Antibacterial Effect of Eight Essential Oils against Bacteria Implicated in Bovine Mastitis and Characterization of Primary Action Mode of Thymus capitatus Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Selected Bacteria and Growth Conditions
2.3. Screening of Antimicrobial Activity of EOs
2.4. Evaluation of the Quantitative Antibacterial Power of EOs
2.5. Primary Mode of Action of T. capitaus EO
2.5.1. Time-Kill Studies
2.5.2. Bacteriolysis
2.5.3. Loss of Cytoplasmic Material
2.5.4. Loss of Salt Tolerance
2.6. Statistical Analysis
3. Results and Discussion
3.1. Antibacterial Effect of Essential Oils
3.2. Characterization of Primary Action Mode of Thymus capitatus Essential Oil
3.2.1. Dynamics of Action of EO by Measuring Bacterial Growth: Time-Kill Assay
3.2.2. Bacteriolytic Effect
3.2.3. Loss of Salt Tolerance
3.2.4. Loss of Cytoplasmic Material
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Contreras, G.A.; Rodríguez, J.M. Mastitis: Comparative Etiology and Epidemiology. J. Mammary Gland Biol. Neoplasia 2011, 16, 339–356. [Google Scholar] [CrossRef]
- Motaung, T.E.; Petrovski, K.R.; Petzer, I.M.; Thekisoe, O.; Tsiloa, T.J. Importance of bovine mastitis in Africa. Anim. Health Res. Rev. 2017, 18, 58–69. [Google Scholar] [CrossRef]
- Jagielski, T.; Puacz, E.; Lisowski, A.; Siedlecki, P.; Dudziak, W.; Międzobrodzki, J.; Krukowski, H. Short communication: Antimicrobial susceptibility profiling and genotyping of Staphylococcus aureus isolates from bovine mastitis in Poland. J. Dairy Sci. 2014, 97, 6122–6128. [Google Scholar] [CrossRef]
- Jamali, H.; Radmehr, S.; Ismail, B. Short communication: Prevalence and antibiotic resistance of Staphylococcus aureus isolated from bovine clinical mastitis. J. Dairy Sci. 2014, 97, 2226–2230. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Yan, Z.; Wu, J.; Ali, T.; Li, J.; Lv, Y.; Han, B. Bovine mastitis Staphylococcus aureus: Antibiotic susceptibility profile, resistance genes and molecular typing of methicillin-resistant and methicillin-sensitive strains in China. Infect. Genet. Evol. 2015, 31, 9–16. [Google Scholar] [CrossRef]
- Klibi, A.; Jouini, A.; El Andolsi, R.B.; Kmiha, S.; Ben Hamda, C.; Ghedira, K.; Hamrouni, S.; Ghram, A.; Maaroufi, A. Epidemiology of β-Lactamase-Producing Staphylococci and Gram Negative Bacteria as Cause of Clinical Bovine Mastitis in Tunisia. BioMed Res. Int. 2019, 2019, 2165316. [Google Scholar] [CrossRef]
- Brody, T.; Yavatkar, A.S.; Lin, Y.; Ross, J.; Kuzin, A.; Kundu, M.; Fann, Y.; Odenwald, W.F. Horizontal Gene Transfers Link a Human MRSA Pathogen to Contagious Bovine Mastitis Bacteria. PLoS ONE 2008, 3, 8. [Google Scholar] [CrossRef]
- Gindonis, V.; Taponen, S.; Myllyniemi, A.-L.; Pyörälä, S.; Nykäsenoja, S.; Salmenlinna, S.; Lindholm, L.; Rantala, M. Occurrence and characterization of methicillin resistant staphylococci from bovine mastitis milk samples in Finland. Acta Vet. Scan. 2013, 55, 61. [Google Scholar] [CrossRef]
- Worthing, K.A.; Abraham, S.; Pang, S.; Coombs, G.W.; Saputra, S.; Jordan, D.; Wong, H.S.; Abraham, R.J.; Trott, D.J.; Norris, J.M. Molecular Characterization of Methicillin-Resistant Staphylococcus aureus Isolated from Australian Animals and Veterinarians. Microb. Drug Resist. 2017, 24, 203–212. [Google Scholar] [CrossRef]
