Current Therapeutic Approaches for Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Infections
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Beta Lactam/Beta-Lactamase Inhibitor Combinations
3.1.1. Sulbactam
Study (Year) | No. of Evaluable | Infection | Antibacterial Regimens No. Pts | Cure and/or Improvement (%) | Bacteriological Eradication (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Comparator 1 | Comparator 2 | Comparator 1 | Comparator 2 | p-Value | Comparator 1 | Comparator 2 | p-Value | |||||
21 | 65 | Pneumonia | A/S | 22 | A/S + V | 43 | 63.6 | 65.1 | 0.906 | 89.5 | 81.3 | 0.69 |
M:36.4 | M:37.2 | 0.947 | ||||||||||
22 | 98 | VAP | A/S | 32 | COL | 66 | 47 | 56 | 0.34 | 82 | 52 | 0.03 |
M:9.4 | M:25.8 | 0.07 | ||||||||||
aOR: 6.5 (1.34–31.34) 0.02 | ||||||||||||
23 | 84 | VAP + B | A/S+I/C | 56 | TG+I/C | 28 | NR | NR | NR | NR | ||
M:14.3 | M:64.3 | 0.007 | NR | NR | ||||||||
24 | 106 | Pneumonia | C/S | 35 | CARB | 46 | 71.4 | 29.3 | 0.003 | NR | NR | |
TG | 25 | 60 | 0.355 | |||||||||
M:5.7 | M:6.5 | |||||||||||
M:8 | ||||||||||||
25 | 130 | VAP | C/S | 66 | TG | 42 | 70 | 62 | 0.402 | 50 | 33 | 0.21 |
C/S+TG | 22 | M:5 | 45 | 0.208 | 41 | 33 | 0.54 | |||||
M:12 | 0.295 * | |||||||||||
M:27 | 0.231 ** | |||||||||||
aOR: 0.115 (0.015–0.89) | 0.038 | |||||||||||
28 | 47 | VAP | A/S+MR | 23 | COL+MR | 24 | 69.6 | 75 | 0.75 | 91.3 | 87.5 | 0.59 |
M:39.13 | M:41.67 | 0.99 | ||||||||||
29 | 23 | VAP | A/S+L | 12 | COL+L | 11 | 83 | 27 | 0.007 | 75 | 100 | NR |
M:41.66 | M:81.81 | 0.04 | ||||||||||
26 | 42 | VAP | C/S+TG | 21 | TG | 21 | 85.7 | 47.6 | 0.01 | NR | NR | |
30 | 28 | VAP | A/S+nCOL | 16 | COL+nCOL | 12 | 31.2 | 33.3 | NS | 43.7 | 12.5 | 0.37 |
M:16.7 | M:37.5 | 0.22 | ||||||||||
27 | 180 | VAP/HAP | A/SorC/S+COL | 90 | CARB+COL | 90 | NR | NR | 0.658 | NR | NR | |
M:51.1 | M:55.6 | |||||||||||
31 | 125 | Pneumonia | S/D | 63 | COL | 62 | 62 | 40 | NR | 86 | 61 | NR |
M:19 | M:32 | 0.0935 ¶ |
3.1.2. Cefiderocol
Study (Year) | No. of Evaluable | Infection ¶ | Antibacterial Regimens No. Pts | Cure and/or Improvement (%) Mortality (%) | Bacteriological Eradication (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Comparator 1 | Comparator 2 | Comparator 1 | Comparator 2 | p-Value | Comparator 1 | Comparator 2 | p-Value | |||||
33 | 47 | Pneumonia | CFD | 23 | MR | 24 | 52 | 58 | NS | 39 | 33 | NS |
M:19 | M:22 | NS | ||||||||||
34 | 54 | Pneumonia/B/UTI | CFD | 37 | BAT | 17 | 43 | 53 | NS | 27 | 29 | NS |
M:49 | M:18 | NR | ||||||||||
36 | 107 | B:27 LRTI:14 ALL COVID-19 | CFD | 42 | COL−R | 65 | 40 | 36 | 0.45 | 28 | 21 | 0.24 |
M:55 | M:58 | 0.70 | ||||||||||
37 | 124 | B:79 VAP:35 | CFD−R | 47 | COL−R | 28 | NR | NR | ||||
M:34% | M:55.8 | 0.018 * | 82.6 | 93.2 | 0.079 | |||||||
38 | 111 | B:53 P:47 | CFD−R | 60 | COL−R | 51 | 73 | 67 | 0.44 | 43 | 41 | 0.82 |
M:51 | M:37 | |||||||||||
39 | 118 | B | CFD−R | 43 | COL−R | 75 | NR | NR | NR | NR | ||
M:40 | M:59 | 0.045 | ||||||||||
40 | 121 | VAP ALL COVID-19 | CFD−R | 55 | NON CFD−R | 66 | NR | NR | 47 | 69 | 0.038 | |
