C.; Liao, S.J. Shape- and size-controlled electrochemical synthesis of cupric oxide nanocrystals. J. Cryst. Growth 2007, 303, 400–406. [Google Scholar] [CrossRef]
- Ranjbar-Karimi, R.; Bazmandegan-Shamili, A.; Aslani, A.; Kaviani, K. Sonochemical synthesis, characterization and thermal and optical analysis of CuO nanoparticles. Phys. B Condensed Matter. 2010, 405, 3096–3100. [Google Scholar] [CrossRef]
- Suleiman, M.; Mousa, M.; Hussein, A.; Hammouti, B.; Ben Hadda, T.; Warad, I. Copper(II)-oxide nanostructures: Synthesis, characterizations and their applications—Review. J. Mater. Environ. Sci. 2013, 4, 792–797. [Google Scholar]
- Karunakaran, C.; Manikandan, G.; Gomathisankar, P. Microwave, sonochemical and combustion synthesized CuO nanostructures and their electrical and bactericidal properties. J. Alloys Compd. 2013, 580, 570–577. [Google Scholar] [CrossRef]
- Katwal, R.; Kaur, H.; Sharma, G.; Naushad, M.; Pathania, D. Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. J. Ind. Eng. Chem. 2015, 31, 173–184. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 2014, 60, 208–337. [Google Scholar] [CrossRef]
- Devi, A.B.; Moirangthem, D.S.; Talukdar, N.C.; Devi, M.D.; Singh, N.R.; Luwang, M.N. Novel synthesis and characterization of CuO nanomaterials: Biological applications. Chin. Chem. Lett. 2014, 25, 1615–1619. [Google Scholar] [CrossRef]
- Kayani, Z.N.; Umer, M.; Riaz, S.; Naseem, S. Characterization of copper oxide nanoparticles fabricated by the sol–gel method. J. Electron. Mater. 2015, 44, 3704–3709. [Google Scholar] [CrossRef]
- Sathiyavimal, S.; Vasantharaj, S.; Bharathi, D.; Saravanan, M.; Manikandan, E.; Kumar, S.S.; Pugazhendhi, A. Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria. J. Photochem. Photobiol. B Biol. 2018, 188, 126–134. [Google Scholar] [CrossRef]
- Hosseini-Koupaei, M.; Shareghi, B.; Saboury, A.A.; Davar, F.; Sirotkin, V.A.; Hosseini-Koupaei, M.H.; Enteshari, Z. Catalytic activity, structure and stability of proteinase K in the presence of biosynthesized CuO nanoparticles. Int. J. Biol. Macromol. 2019, 122, 732–744. [Google Scholar] [CrossRef]
- Tavakoli, S.; Kharaziha, M.; Ahmadi, S. Green synthesis and morphology dependent antibacterial activity of copper oxide nanoparticles. J. Nanostruct. 2019, 9, 163–171. [Google Scholar]
- Karuppannan, P.; Saravanan, K.; Ashokkumar, M.; Egbuna, C. Preparation of bio-synthesized Ag nanoparticles and assessment of their antidiabetic and antioxidant potential against STZ-induced diabetic albino rats. J. Biomater. Sci. Polym. Ed. 2024, 35, 535–558. [Google Scholar]
- Ashokkumar, M.; Palanisamy, K.; Ganesh Kumar, A.; Muthusamy, C.; Senthil Kumar, K.J. Green synthesis of silver and copper nanoparticles and their composites using Ocimum sanctum leaf extract displayed enhanced antibacterial, antioxidant and anticancer potentials. Artif. Cell Nanomed. Biotechnol. 2024, 52, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Muthusamy, C.; Ashokkumar, M.; Ganesh Kumar, A. Bovine bone-derived hydroxyapatite/carbon quantum dot nanocomposite: Synthesis, characterisation, and Acid Black 210 dye removal. Int. J. Environ. Anal. Chem. 2024, 1–19. [Google Scholar] [CrossRef]
- Sivaraj, R.; Rahman, P.K.S.M.; Rajiv, P.; Narendhran, S.; Venckatesh, R. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 129, 255–258. [Google Scholar] [CrossRef]
- Acharyulu, N.P.S.; Dubey, R.S.; Swaminadham, V.; Kollu, P.; Kalyani, R.L.; Pammi, S.V.N. Green Synthesis of CuO nanoparticles using Phyllanthus amarus leaf extract and their antibacterial activity against multidrug resistance bacteria green synthesis of CuO nanoparticles. Int. J. Eng. Technol. Res. 2014, 3, 639. [Google Scholar]
- Yallappa, S.; Manjanna, J.; Sindhe, M.A.; Satyanarayan, N.D.; Pramod, S.N.; Nagaraja, K. Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 110, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.K.; Akhtar, M.S.; Ameen, S.; Srivastava, P.; Singh, G. Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J. Alloys Compd. 2015, 632, 321–325. [Google Scholar] [CrossRef]
