A Study of Resistome in Mexican Chili Powder as a Public Health Risk Factor
Abstract
:1. Introduction
2. Results
2.1. Bacterial Load
2.2. Bacterial Community Analysis
2.3. Resistome of Chili Powder
3. Discussion
4. Materials and Methods
4.1. Bacterial Load
4.2. DNA Extraction
4.3. Shotgun Metagenomic Sequencing
4.4. Bioinformatics Analysis
4.5. Availability of Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baenas, N.; Belović, M.; Ilic, N.; Moreno, D.A.; García-Viguera, C. Industrial use of pepper (Capsicum annum L.) derived products: Technological benefits and biological advantages. Food Chem. 2019, 274, 872–885. [Google Scholar] [CrossRef]
- FAOSTAT. 2023. Available online: http://www.fao.org (accessed on 2 October 2023).
- Aguilar-Meléndez, A.; Vásquez-Dávila, M.A.; Manzanero-Medina, G.I.; Katz, E. Chile (Capsicum spp.) as Food-Medicine Continuum in Multiethnic Mexico. Foods 2021, 10, 2502. [Google Scholar] [CrossRef] [PubMed]
- Rincón, V.H.A.; Torres, T.C.; López, P.L.; Moreno, L.L.; Meraz, M.R.; Mendoza, H.V.; Castillo, J.A.A. Los Chiles de México y su Distribución; Sinarefi, Colpos, Inifap, Itconkal, Uanl, Uan: Mexico City, México, 2010; 114p. [Google Scholar]
- García-Gaytán, V.; Gómez-Merino, F.C.; Trejo-Téllez, L.I.; Baca-Castillo, G.A.; García-Morales, S. The Chilhuacle Chili (Capsicum annuum L.) in Mexico: Description of the Variety, Its Cultivation, and Uses. Int. J. Agron. 2017, 2017, 5641680. [Google Scholar] [CrossRef]
- Molnár, H.; Bata-Vidács, I.; Baka, E.; Cserhalmi, Z.; Ferenczi, S.; Tömösközi-Farkas, R.; Adányi, N.; Székács, A. The effect of different decontamination methods on the microbial load, bioactive components, aroma and colour of spice paprika. Food Control 2018, 83, 131–140. [Google Scholar] [CrossRef]
- Feroz, F.; Shimizu, H.; Nishioka, T.; Mori, M.; Sakagami, Y. Bacterial and Fungal Counts of Dried and Semi-Dried Foods Collected from Dhaka, Bangladesh, and Their Reduction Methods. Biocontrol Sci. 2016, 21, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Van Doren, J.M.; Neil, K.P.; Parish, M.; Gieraltowski, L.; Gould, L.H.; Gombas, K.L. Foodborne illness outbreaks from microbial contaminants in spices, 1973–2010. Food Microbiol. 2013, 36, 456–464. [Google Scholar] [CrossRef]
- González, M.G.M.; Romero, S.M.; Arjona, M.; Larumbe, A.G.; Vaamonde, G. Microbiological quality of Argentinian paprika. Rev. Argent. Microbiol. 2017, 49, 339–346. [Google Scholar] [CrossRef]
- Mamun, A.A.; Masuma, A.; Majumder, D.; Ali, M.; Hossen, M.; Maruf, K. Quality assessment of selected commercial brand of chilli powder in Bangladesh. MOJ Food Process. Technol. 2016, 3, 291–294. [Google Scholar] [CrossRef]
- Bata-Vidács, I.; Baka, E.; Tóth, Á.; Csernus, O.; Luzics, S.; Adányi, N.; Székács, A.; Kukolya, J. Investigation of regional differences of the dominant microflora of spice paprika by molecular methods. Food Control 2018, 83, 109–117. [Google Scholar] [CrossRef]
- György, É.; Laslo, É.; Antal, M.; András, C.D. Antibiotic resistance pattern of the allochthonous bacteria isolated from commercially available spices. Food Sci. Nutr. 2021, 9, 4550–4560. [Google Scholar] [CrossRef]
- Frentzel, H.; Kraushaar, B.; Krause, G.; Bódi, D.; Wichmann-Schauer, H.; Appel, B.; Mader, A. Phylogenetic and toxinogenic characteristics of Bacillus cereus group members isolated from spices and herbs. Food Control 2018, 83, 90–98. [Google Scholar] [CrossRef]
- Hariram, U.; Labbé, R. Spore prevalence and toxigenicity of Bacillus cereus and Bacillus thuringiensis isolates from U.S. retail spices. J. Food Prot. 2015, 78, 590–596. [Google Scholar] [CrossRef]