M:44 | M:67 | 0.011 | ||||||||||
41 | 90 | VAP | CFD+Ncol | 40 | COL+nCOL | 50 | 75 | 52 | 0.02 | 70 | 40 | 0.003 |
M:35 | M:52 | NS | ||||||||||
42 | 73 | Bacteremic VAP ALL COVID-19 | CFD−R | 19 | COL−R | 54 | NR | NR | NR | NR | ||
M:31.5 | M:98.1 | <0.001 |
3.1.3. Polymyxins
Study (Year) | No. of Evaluable | Infection | Antibacterial Regimens No. Pts | Cure and/or Improvement (%) | Bacteriological Eradication (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Comparator 1 | Comparator 2 | Comparator 1 | Comparator 2 | p-Value | Comparator 1 | Comparator 2 | p-Value | |||||
62 | 250 | B | COL | 36 | COL+V | 214 | 30.6 | 46.3 | 0.19 | 55.6 | 79.9 | 0.001 |
M:44.5 | M:31.8 | 0.14 | ||||||||||
63 | 89 | VAP | COL | 57 | COL+S | 32 | 29.8 | 40 | 0.50 | 72.3 | 85.7 | 0.28 |
M:51.9 | M:73 | 0.53 | ||||||||||
64 | 79 | VAP SSTI, UTI | COL | 46 | COL+V | 23 | NR | NR | NR | NR | ||
M:26.1 | M:26.08 | NS | ||||||||||
65 | 55 | B | COL+C | 26 | COL+TG | 29 | NR | NR | 100 | 82 | ||
M:15 | M:35 | 0.1 | NR | NR | ||||||||
66 | 70 | VAP | COL | 13 | COL+S | 20 | 76.5 | 55 | 0.53 | 52.9 | 63.6 | 0.16 |
COL+C | 33 | 63.6 | 0.35 | 60 | 0.23 | |||||||
M:41.2 | M:70 | 0.21 | ||||||||||
M:48.5 | 0.5 | |||||||||||
67 | 107 | B | COL | 36 | NON−COL | 71 | 77.1 | 77.1 | 0.45 | 69 | 83 | 0.13 |
M:47.2 | M:52.77 | 0.36 | ||||||||||
68 | 118 | B | COL | 76 | COL+TG | 42 | NR | NR | NR | NR | ||
M:22 | M:24 | 1 | ||||||||||
69 | 39 | VAP | COL | 19 | COL+A/S | 20 | 15.8 | 70 | 0.001 | 33.3 | 71.4 | 0.19 |
M:63 | M:50 | NS | ||||||||||
70 | 71 | B | COL | 40 | COL+MR | 31 | 40 | 61.3 | 0.07 | NR | NR | |
M:47.5 | M:25.8 | 0.08 | ||||||||||
71 | 617 | NP | COL | 293 | NON−COL | 324 | aOR: 1.27 (0.92–1.75) ¶ | aOR: 3.44 (2.36–5.02) ¶ | ||||
M:54.3 * | M:53.7 * | 0.87 |
Study (Year) | No. of Evaluable | Infection | Antibacterial Regimens No Pts | Cure and/or Improvement (%) | Bacteriological Eradication (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Comparator 1 | Comparator 2 | Comparator 1 | Comparator 2 | p-Value | Comparator 1 | Comparator 2 | p-Value | |||||
73 | 312 | VAP B, UTI | COL | 151 | COL+M | 161 | 21 | 27 | 0.643 | 69 | 65 | 0.489 |
M:46 | M:52 | 0.404 | ||||||||||
72 | 413 | VAP, B W, UTI | COL | 213 | COL+M | 210 | 32 | 40 | NS | 63 | 57 | NS |
M:46 | M:42 | NS |
3.1.4. Tetracyclines and Glycylcyclines
Study (Year) | No. of Evaluable | Infection | Antibacterial Regimens No. Pts | Cure and/or Improvement (%) | Bacteriological Eradication (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Comparator 1 | Comparator 2 | Comparator 1 | Comparator 2 | p-Value | Comparator 1 | Comparator 2 | p-Value | |||||
110 | 88 | VAP | TG | 44 | COL | 44 | NR | NR | NR | NR | ||
M:60.7 | M:44 | 0.04 | ||||||||||
111 | 55 | VAP, B W, UTI | TG | 16 | COL | 39 | 43.8 | 48.7 | 0.737 | 12.5 | 46.2 | 0.049 |
M:56.3 | M:43.6 | 0.393 | ||||||||||
112 | 79 | VAP | TG+COL | 19 | COL+I | 60 | NR | NR | NR | NR | 19 | |
M:26.3 | M:53.3 | 0.04 | ||||||||||