- Awwad, A.; Albiss, B.; Salem, N. Antibacterial Activity of synthesised Copper Oxide nanoparticles using Malva sylvestris leaf extract. SMU Med. J. 2015, 2, 91–101. [Google Scholar]
- Yogamoorthi, A. Green synthesis of copper oxide nanoparticles using aqueous extract of flowers of Cassia alata and particles characterisation. J. Nanomat. Biostruct. 2014, 4, 66–71. [Google Scholar]
- Sankar, R.; Manikandan, P.; Malarvizhi, V.; Fathima, T.; Shivashangari, K.S.; Ravikumar, V. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 121, 746–750. [Google Scholar] [CrossRef]
- Murugan, S.; Ashokkumar, M.; Sakthivel, P. Preparation and characterization of ZnS:MgS nanocomposites for photocatalytic and antioxidant applications. Vacuum 2023, 215, 112256. [Google Scholar] [CrossRef]
- Revathi, G.; Elavarasi, S.; Saravanan, K.; Ashokkumar, M.; Egbuna, C. Greater efficiency of polyherbal drug encapsulated biosynthesized chitosan nano-biopolymer on diabetes and its complications. Int. J. Biol. Macromol. 2023, 240, 124445. [Google Scholar] [CrossRef] [PubMed]
- Marsh, B.M.; Zhou, J.; Garand, E. Vibrational spectroscopy of isolated copper(ii) complexes with deprotonated triglycine and tetraglycine peptides. RSC Adv. 2015, 5, 1790–1795. [Google Scholar] [CrossRef]
- Buazar, F.; Sweidi, S.; Badri, M.; Kroushawi, F. Biofabrication of highly pure copper oxide nanoparticles using wheat seed extract and their catalytic activity: A mechanistic approach. Green Process. Synth. 2019, 8, 691–702. [Google Scholar] [CrossRef]
- Rafique, M.; Shafiq, F.; Gillani, S.; Shakil, M.; Tahir, M.; Sadaf, I. Eco-friendly Green and biosynthesis of copper oxide nanoparticles using Citrofortunella microcarpa leaves extract for efficient photocatalytic degradation of rhodamin B dye form textile wastewater. Optik 2019, 208, 164053. [Google Scholar] [CrossRef]
- Vanathi, P.; Periakaruppan, R.; Sivaraj, R. Synthesis and characterization of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens. Bull. Mater. Sci. 2016, 39, 1165–1170. [Google Scholar] [CrossRef]
- Yugandhar, P.; Vasavi, T.; Palempalli, U.m.d.; Savithramma, N. Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: Characterization and evaluation of its synergistic antimicrobial and anticancer activity. Appl. Nanosci. 2017, 7, 417–427. [Google Scholar] [CrossRef]
- Bashiri Rezaie, A.; Montazer, M.; Mahmoudi Rad, M. Biosynthesis of nano cupric oxide on cotton using Seidlitzia rosmarinus ashes utilizing bio, photo, acid sensing and leaching properties. Carbohydr. Polym. 2017, 177, 1–12. [Google Scholar] [CrossRef]
- Kamnev, A.; Dyatlova, Y.; Kenzhegulov, O.; Vladimirova, A.; Mamchenkova, P.; Tugarova, A. Fourier transform infrared (FTIR) spectroscopic analyses of microbiological samples and biogenic selenium nanoparticles of microbial origin: Sample preparation effects. Molecules 2021, 26, 1146. [Google Scholar] [CrossRef]
- Sackey, J.; Nwanya, A.; Bashir, A.K.H.; Matinise, N.; Ngilirabanga, J.; Emmanuel, A.; Coetsee, E.; Maaza, M. Electrochemical properties of Euphorbia pulcherrima mediated copper oxide nanoparticles. Mater. Chem. Phys. 2020, 244, 122714. [Google Scholar] [CrossRef]
- Gopalakrishnan, K.; Ramesh, C.; Ragunathan, V.; Thamilselvan, M. Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from Tridax procumbens leaf extract and surface coating with polyaniline. Dig. J. Nanomater. Biostruc. 2012, 7, 833–839. [Google Scholar]
- Erci, F.; Cakir-Koc, R.; Yontem, M.; Torlak, E. Synthesis of biologically active copper oxide nanoparticles as promising novel antibacterial-antibiofilm agents. Prep. Biochem. Biotechnol. 2020, 50, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Renuga, D.; Sundari, J.J.; Athithan, A.S.; Yacob, Y.B.A. Synthesis and characterization of copper oxide nanoparticles using Brassica oleracea var. italic extract for its antifungal application. Mater. Res. Express 2020, 7, 045007. [Google Scholar]