- Lehmacher, A.; Bockemühl, J.; Aleksic, S. Nationwide outbreak of human salmonellosis in Germany due to contaminated paprika and paprika-powdered potato chips. Epidemiol. Infect. 1995, 115, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, M.; Sarkar, P.K. Microbiological quality of some retail spices in India. Food Res. Int. 2003, 36, 469–474. [Google Scholar] [CrossRef]
- Hernández, A.G.C.; Ortiz, V.G.; Gómez, J.L.A.; López, M.Á.R.; Morales, J.A.R.; Macías, A.F.; Hidalgo, E.Á.; Ramírez, J.N.; Gallardo, F.J.F.; Gutiérrez, M.C.G.; et al. Detection of Bacillus cereus sensu lato Isolates Posing Potential Health Risks in Mexican Chili Powder. Microorganisms 2021, 9, 2226. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.E.; Millar, B.C.; Panickar, J.R.; Moore, J.E. Microbiological safety of spices and their interaction with antibiotics: Implication for antimicrobial resistance and their role as potential antibiotic adjuncts. Food Qual. Saf. 2019, 3, 93–97. [Google Scholar] [CrossRef]
- Hernández Gómez, Y.F.; González Espinosa, J.; Ramos López, M.Á.; Arvizu Gómez, J.L.; Saldaña, C.; Rodríguez Morales, J.A.; García Gutiérrez, M.C.; Pérez Moreno, V.; Álvarez Hidalgo, E.; Nuñez Ramírez, J.; et al. Insights into the Bacterial Diversity and Detection of Opportunistic Pathogens in Mexican Chili Powder. Microorganisms 2022, 10, 1677. [Google Scholar] [CrossRef]
- Walsh, F.; Duffy, B. The Culturable Soil Antibiotic Resistome: A Community of Multi-Drug Resistant Bacteria. PLoS ONE 2013, 8, e65567. [Google Scholar] [CrossRef]
- ICSMF (International Commission on Microbiological Specifications for Foods). Microorganisms in Foods 2, Sampling Formicrobiological Analysis: Principles and Specific Applications, 2nd ed.; Blackwell Scientific: Oxford, UK, 1986; Volume 23. [Google Scholar]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef]
- Su, Y.; Liu, C.; Fang, H.; Zhang, D. Bacillus subtilis: A universal cell factory for industry, agriculture, biomaterials and medicine. Microb. Cell Factories 2020, 19, 173. [Google Scholar] [CrossRef]
- Iqbal, S.; Begum, F.; Rabaan, A.A.; Aljeldah, M.; Al Shammari, B.R.; Alawfi, A.; Alshengeti, A.; Sulaiman, T.; Khan, A. Classification and Multifaceted Potential of Secondary Metabolites Produced by Bacillus subtilis Group: A Comprehensive Review. Molecules 2023, 28, 927. [Google Scholar] [CrossRef]
- Ngalimat, M.S.; Yahaya, R.S.R.; Baharudin, M.M.A.-A.; Yaminudin, S.M.; Karim, M.; Ahmad, S.A.; Sabri, S. A Review on the Biotechnological Applications of the Operational Group Bacillus amyloliquefaciens. Microorganisms 2021, 9, 614. [Google Scholar] [CrossRef]
- Haydushka, I.A.; Markova, N.; Kirina, V.; Atanassova, M. Recurrent sepsis due to Bacillus licheniformis. J. Glob. Infect. Dis. 2012, 4, 82–83. [Google Scholar] [CrossRef]
- EFSA. Panel on biological hazards (BIOHAZ). Scientific opinion on the risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J. 2016, 14, 93. [Google Scholar]
- Janda, J.M.; Abbott, S.L. The changing face of the family Enterobacteriaceae (order: “Enterobacterales”): New members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clin. Microbiol. Rev. 2021, 34, e00174-20. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, D.M.; Barrón-Montenegro, R.; Conejeros, J.; Rivera, D.; Undurraga, E.A.; Moreno-Switt, A.I. A review of the global emergence of multidrug-resistant Salmonella enterica subsp. enterica Serovar Infantis. Int. J. Food Microbiol. 2023, 403, 110297, ISSN 0168-1605. [Google Scholar] [CrossRef]
- Annavajhala, M.K.; Gomez-Simmonds, A.; Uhlemann, A.C. Multidrug-resistant Enterobacter cloacae complex emerging as a global, diversifying threat. Front. Microbiol. 2019, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef]
- Effah, C.Y.; Sun, T.; Liu, S.; Wu, Y. Klebsiella pneumoniae: An increasing threat to public health. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 1. [Google Scholar] [CrossRef]