- Bardiau, M.; Yamazaki, K.; Duprez, J.N.; Taminiau, B.; Mainil, J.G.; Ote, I. Genotypic and phenotypic characterization of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk of bovine mastitis. Lett. Appl. Microbiol. 2013, 57, 181–186. [Google Scholar] [CrossRef]
- Pu, W.; Su, Y.; Li, J.; Li, C.; Yang, Z.; Deng, H.; Ni, C. High incidence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) associated with bovine mastitis in China. PLoS ONE 2014, 11, e88134. [Google Scholar] [CrossRef]
- Guimarães, F.F.; Manzi, M.P.; Joaquim, S.F.; Richini-Pereira, V.B.; Langoni, H. Short communication: Outbreak of methicillin-resistant Staphylococcus aureus (MRSA)-associated mastitis in a closed dairy herd. J. Dairy Sci. 2017, 100, 726–730. [Google Scholar] [CrossRef]
- Oliveira, L.; Hulland, C.; Ruegg, P.L. Characterization of clinical mastitis occurring in cows on 50 large dairy herds in Wisconsin. J. Dairy Sci. 2013, 96, 7538–7549. [Google Scholar] [CrossRef] [PubMed]
- Hogan, J.; Smith, K.L. Coliform mastitis. Vet. Res. 2003, 34, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Abreu, A.C.; McBain, A.J.; Simoes, M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat. Prod. Rep. 2012, 29, 1007–1021. [Google Scholar] [CrossRef] [PubMed]
- Tariq, S.; Wani, S.; Rasool, W.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef]
- Aouadhi, C.; Jouini, J.; Mechichi, D.; Boulares, M.; Maaroufi, A. Characterization of primary action mode of two essential oils and evaluation of their antibacterial effect against extended- spectrum β-lactamase (ESBL)-producing Escherichia coli inoculated in turkey meat. Molecules 2022, 27, 2588. [Google Scholar] [CrossRef]
- Klibi, A.; Maaroufi, A.; Torres, C.; Jouini, A. Detection and characterization of methicillin resistant and susceptible coagulase-negative Staphylococci in milk from cows with clinical mastitis in Tunisia. Int. J. Antim. Agents 2018, 6, 930–935. [Google Scholar] [CrossRef]
- Aouadhi, C.; Ghazghazi, H.; Hasnaoui, B.; Maaroufi, A. Total phenolic content, antioxidant and antibacterial activities of Marrubium vulgare methanolic extract. Tunisian J. Med. Plants Nat. Prod. 2014, 11, 37–79. [Google Scholar]
- Viljoen, A.; van Vuuren, S.; Ernst, E.; Klepser, M.; Demirci, B.; Başer, H.; van Wyk, B.-E. Osmitopsis asteriscoides (Asteraceae)—The Antimicrobial Activity and Essential Oil Composition of a Cape-Dutch Remedy. J. Ethnopharm. 2003, 88, 137–143. [Google Scholar] [CrossRef]
- Guinoiseau, E.; Luciani, A.; de Rocca Serra, D.; Quilichini, Y.; Berti, L.; Lorenzi, V. Primary Mode of Action of Cistus ladaniferus L. Essential Oil Active Fractions on Staphyloccocus aureus strain. Adv. Microbiol. 2015, 5, 881–890. [Google Scholar] [CrossRef]
- Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of Action of Melaleuca alternifolia (Tea Tree) Oil on Staphylococcus aureus Determined Par Time-Kill, Lysis, Leakage and Salt Tolerance Assays and Electron Microscopy. Ant. Agents. Chem. 2002, 46, 1914–1920. [Google Scholar] [CrossRef]