- Murugan, S.; Vignesh, G.; Ashokkumar, M. Investigating the influence of CuS ratio on sun light-driven photocatalytic performance of ZnS:CuS nanocomposites and reusability of PVA/ZnS: CuS polymer membrane. Mater. Chem. Phys. 2024, 328, 130025. [Google Scholar] [CrossRef]
- Murugan, S.; Ashokkumar, M.; Sakthivel, P.; Choi, D. Sulfur deficiency mediated visible emission of ZnS QDs by magnesium dopant and their application in waste water treatment. Heliyon 2023, 9, e17947. [Google Scholar] [CrossRef]
- Meghana, S.; Kabra, P.; Chakraborty, S.; Padmavathy, N. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 2015, 5, 12293–12299. [Google Scholar] [CrossRef]
- Saravanan, K.; Elavarasi, S.; Revathi, G.; Karuppannan, P.; Ashokkumar, M.; Muthusamy, C.; Ram Kumar, A. Targeting SARS-CoV2 spike glycoprotein: Molecular insights into phytocompounds binding interactions—In-silico molecular docking. J. Biomater. Sci. Polym. Ed. 2024, 1–18. [Google Scholar] [CrossRef]
- Humphries, R.; Bobenchik, A.M.; Hindler, J.A.; Schuetz, A.N. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100, 31st edition. J. Clin. Microbiol. 2021, 59, e0021321. [Google Scholar] [CrossRef]
- Jaidka, S.; Somani, R.; Singh, D.; Sheikh, T. Herbal combat against E. faecalis—An in vitro study. J. Oral Biol. Craniofac. Res. 2017, 7, 178–181. [Google Scholar] [CrossRef]
- Abdel-Aziz, A.A.M.; Asiri, Y.A.; Al-Agamy, M.H.M. Design, synthesis and antibacterial activity of fluoroquinolones containing bulky arenesulfonyl fragment: 2D-QSAR and docking study. Eur. J. Med. Chem. 2011, 46, 5487–5497. [Google Scholar] [CrossRef]
NPs | Element | Atomic Number | Weight % | σ |
---|---|---|---|---|
CuO | O | 8 | 28.90 | 0.7 |
Cu | 30 | 71.10 | 0.7 | |
Total | - | 100 | - | |
Cu2O | O | 8 | 33.06 | 0.3 |
Cu | 30 | 66.94 | 0.3 | |
Total | - | 100 | - |
Comp. No. | MIC µg/mL | |||
---|---|---|---|---|
S. aureus | P. aeruginosa | E. coli | B. cereus | |
Bidens pilosa Extract | 28 ± 0.32 | 36 ± 0.64 | 30 ± 0.16 | 43 ± 1.34 |
CuO NPs | 23 ± 0.64 | 30 ± 0.72 | 18 ± 1.54 | 26 ± 0.56 |
Cu2O NPs | 20 ± 0.26 | 26 ± 1.82 | 16 ± 0.46 | 24 ± 1.34 |
Ciprofloxacin | 26 ± 1.34 | 28 ± 0.0 | 20 ± 0.0 | 50 ± 0.35 |
Compounds | Antibacterial Target Protein (PDB ID: 1KZN) | ||
---|---|---|---|
Binding Score (kcal/mol) | No. of H-Bonds | H-Bonding Residues | |
CuO NPs | −6.4 | - | - |
Cu2O NPs | −8.2 | - | - |
Ciprofloxacin | −6.0 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paramasivam, S.; Chidambaram, S.; Karumalaiyan, P.; Velayutham, G.; Chinnasamy, M.; Pitchaipillai, R.; Kumar, K.J.S. Phytogenic Synthesis of Cuprous and Cupric Oxide Nanoparticles Using Black jack Leaf Extract: Antibacterial Effects and Their Computational Docking Insights. Antibiotics 2024, 13, 1088. https://doi.org/10.3390/antibiotics13111088
Paramasivam S, Chidambaram S, Karumalaiyan P, Velayutham G, Chinnasamy M, Pitchaipillai R, Kumar KJS. Phytogenic Synthesis of Cuprous and Cupric Oxide Nanoparticles Using Black jack Leaf Extract: Antibacterial Effects and Their Computational Docking Insights. Antibiotics. 2024; 13(11):1088. https://doi.org/10.3390/antibiotics13111088
Chicago/Turabian StyleParamasivam, Sutha, Sathishkumar Chidambaram, Palanisamy Karumalaiyan, Gurunathan Velayutham, Muthusamy Chinnasamy, Ramar Pitchaipillai, and K. J. Senthil Kumar. 2024. "Phytogenic Synthesis of Cuprous and Cupric Oxide Nanoparticles Using Black jack Leaf Extract: Antibacterial Effects and Their Computational Docking Insights" Antibiotics 13, no. 11: 1088. https://doi.org/10.3390/antibiotics13111088
APA StyleParamasivam, S., Chidambaram, S., Karumalaiyan, P., Velayutham, G., Chinnasamy, M., Pitchaipillai, R., & Kumar, K. J. S. (2024). Phytogenic Synthesis of Cuprous and Cupric Oxide Nanoparticles Using Black jack Leaf Extract: Antibacterial Effects and Their Computational Docking Insights. Antibiotics, 13(11), 1088. https://doi.org/10.3390/antibiotics13111088