Antibacterial Activity and Cytotoxicity Screening of Acyldepsipeptide-1 Analogues Conjugated to Silver/Indium/Sulphide Quantum Dots
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of AgInS2 QDs
2.2. Functionalization of AgInS2 QDs with ADEP1 Analogues
2.3. Antibacterial Activity of AgInS2 QDs-ADEP1 Analogue Conjugates
2.4. Cytotoxicity Screening of AgInS2 QDs-ADEP1 Analogue Conjugates
3. Materials and Methods
3.1. Materials
3.2. Synthesis of AgInS2 QDs
3.3. Conjugation of AgInS2 QDs to ADEP1 Analogues
3.4. Characterization of QDs, AgInS2-ADEP1 Analogue Conjugates, and ADEP1 Analogues
3.5. Antibacterial Activity of AgInS2-ADEP1 Analogue Conjugates
3.6. Cytotoxicity Activity of AgInS2-ADEP1 Analogue Conjugates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Jong, W.H.; Borm, P.J. Drug Delivery and Nanoparticles: Applications and Hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef]
- Guisbiers, G.; Mejía-Rosales, S.; Leonard Deepak, F. Nanomaterial Properties: Size and Shape Dependencies. Available online: https://www.hindawi.com/journals/jnm/2012/180976/ (accessed on 31 August 2018).
- Mandal, A. Copper Nanomaterials as Drug Delivery System against Infectious Agents and Cancerous Cells. J. Appl. Life Sci. Int. 2017, 15, 1–8. [Google Scholar] [CrossRef]
- Kawabata, Y.; Wada, K.; Nakatani, M.; Yamada, S.; Onoue, S. Formulation Design for Poorly Water-Soluble Drugs Based on Biopharmaceutics Classification System: Basic Approaches and Practical Applications. Int. J. Pharm. 2011, 420, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Carmona, M.; Lozano, D.; Colilla, M.; Vallet-Regí, M. Selective Topotecan Delivery to Cancer Cells by Targeted pH-Sensitive Mesoporous Silica Nanoparticles. RSC Adv. 2016, 6, 50923–50932. [Google Scholar] [CrossRef]
- Müller, R.H.; Jacobs, C.; Kayser, O. Nanosuspensions as Particulate Drug Formulations in Therapy. Rationale for Development and What We Can Expect for the Future. Adv. Drug Deliv. Rev. 2001, 47, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Kou, L.; Bhutia, Y.D.; Yao, Q.; He, Z.; Sun, J.; Ganapathy, V. Transporter-Guided Delivery of Nanoparticles to Improve Drug Permeation across Cellular Barriers and Drug Exposure to Selective Cell Types. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Fadaka, A.O.; Sibuyi, N.R.S.; Madiehe, A.M.; Meyer, M. Nanotechnology-Based Delivery Systems for Antimicrobial Peptides. Pharmaceutics 2021, 13, 1795. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zeng, X.; Yang, Q.; Qiao, S. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry. Int. J. Mol. Sci. 2016, 17, 603. [Google Scholar] [CrossRef] [PubMed]
- Goodreid, J.D.; Janetzko, J.; Santa Maria, J.P.; Wong, K.S.; Leung, E.; Eger, B.T.; Bryson, S.; Pai, E.F.; Gray-Owen, S.D.; Walker, S.; et al. Development and Characterization of Potent Cyclic Acyldepsipeptide Analogues with Increased Antimicrobial Activity. J. Med. Chem. 2016, 59, 624–646. [Google Scholar] [CrossRef] [PubMed]
- Cobongela, S.Z.Z.; Makatini, M.M.; Njengele-Tetyana, Z.; Sikhwivhilu, L.M.; Sibuyi, N.R.S. Design and Synthesis of Acyldepsipeptide-1 Analogues: Antibacterial Activity and Cytotoxicity Screening. Arab. J. Chem. 2023, 16, 105000. [Google Scholar] [CrossRef]
- Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum Dots in Imaging, Drug Delivery and Sensor Applications. Int. J. Nanomed. 2017, 12, 5421–5431. [Google Scholar] [CrossRef]
- Probst, C.E.; Zrazhevskiy, P.; Bagalkot, V.; Gao, X. Quantum Dots as a Platform for Nanoparticle Drug Delivery Vehicle Design. Adv. Drug Deliv. Rev. 2013, 65, 703–718. [Google Scholar] [CrossRef]