- Rossi, P.-G.; Berti, L.; Panighi, J.; Luciani, A.; Maury, J.; Muselli, A.; Serra, D.d.R.; Gonny, M.; Bolla, J.-M. Antibacterial action of essential oils from Corsica. J. Essent. Oil Res. 2007, 9, 176–182. [Google Scholar] [CrossRef]
- Carović-Stanko, K.; Orlić, S.; Politeo, O.; Strikić, F.; Kolak, I.; Milos, M.; Satovic, Z. Composition and antibacterial activities of essential oils of seven Ocimum taxa. Food Chem. 2010, 119, 196–201. [Google Scholar] [CrossRef]
- Djenane, D.; Yangüela, J.; Amrouche, T.; Boubrit, S.; Boussad, N.; Roncalés, P. Chemical composition and antimicrobial effects of essential oils of Eucalyptus globulus, Myrtus communis and Satureja hortensis against Escherichia coli O157:H7 and Staphylococcus aureus in minced beef. Food Sci. Technol. Int. 2011, 17, 505–515. [Google Scholar] [CrossRef] [PubMed]
- El-Jalel, L.F.; Elkady, W.M.; Gonaid, M.H.; El-Gareeb, K.A. Difference in chemical composition and antimicrobial activity of Thymus capitatus L. essential oil at different altitudes. Future J. Pharm. Sci. 2018, 4, 156–160. [Google Scholar] [CrossRef]
- Dorman, H.J.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Inouye, S.; Yamaguchi, H.; Takizawa, T. Screening of the antibacterial effects of a variety of essential oils on respiratory tract pathogenns, using a modified dilution assay method. J. Infect. Chemother. 2001, 7, 251–254. [Google Scholar] [CrossRef]
- Jayari, A.; Jouini, A.; Boukhris, H.; Hamrouni, S.; Damergi, C.; Ahmed, S.B.H.; Maaroufi, A. Essential Oils from Thymus capitatus and Thymus algeriensis as Antimicrobial Agents to Control Pathogenic and Spoilage Bacteria in Ground Meat. J. Food Saf. 2021, 38, 5599374. [Google Scholar] [CrossRef]
- Aouadhi, C.; Ghazghazi, H.; Dallali, S.; Sebei, H.; Maaroufi, A.; Hasnaoui, B. Comparison of chemical composition, antioxidant and antimicrobial activities of Thymus capitatus L. essential oils from two Tunisian localities (Sousse and Bizerte). Int. J. Agr. Plant Prod. 2013, 4, 1772–1781. [Google Scholar]
- El Abed, N.; Kaabi, B.; Smaali, M.I.; Chabbouh, M.; Habibi, K.; Mejri, M.; Marzouki, M.N.; Ahmed, S.B.H. Chemical Composition, Antioxidant and Antimicrobial Activities of Thymus capitata Essential Oil with Its Preservative Effect against Listeria monocytogenes Inoculated in Minced Beef Meat. Evid. Based Compl. Alter. Med. 2014, 2014, 152487. [Google Scholar] [CrossRef]
- Althunibat, Y.O.; Qaralleh, H.; Sati, Y.; Al-Dalin, A.; Abboud, M.; Khleifat, K.; Majali, I.S.; Aldal, H.K.H.; Rayyan, W.A.; Jaafraa, A. Effect of Thymol and Carvacrol, the Major Components of Thymus capitatus on the Growth of Pseudomonas aeruginosa. J. Pure Appl. Microbiol. 2016, 10, 367–374. [Google Scholar]
- Ghazghazi, H.; Aouadhi, C.; Weslati, M.; Trakhn, F.; Houssine, S.; Maaroufi, A.; Hasnaoui, B. Chemical composition and the biological activities of Mentha pulegium leaves extracts against foodborne pathogens. J. Food Saf. 2013, 33, 239–246. [Google Scholar] [CrossRef]
- Ladjel, S.; Gherraf, N.; Hamada, D. Antimicrobial effect of essential oils from the Algerian medicinal plant Mentha rotundifolia L. J. Appl. Sci. Res. 2011, 7, 1665–1667. [Google Scholar]