- Liu, L.H.; Wang, N.Y.; Wu AY, J.; Lin, C.C.; Lee, C.M.; Liu, C.P. Citrobacter freundii bacteremia: Risk factors of mortality and prevalence of resistance genes. J. Microbiol. Immunol. Infect. 2018, 51, 565–572. [Google Scholar] [CrossRef]
- Fernández, A.L.; Adrio, B.; Cereijo, J.M.M.; Monzonis, M.A.M.; El-Diasty, M.M.; Escudero, J.A. Clinical study of an outbreak of postoperative mediastinitis caused by Serratia marcescens in adult cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 2020, 30, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, P.; Li, C.; Sha, M.; Fang, J.; Gao, J.; Xu, X.; Matthews, K.R. Prevalence and genetic diversity of Cronobacter species isolated from four infant formula production factories in China. Front. Microbiol. 2019, 10, 1938. [Google Scholar] [CrossRef] [PubMed]
- Monticelli, J.; Knezevich, A.; Luzzati, R.; Di Bella, S. Clinical management of non-faecium non-faecalis vancomycin-resistant enterococci infection. Focus on Enterococcus gallinarum and Enterococcus casseliflavus/flavescens. J. Infect. Chemother. 2018, 24, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Xi, Y.; Yuan, P.; Sun, Z.; Yang, D. Risk factors and antimicrobial resistance profiles of Pseudomonas putida infection in Central China, 2010–2017. Medicine 2019, 98, e17812. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.; Al-Saryi, N.; Al-Kadmy, I.M.; Aziz, S.N. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol. Biol. Rep. 2021, 48, 6987–6998. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. Epidemiology of β-lactamase-producing pathogens. Clin. Microbiol. Rev. 2020, 33, e00047-19. [Google Scholar] [CrossRef]
- De Angelis, G.; Del Giacomo, P.; Posteraro, B.; Sanguinetti, M.; Tumbarello, M. Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. Int. J. Mol. Sci. 2020, 21, 5090. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Ning, J.; Sajid, A.; Cheng, G.; Yuan, Z.; Hao, H. The nature and epidemiology of OqxAB, a multidrug efflux pump. Antimicrob. Resist. Infect. Control 2019, 8, 44. [Google Scholar] [CrossRef]
- Bharatham, N.; Bhowmik, P.; Aoki, M.; Okada, U.; Sharma, S.; Yamashita, E.; Shanbhag, A.P.; Rajagopal, S.; Thomas, T.; Sarma, M.; et al. Structure and function relationship of OqxB efflux pump from Klebsiella pneumoniae. Nat. Commun. 2021, 12, 5400. [Google Scholar] [CrossRef]
- Moosavian, M.; Khoshkholgh Sima, M.; Ahmad Khosravi, N.; Abbasi Montazeri, E. Detection of OqxAB Efflux Pumps, a Multidrug-Resistant Agent in Bacterial Infection in Patients Referring to Teaching Hospitals in Ahvaz, Southwest of Iran. Int. J. Microbiol. 2021, 2021, 2145176. [Google Scholar] [CrossRef] [PubMed]
- Nøhr-Meldgaard, K.; Struve, C.; Ingmer, H.; Agersø, Y. The Tetracycline Resistance Gene, tet(W) in Bifidobacterium animalis subsp. lactis Follows Phylogeny and Differs From tet(W) in Other Species. Front. Microbiol. 2021, 12, 658943. [Google Scholar] [CrossRef]
- Grossman, T.H. Tetracycline Antibiotics and Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025387. [Google Scholar] [CrossRef]
- Schaenzer, A.J.; Wright, G.D. Antibiotic Resistance by Enzymatic Modification of Antibiotic Targets. Trends Mol. Med. 2020, 26, 768–782. [Google Scholar] [CrossRef]
- Varela, M.F.; Stephen, J.; Lekshmi, M.; Ojha, M.; Wenzel, N.; Sanford, L.M.; Hernandez, A.J.; Parvathi, A.; Kumar, S.H. Bacterial Resistance to Antimicrobial Agents. Antibiotics 2021, 10, 593. [Google Scholar] [CrossRef]
- Stogios, P.J.; Savchenko, A. Molecular mechanisms of vancomycin resistance. Protein Sci. 2020, 29, 654–669. [Google Scholar] [CrossRef]