- Zhao, M.-X.; Zhu, B.-J. The Research and Applications of Quantum Dots as Nano-Carriers for Targeted Drug Delivery and Cancer Therapy. Nanoscale Res. Lett. 2016, 11, 207. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Luo, Y.; Zhang, W.; Du, D.; Lin, Y. pH-Sensitive ZnO Quantum Dots-Doxorubicin Nanoparticles for Lung Cancer Targeted Drug Delivery. ACS Appl. Mater. Interfaces 2016, 8, 22442–22450. [Google Scholar] [CrossRef] [PubMed]
- Jiao, M.; Li, Y.; Jia, Y.; Li, C.; Bian, H.; Gao, L.; Cai, P.; Luo, X. Strongly Emitting and Long-Lived Silver Indium Sulfide Quantum Dots for Bioimaging: Insight into Co-Ligand Effect on Enhanced Photoluminescence. J. Colloid Interface Sci. 2020, 565, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Fahmi, M.Z.; Chang, J.-Y. Forming Double Layer-Encapsulated Quantum Dots for Bio-Imaging and Cell Targeting. Nanoscale 2013, 5, 1517–1528. [Google Scholar] [CrossRef] [PubMed]
- Oluwafemi, O.S.; May, B.M.M.; Parani, S.; Rajendran, J.V. Cell Viability Assessments of Green Synthesized Water-Soluble AgInS2/ZnS Core/Shell Quantum Dots against Different Cancer Cell Lines. J. Mater. Res. 2019, 34, 4037–4044. [Google Scholar] [CrossRef]
- Kang, X.; Yang, Y.; Wang, L.; Wei, S.; Pan, D. Warm White Light Emitting Diodes with Gelatin-Coated AgInS2/ZnS Core/Shell Quantum Dots. ACS Appl. Mater. Interfaces 2015, 7, 27713–27719. [Google Scholar] [CrossRef]
- Babel, W. Gelatine—Ein vielseitiges Biopolymer. Chem. Unserer Zeit 1996, 30, 86–95. [Google Scholar] [CrossRef]
- Esfandyari-Manesh, M.; Mostafavi, S.H.; Majidi, R.F.; Koopaei, M.N.; Ravari, N.S.; Amini, M.; Darvishi, B.; Ostad, S.N.; Atyabi, F.; Dinarvand, R. Improved Anticancer Delivery of Paclitaxel by Albumin Surface Modification of PLGA Nanoparticles. Daru 2015, 23, 28. [Google Scholar] [CrossRef]
- Jablonski, A.E.; Humphries, W.H.; Payne, C.K. Pyrenebutyrate-Mediated Delivery of Quantum Dots across the Plasma Membrane of Living Cells. J. Phys. Chem. B 2009, 113, 405–408. [Google Scholar] [CrossRef]
- Katas, H.; Nik Dzulkefli, N.N.S.; Sahudin, S. Synthesis of a New Potential Conjugated TAT-Peptide-Chitosan Nanoparticles Carrier via Disulphide Linkage. J. Nanomater. 2012, 2012, e134607. [Google Scholar] [CrossRef]
- Qian, H.S.; Guo, H.C.; Ho, P.C.-L.; Mahendran, R.; Zhang, Y. Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy. Small 2009, 5, 2285–2290. [Google Scholar] [CrossRef] [PubMed]
- Almarwani, B.; Phambu, N.; Hamada, Y.Z.; Sunda-Meya, A. Interactions of an Anionic Antimicrobial Peptide with Zinc(II): Application to Bacterial Mimetic Membranes. Langmuir 2020, 36, 14554–14562. [Google Scholar] [CrossRef] [PubMed]
- Brötz-Oesterhelt, H.; Beyer, D.; Kroll, H.-P.; Endermann, R.; Ladel, C.; Schroeder, W.; Hinzen, B.; Raddatz, S.; Paulsen, H.; Henninger, K.; et al. Dysregulation of Bacterial Proteolytic Machinery by a New Class of Antibiotics. Nat. Med. 2005, 11, 1082–1087. [Google Scholar] [CrossRef]
- Vauquelin, G.; Charlton, S.J. Long-Lasting Target Binding and Rebinding as Mechanisms to Prolong in Vivo Drug Action. Br. J. Pharmacol. 2010, 161, 488–508. [Google Scholar] [CrossRef]
- Mammen, M.; Choi, S.-K.; Whitesides, G.M. Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew. Chem. Int. Ed. Engl. 1998, 37, 2754–2794. [Google Scholar] [CrossRef]
- Mesquita, B.S.; Fens, M.H.A.M.; Di Maggio, A.; Bosman, E.D.C.; Hennink, W.E.; Heger, M.; Oliveira, S. The Impact of Nanobody Density on the Targeting Efficiency of PEGylated Liposomes. Int. J. Mol. Sci. 2022, 23, 14974. [Google Scholar] [CrossRef]