- Amalich, S.; Zerkani, H.; Cherrat, A.; Soro, N.K.; Bourakhouadar, M.; Fadli, M.; Chevalier, J.; Saad, A.; Mezrioui, N.E.; Hassani, L. Essential oils from Moroccan plants as potential chemo-sensitizers restoring antibiotic activity in resistant Gram-negative bacteria. Int. J. Antimicrob. Agents 2016, 38, 325–330. [Google Scholar] [CrossRef]
- Belay, G.; Tariku, Y.; Kebede, T.; Hymete, A.; Mekonnen, Y. Ethnopharmacological investigations of essential oils isolated from five Ethiopian medicinal plants against eleven pathogenic bacterial strains. Phytopharmacology 2011, 1, 133–143. [Google Scholar]
- Riahi, L.; Ghazghazi, H.; Ayari, B.; Aouadhi, C.; Klay, I.; Chograni, H.; Ameur, C.; Zoghlami, N. Effect of environmental conditions on chemical polymorphism and biological activities among Artemisia absinthium L. essential oil provenances grown in Tunisia. Ind. Crops Prod. 2015, 66, 96–102. [Google Scholar] [CrossRef]
- Fadil, M.; Fikri-Benbrahim, K.; Rachiq, S.; Ihssane, B.; Lebrazi, S.; Chraibi, M.; Haloui, T.; Farah, A. Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: Optimization of antibacterial activity by mixture design methodology. Euro. J. Pharm. Biopharm. 2018, 126, 211–220. [Google Scholar] [CrossRef]
- Zhou, J.X.F.; Ji, B.-P.; Pei, R.-S.; Xu, N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol. 2008, 47, 174–179. [Google Scholar] [CrossRef]
- Li, Z.-H.; Cai, M.; Liu, Y.-S.; Sun, P.L.; Luo, S.-L. Antibacterial Activity and Mechanisms of Essential Oil from Citrus medica L. var. sarcodactylis. Molecules 2019, 24, 1577. [Google Scholar] [CrossRef]
- Shakeri, A.; Khakdan, F.; Soheili, V.; Sahebkar, A.; Rassam, G.; Asili, J. Chemical composition, antibacterial activity, and cytotoxicity of essential oil from Nepeta ucrainica L. spp. kopetdaghensis. Ind. Crops Prod. 2014, 58, 315–321. [Google Scholar] [CrossRef]
- Saei-Dehkordi, S.S.; Tajik, H.; Moradi, M.; Khalighi-Sigaroodi, F. Chemical composition of essential oils in Zataria multiflora Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. Food Chem. Toxicol. 2010, 48, 1562. [Google Scholar] [CrossRef] [PubMed]
- Conner, N. Naturally occurring compounds. In Antimicrobials in Foods; Davidison, P., Branen, A.L., Eds.; Marcel Dekker: New York, NY, USA, 1993; pp. 441–468. [Google Scholar]
- Horne, D.; Holm, M.; Oberg, C.; Chao, S.; Young, D.G. Antimicrobial effects of essential oils on Streptococcus pneumoniae. J. Essent. Oil Res. 2001, 13, 387–392. [Google Scholar] [CrossRef]
- Gilbert, P. The revival of micro-organisms sublethally injured by chemical inhibitors. Soc. Appl. Bacteriol. Symp. 1984, 12, 175–197. [Google Scholar]
- Oussalah, M.; Caillet, S.; Lacroix, M. Mechanism of action of Spanish Oregano, Chinese Cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157:H7 and Listeria monocytogenes. J. Food Prot. 2006, 69, 1046–1055. [Google Scholar] [CrossRef]
- Saad, N.Y.; Muller, C.D.; Lobstein, A. Major bioactivities and mechanism of action of essentials oils and their components. Flavour Fragr. J. 2013, 28, 269–279. [Google Scholar] [CrossRef]