- Bacteriological Analytical Manual Online. In Center for Food Safety and Applied Nutrition; U.S. Food and Drug Administration: Gaithersburg, MD, USA. Available online: https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam (accessed on 1 April 2022).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Kalantar, K.L.; Carvalho, T.; De Bourcy, C.F.A.; Dimitrov, B.; Dingle, G.; Egger, R.; Han, J.; Holmes, O.B.; Juan, Y.-F.; King, R.; et al. IDseq—An open source cloud-based pipeline and analysis service for metagenomic pathogen detection and monitoring. Gigascience 2020, 9, giaa111. [Google Scholar] [CrossRef] [PubMed]
- Olson, R.D.; Assaf, R.; Brettin, T.; Conrad, N.; Cucinell, C.; Davis, J.J.; Dempsey, D.M.; Dickerman, A.; Dietrich, E.M.; Kenyon, R.W.; et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): A resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 2022, 51, D678–D689. [Google Scholar] [CrossRef] [PubMed]
- Chao, A. Nonparametric Estimation of the Number of Classes in a Population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
SAMPLE | Species/Variety | Geographic Region | AMB (CFU/g) | SMB (CFU/g) | En (CFU/g) |
---|---|---|---|---|---|
CH1 | C. annuum/Guajillo | San Luis Potosí | 2.3 × 107 | 2.2 × 107 | 1.1 × 106 |
CH2 | C. annuum/Mirasol | Zacatecas, Zac. | 1.2 × 106 | 3.5 × 105 | 1.2 × 105 |
CH3 | C. annuum/Guajillo | Fresnillo, Zac. | 6.1 × 106 | 2.9 × 106 | 5.1 × 105 |
CH4 | C. annuum/De Árbol | San Luis Potosí | 2.1 × 107 | 3 × 107 | 2.3 × 106 |
CH5 | C. annuum/Mirasol | Zacatecas, Zac. | 5.8 × 106 | 3.2 × 107 | 2.1 × 104 |
CH6 | C. annuum/Xkatik | Yucatán | 1 × 107 | 5.1 × 108 | ˂102 |
CH7 | C. annuum/Guajillo | Jalisco | 4.9 × 106 | 4.7 × 107 | 4.3 × 105 |
CH8 | C. annuum/Jalapeño | Fresnillo, Zac. | 1.7 × 105 | 1.9 × 106 | <102 |
CH9 | C. annuum/Poblano | Fresnillo, Zac. | 1 × 107 | 1.2 × 107 | <102 |
CH10 | C. annuum/Morita | Fresnillo, Zac. | 2 × 107 | 1.4 × 107 | <102 |
CH11 | C. annuum/Guajillo | San Luis Potosí | 7 × 108 | 1.2 × 107 | <102 |
CH12 | C. annuum/De Árbol | Yucatán | 4.4 × 107 | 2 × 109 | <102 |
CH13 | C. chinense | Yucatán | 3.8 × 107 | 3.3 × 107 | 7.4 × 104 |
CH14 | C. annuum/Poblano | Aguascalientes | 6 × 103 | 1.7 × 104 | <102 |
CH15 | C. annuum/De Árbol | Querétaro | 1 × 106 | 4.3 × 103 | 4.8 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mena Navarro, M.P.; Espinosa Bernal, M.A.; Alvarado Osuna, C.; Ramos López, M.Á.; Amaro Reyes, A.; Arvizu Gómez, J.L.; Pacheco Aguilar, J.R.; Saldaña Gutiérrez, C.; Pérez Moreno, V.; Rodríguez Morales, J.A.; et al. A Study of Resistome in Mexican Chili Powder as a Public Health Risk Factor. Antibiotics 2024, 13, 182. https://doi.org/10.3390/antibiotics13020182
Mena Navarro MP, Espinosa Bernal MA, Alvarado Osuna C, Ramos López MÁ, Amaro Reyes A, Arvizu Gómez JL, Pacheco Aguilar JR, Saldaña Gutiérrez C, Pérez Moreno V, Rodríguez Morales JA, et al. A Study of Resistome in Mexican Chili Powder as a Public Health Risk Factor. Antibiotics. 2024; 13(2):182. https://doi.org/10.3390/antibiotics13020182
Chicago/Turabian StyleMena Navarro, Mayra Paola, Merle Ariadna Espinosa Bernal, Claudia Alvarado Osuna, Miguel Ángel Ramos López, Aldo Amaro Reyes, Jackeline Lizzeta Arvizu Gómez, Juan Ramiro Pacheco Aguilar, Carlos Saldaña Gutiérrez, Victor Pérez Moreno, José Alberto Rodríguez Morales, and et al. 2024. "A Study of Resistome in Mexican Chili Powder as a Public Health Risk Factor" Antibiotics 13, no. 2: 182. https://doi.org/10.3390/antibiotics13020182
APA StyleMena Navarro, M. P., Espinosa Bernal, M. A., Alvarado Osuna, C., Ramos López, M. Á., Amaro Reyes, A., Arvizu Gómez, J. L., Pacheco Aguilar, J. R., Saldaña Gutiérrez, C., Pérez Moreno, V., Rodríguez Morales, J. A., García Gutiérrez, M. C., Álvarez Hidalgo, E., Nuñez Ramírez, J., Hernández Flores, J. L., & Campos Guillén, J. (2024). A Study of Resistome in Mexican Chili Powder as a Public Health Risk Factor. Antibiotics, 13(2), 182. https://doi.org/10.3390/antibiotics13020182