- Boroushaki, M.T.; Arshadi, D.; Jalili-Rasti, H.; Asadpour, E.; Hosseini, A. Protective Effect of Pomegranate Seed Oil Against Acute Toxicity of Diazinon in Rat Kidney. Iran. J. Pharm. Res. 2013, 12, 821–827. [Google Scholar] [PubMed]
- May, B.M.M.; Parani, S.; Oluwafemi, O.S. Detection of Ascorbic Acid Using Green Synthesized AgInS2 Quantum Dots. Mater. Lett. 2019, 236, 432–435. [Google Scholar] [CrossRef]
Elements | Ag | In | S |
---|---|---|---|
% | 0.8 | 1.6 | 14.4 |
Ratio | 1 | 2 | 18 |
ADEP1 Analogue | Zeta Potential (mV) before Conjugation | Zeta Potential (mV) after Conjugation | Hydrodynamic Diameter (nm) |
---|---|---|---|
AgInS2 QDs | −3.7 ± 0.9 | - | 36.7 ± 2.8 |
SC005 | −7.2 ± 1.6 | 1.46 ± 0.02 | 49.6 ± 1.6 |
SC006 | −3.8 ± 1.1 | 1.38 ± 0.06 | 44.2 ± 1.4 |
SC007 | −3.9 ± 0.8 | 1.00 ± 0.15 | 44.4 ± 0.7 |
SC008 | −6.9 ± 1.5 | 1.39 ± 0.09 | 50.3 ± 1.6 |
Functional Groups | Gelatin | AgInS2-QDs | ADEP1 Analogues | AgInS2 QDs-ADEP1 Analogues |
---|---|---|---|---|
N-Hstr | 3300 | 3300 | 3300 | 3300 |
C-Hstr | 2920–2860 | 2960–2875 | 2920–2860 | 2960–2875 |
C=Ostr (Amide band I, Amide band II) | 1625, 1525 | 1637, 1537 | 1625, 1525 | 1637, 1537 |
C-Nstr | 1450, 1390 | 1450, 1400 | 1450 | 1450, 1400 |
C-Nstr | 1275, 1390 | 1237, 1337 | 1237, 1337 | 1237, 1337 |
C-Ostr | 1050 | 1090 | 1190 | 1090 |
N-Hbend (out-of-plane) | x | 575, 675 | 700 | 575, 675 |
Treatments | B. subtilis | S. aureus | MRSA | P. aeruginosa | E. coli | |||||
---|---|---|---|---|---|---|---|---|---|---|
MIC µM | MBC µM | MIC µM | MBC µM | MIC µM | MBC µM | MIC µM | MBC µM | MIC µM | MBC µM | |
QD-SC005 SC005 | 6.3 125 | 25.0 125 | 6.3 63 | 25.0 125 | 12.5 125 | 50.0 250 | 25.0 125 | 100.0 250 | 1.6 500 | 6.3 750 |
QD-SC006 SC006 | 6.3 250 | 25.0 250 | 6.3 63 | 25.0 125 | 12.5 250 | 50.0 250 | 25.0 125 | 100.0 250 | 1.6 500 | 6.3 750 |
QD-SC007 SC007 | 6.3 125 | 25.0 125 | 6.3 63 | 25.0 125 | 12.5 250 | 50.0 500 | 25.0 125 | 100.0 250 | 1.6 500 | 6.3 750 |
QD-SC008 SC008 | 6.3 125 | 25.0 125 | 6.3 63 | 25.0 125 | 12.5 250 | 50.0 500 | 25.0 125 | 100.0 250 | 1.6 500 | 6.3 750 |
Gentamicin | 26.1 | 52.3 | 0.5 | 1.0 | 26.2 | 52.4 | 419 | 838 | NT | NT |
Ampicillin | NT | NT | NT | NT | NT | NT | NT | NT | 2862 | 5724 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cobongela, S.Z.Z.; Makatini, M.M.; May, B.; Njengele-Tetyana, Z.; Bambo, M.F.; Sibuyi, N.R.S. Antibacterial Activity and Cytotoxicity Screening of Acyldepsipeptide-1 Analogues Conjugated to Silver/Indium/Sulphide Quantum Dots. Antibiotics 2024, 13, 183. https://doi.org/10.3390/antibiotics13020183
Cobongela SZZ, Makatini MM, May B, Njengele-Tetyana Z, Bambo MF, Sibuyi NRS. Antibacterial Activity and Cytotoxicity Screening of Acyldepsipeptide-1 Analogues Conjugated to Silver/Indium/Sulphide Quantum Dots. Antibiotics. 2024; 13(2):183. https://doi.org/10.3390/antibiotics13020183
Chicago/Turabian StyleCobongela, Sinazo Z. Z., Maya M. Makatini, Bambesiwe May, Zikhona Njengele-Tetyana, Mokae F. Bambo, and Nicole R. S. Sibuyi. 2024. "Antibacterial Activity and Cytotoxicity Screening of Acyldepsipeptide-1 Analogues Conjugated to Silver/Indium/Sulphide Quantum Dots" Antibiotics 13, no. 2: 183. https://doi.org/10.3390/antibiotics13020183
APA StyleCobongela, S. Z. Z., Makatini, M. M., May, B., Njengele-Tetyana, Z., Bambo, M. F., & Sibuyi, N. R. S. (2024). Antibacterial Activity and Cytotoxicity Screening of Acyldepsipeptide-1 Analogues Conjugated to Silver/Indium/Sulphide Quantum Dots. Antibiotics, 13(2), 183. https://doi.org/10.3390/antibiotics13020183