- Turina, A.D.V.; Nolan, M.V.; Zygadio, J.A.; Perillo, M.A. Natural terpenes; self-assembly and membrane partitioning. Biophys. Chem. 2006, 122, 101–113. [Google Scholar] [CrossRef]
- Rudramurthy, G.R.; Swamy, M.K.; Sinniah, U.R.; Ghasemzadeh, A. Nanoparticles: Alternatives against Drug-Resistant Pathogenic Microbes. Molecules 2016, 21, 836. [Google Scholar] [CrossRef]
- Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 2010, 8, 423–435. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Sharma, A.; Baek, K.H. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control 2013, 32, 582–590. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils–A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
Strains | Species | Phenotype of Resistance | Resistance Genes Detected |
---|---|---|---|
EC70BP− | S. scuiri | PEN, OXA, ERY, CLIN | blaZ, mecA, erm(B) |
EC186BP+ | S. warneri | PEN, OXA, FOX, CLIN, CIP | blaZ, mecA |
EC196BP+ | S. epidermidis | PEN, OXA, FOX, TET, SXT | blaZ, mecA, Dfr(A) |
EC53+O | S. pasteuri | PEN, OXA, FOX, STR | blaZ, mecA |
EC39BP− | S. chromogenes | OXA | mecA |
EC60+O | S. cohnii | PEN, OXA, FOX, CLIN | blaZ, mecA |
EC44BP+ | Methicillin resistant Staphylococcus aureus (MRSA) | PEN, OXA, STR, ERY | blaZ, MecA, msrA |
EC159BP+ | PEN, STR, OXA | blaZ, MecA | |
EC39+O | PEN, OXA | blaZ, MecA | |
172MAC | E. coli | TET, AMP, SXT, TIC, SUL, SMN | TEM-1b, tetB |
78CTX | TET, AMP, SXT, TIC, SUL, SMN, CHL | TEM-1b, tetA, catA, strB |
Strains | Diameters of Inhibition Zone (mm) | |||||||
---|---|---|---|---|---|---|---|---|
E. globulus | E. camaldulensis | A. absinthium | M. communis | M. pulegium | T. ammi | C. citratus | T. capitatus | |
S. scuiri | 13 ± 2 | 15 ± 2 | 12 ± 2 | 16 ± 2 | 13 ± 1.6 | 32 ± 1 | 12 ± 1 | 35 ± 1 |
S. warneri | 14 ± 0.5 | 20 ± 1 | 16 ± 1 | 19 ± 1 | 17 ± 1 | 33 ± 5 | 40 ± 0.66 | 40 ± 2 |
S. epidermidis | 28 ± 0.5 | 18 ± 0.5 | 19 ± 1 | 18 ± 2 | 14 ± 2 | 30 ± 2 | 40 ± 0.33 | 28 ± 0.5 |
S. pasteuri | 12 ± 0.5 | 16 ± 1 | 20 ± 0.5 | 23 ± 1 | 13 ± 1 | 36 ± 2 | 26 ± 1.2 | 30 ± 1 |
S. chromogenes | 16 ± 0.5 | 11 ± 0.5 | 14 ± 2 | 15 ± 2 | 15 ± 2 | 33 ± 2 | 15 ± 1.3 | 33 ± 3 |
S. cohnii | 18 ± 1 | 15 ± 2 | 16 ± 1 | 13 ± 1 | 12±0.5 | 28 ± 1 | 30 ± 2 | 24±1 |
MRSA EC44BP+ | 14 ± 0.9 | 16 ± 2 | 14±1 | 21 ± 1 | 15 ± 0.5 | 40 ± 1.5 | 32 ± 2 | 45 ± 2 |
MRSA EC159BP+ | 15 ± 0.6 | 16 ± 1 | 17 ± 3 | 16 ± 0.5 | 15 ± 1 | 25 ± 0.5 | 18 ± 1.5 | 26 ± 2 |
MRSA EC39+O | 14 ± 0.5 | 19 ± 0.5 | 15 ± 2 | 16 ± 2 | 14 ± 0.5 | 34 ± 2 | 44 ± 0.5 | 34±0.4 |
E. coli 172MAC | 12 ± 1.5 | 13 ± 1 | 11 ± 1 | 11 ± 1 | 14 ± 0.5 | 22 ± 1 | 13 ± 1 | 25 ± 0.5 |
E. coli 79CTX | 13 ± 0.5 | 18 ± 1 | 12 ± 1 | 20 ± 2 | 11 ± 1 | 20 ± 1.5 | 11 ± 0.5 | 25 ± 1.5 |
Strains | Minimum Inhibitory Concentrations (% v/v) | |||||||
E. globulus | E. camaldulensis | A. absinthium | M. communis | M. pulegium | T. capitatus | T. ammi | C. citratus | |
S. scuiri | 12.5 | 1.56 | 12.5 | 3.12 | 12.5 | 0.39 | 0.39 | 6.25 |
S. warneri | 1.56 | 1.56 | 0.78 | 3.125 | 6.25 | 0.097 | 0.097 | 3.125 |
S. epidermidis | 12.5 | 1.56 | 0.78 | 6.25 | 12.5 | 0.195 | 0.195 | 6.25 |
S. pasteuri | 12.5 | 1.56 | 6.25 | 0.78 | 12.5 | 0.097 | 0.097 | 6.25 |
S. chromogenes | 3.125 | 0.78 | 3.125 | 25 | 3.12 | 0.048 | 0.048 | 6.25 |