113 | 70 | VAP±B | TG−R | 30 | COL−R | 40 | 47 | 48 | 0.95 | 23 | 30 | 0.54 |
M:33 | M:30 | 0.77 | ||||||||||
114 | 168 | VAP | TG−R | 84 | SUL−R | 84 | 66.7 | 66.7 | 1 | 33.3 | 63.5 | <0.0001 |
M:25 | M:17.9 | 0.25 | ||||||||||
115 | 212 | VAP | nCOL+TG | 106 | nCOL | 106 | NR * | NR * | NR | NR | ||
M:34 | M:22.6 | 0.17 | ||||||||||
116 | 210 | B | TG | 75 | C/S | 135 | NR | NR | NR | NR | ||
M:51.9 | M:29.3 | 0.001 |
3.1.5. Minocycline
3.1.6. Trimethoprim/Sulfamethoxazole (TMP/SMX)
3.1.7. Fosfomycin and Rifampicin
3.2. Newer Beta-Lactamase Inhibitors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pogue, J.M.; Zhou, Y.; Kanakamedala, H.; Cai, B. Burden of illness in carbapenem-resistant Acinetobacter baumannii infections in US hospitals between 2014 and 2019. BMC Infect Dis. 2022, 22, 36. [Google Scholar] [CrossRef]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef]
- Iovleva, A.; Mustapha, M.M.; Griffith, M.P.; Komarow, L.; Luterbach, C.; Evans, D.R.; Cober, E.; Richter, S.S.; Rydell, K.; Arias, C.A.; et al. Carbapenem-Resistant Acinetobacter baumannii in U.S. Hospitals: Diversification of Circulating Lineages and Antimicrobial Resistance. mBio 2022, 13, e0275921. [Google Scholar] [CrossRef]
- Xu, S.; Li, Y.; Xu, X.; Su, J.; Zhu, D.; Hu, F.; Wang, M. A Case-Control Study: Clinical Characteristics of Nosocomial Bloodstream Infections Versus Non-Bloodstream Infections of Acinetobacter spp. Clin. Infect. Dis. 2018, 67, S189–S195. [Google Scholar] [CrossRef]
- Zilberberg, M.D.; Kollef, M.H.; Shorr, A.F. Secular trends in Acinetobacter baumannii resistance in respiratory and blood stream specimens in the United States, 2003 to 2012: A survey study. J. Hosp. Med. 2016, 11, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef] [PubMed]
- Mohd Sazlly Lim, S.; Zainal Abidin, A.; Liew, S.M.; Roberts, J.A.; Sime, F.B. The global prevalence of multidrug-resistance among Acinetobacter baumannii causing hospital-acquired and ventilator-associated pneumonia and its associated mortality: A systematic review and meta-analysis. J. Infect. 2019, 79, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin. Infect. Dis. 2022, 74, 2089–2114. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.N.; Wilson, H.W.; Thornsberry, C.; Barry, A.L. In vitro antimicrobial activity of cefoperazone-sulbactam combinations against 554 clinical isolates including a review and beta-lactamase studies. Diagn. Microbiol. Infect. Dis. 1985, 3, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Eliopoulos, G.M.; Klimm, K.; Ferraro, M.J.; Moellering, R.C. In vitro activity of cefoperazone-sulbactam combinations against cefoperazone-resistant clinical bacterial isolates. Eur. J. Clin. Microbiol. Infect. Dis. 1989, 8, 624–626. [Google Scholar] [CrossRef] [PubMed]