S. cohnii | 3.125 | 1.56 | 6.25 | 6.25 | 12.5 | 0.048 | 0.048 | 0.78 |
MRSA EC44BP+ | 6.25 | 12.5 | 12.5 | 3.125 | 6.25 | 0.048 | 0.048 | 3.125 |
MRSA EC159BP+ | 6.25 | 12.5 | 3.125 | 3.125 | 12.5 | 0.195 | 0.195 | 3.125 |
MRSA EC39+O | 6.25 | 3.125 | 12.5 | 3.125 | 12.5 | 0.048 | 0.048 | 3.125 |
E. coli 172MAC | 1.56 | 0.78 | 3.12 | 6.25 | 3.12 | 0.39 | 0.39 | 3.12 |
E. coli 79CTX | 6.25 | 6.25 | 3.12 | 1.56 | 3.12 | 0.39 | 0.39 | 1.56 |
Strains | Minimum Bactericidal Concentrations (% v/v) | |||||||
E. globulus | E. camaldulensis | A. absinthium | M. communis | M. pulegium | T. capitatus | T. ammi | C. citratus | |
S. scuiri | 25 | 3.125 | 25 | 6.25 | 25 | 0.78 | 1.56 | 12.5 |
S. warneri | 3.125 | 3.125 | 1.56 | 3.125 | 12.5 | 0.197 | 0.39 | 6.25 |
S. epidermidis | 25 | 3.125 | 1.56 | 6.25 | 25 | 0.39 | 1.56 | 12.5 |
S. pasteuri | 25 | 3.125 | 12.5 | 6.25 | 25 | 0.195 | 0.39 | 12.5 |
S. chromogenes | 6.25 | 1.56 | 6.25 | 6.25 | 6.26 | 0.097 | 0.78 | 12.5 |
S. cohnii | 6.25 | 3.125 | 12.5 | 0.78 | 25 | 0.097 | 0.39 | 1.56 |
MRSA EC44BP+ | 12.5 | 25 | 25 | 3.125 | 12.5 | 0.097 | 0.78 | 6.25 |
MRSA EC159BP+ | 12.5 | 25 | 6.25 | 3.125 | 25 | 0.39 | 0.097 | 6.25 |
MRSA EC39+O | 12.5 | 6.25 | 25 | 3.125 | 25 | 0.097 | 0.78 | 6.25 |
E. coli 172MAC | 3.12 | 1.56 | 6.25 | 12.5 | 6.25 | 0.78 | 0.78 | 6.25 |
E. coli 79CTX | 12.5 | 12.5 | 6.25 | 3.12 | 6.25 | 0.78 | 0.78 | 3.12 |
Strains | Percentage of Strain Growth (%) | |||||
---|---|---|---|---|---|---|
Control | T. capitatus | |||||
2.5% | 5% | 10% | 2.5% | 5% | 10% | |
MRSA | 100 | 100 | 100 | 0 | 0 | 0 |
E. coli | 100 | 100 | 100 | 0 | 1 | 0.3 |
Strains | Percentage of Initial OD620 | |||||
---|---|---|---|---|---|---|
Control | T. capitatus | |||||
0 | 30 min | 60 min | 0 | 30 min | 60 min | |
MRSA | 1 | 1.06 | 1.12 | 1 | 2.87 | 2.99 |
E. coli | 1 | 1.02 | 1.13 | 1 | 2.3 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aouadhi, C.; Jouini, A.; Maaroufi, K.; Maaroufi, A. Antibacterial Effect of Eight Essential Oils against Bacteria Implicated in Bovine Mastitis and Characterization of Primary Action Mode of Thymus capitatus Essential Oil. Antibiotics 2024, 13, 237. https://doi.org/10.3390/antibiotics13030237
Aouadhi C, Jouini A, Maaroufi K, Maaroufi A. Antibacterial Effect of Eight Essential Oils against Bacteria Implicated in Bovine Mastitis and Characterization of Primary Action Mode of Thymus capitatus Essential Oil. Antibiotics. 2024; 13(3):237. https://doi.org/10.3390/antibiotics13030237
Chicago/Turabian StyleAouadhi, Chedia, Ahlem Jouini, Karima Maaroufi, and Abderrazak Maaroufi. 2024. "Antibacterial Effect of Eight Essential Oils against Bacteria Implicated in Bovine Mastitis and Characterization of Primary Action Mode of Thymus capitatus Essential Oil" Antibiotics 13, no. 3: 237. https://doi.org/10.3390/antibiotics13030237
APA StyleAouadhi, C., Jouini, A., Maaroufi, K., & Maaroufi, A. (2024). Antibacterial Effect of Eight Essential Oils against Bacteria Implicated in Bovine Mastitis and Characterization of Primary Action Mode of Thymus capitatus Essential Oil. Antibiotics, 13(3), 237. https://doi.org/10.3390/antibiotics13030237