- Corbella, X.; Ariza, J.; Ardanuy, C.; Vuelta, M.; Tubau, F.; Sora, M.; Pujol, M.; Gudiol, F. Efficacy of sulbactam alone and in combination with ampicillin in nosocomial infections caused by multiresistant Acinetobacter baumannii. J. Antimicrob. Chemother. 1998, 42, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Cisneros, J.M.; Reyes, M.J.; Pachón, J.; Becerril, B.; Caballero, F.J.; García-Garmendía, J.L.; Ortiz, C.; Cobacho, A.R. Bacteremia due to Acinetobacter baumannii: Epidemiology, clinical findings, and prognostic features. Clin. Infect. Dis. 1996, 22, 1026–1032. [Google Scholar] [CrossRef] [PubMed]
- Jellison, T.K.; Mckinnon, P.S.; Rybak, M.J. Epidemiology, resistance, and outcomes of Acinetobacter baumannii bacteremia treated with imipenem-cilastatin or ampicillin-sulbactam. Pharmacotherapy 2001, 21, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Wood, G.C.; Hanes, S.D.; Croce, M.A.; Fabian, T.C.; Boucher, B.A. Comparison of ampicillin-sulbactam and imipenem-cilastatin for the treatment of Acinetobacter ventilator-associated pneumonia. Clin. Infect. Dis. 2002, 34, 1425–1430. [Google Scholar] [CrossRef]
- Levin, A.S.; Levy, C.E.; Manrique, A.E.; Medeiros, E.A.; Costa, S.F. Severe nosocomial infections with imipenem-resistant Acinetobacter baumannii treated with ampicillin/sulbactam. Int. J. Antimicrob. Agents. 2003, 21, 58–62. [Google Scholar] [CrossRef]
- Smolyakov, R.; Borer, A.; Riesenberg, K.; Schlaeffer, F.; Alkan, M.; Porath, A.; Rimar, D.; Almog, Y.; Gilad, J. Nosocomial multi-drug resistant Acinetobacter baumannii bloodstream infection: Risk factors and outcome with ampicillin-sulbactam treatment. J. Hosp. Infect. 2003, 54, 32–38. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Prado, G.V.; Costa, S.F.; Grinbaum, R.S.; Levin, A.S. Ampicillin/sulbactam compared with polymyxins for the treatment of infections caused by carbapenem-resistant Acinetobacter spp. J. Antimicrob. Chemother. 2008, 61, 1369–1375. [Google Scholar] [CrossRef]
- Betrosian, A.P.; Frantzeskaki, F.; Xanthaki, A.; Douzinas, E.E. Efficacy and safety of high-dose ampicillin/sulbactam vs. colistin as monotherapy for the treatment of multidrug resistant Acinetobacter baumannii ventilator-associated pneumonia. J. Infect. 2008, 56, 432–436. [Google Scholar] [CrossRef]
- Lin, H.S.; Lee, M.H.; Cheng, C.W.; Hsu, P.C.; Leu, H.S.; Huang, C.T.; Ye, J.J. Sulbactam treatment for pneumonia involving multidrug-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii complex. Infect. Dis. 2015, 47, 370–378. [Google Scholar] [CrossRef]
- Zalts, R.; Neuberger, A.; Hussein, K.; Raz-Pasteur, A.; Geffen, Y.; Mashiach, T.; Finkelstein, R. Treatment of Carbapenem-Resistant Acinetobacter baumannii Ventilator-Associated Pneumonia: Retrospective Comparison between Intravenous Colistin and Intravenous Ampicillin-Sulbactam. Am. J. Ther. 2016, 23, e78–e85. [Google Scholar] [CrossRef]
- Jean, S.S.; Hsieh, T.C.; Hsu, C.W.; Lee, W.S.; Bai, K.J.; Lam, C. Comparison of the clinical efficacy between tigecycline plus extended-infusion imipenem and sulbactam plus imipenem against ventilator-associated pneumonia with pneumonic extensively drug-resistant Acinetobacter baumannii bacteremia, and correlation of clinical efficacy with in vitro synergy tests. J. Microbiol. Immunol. Infect. 2016, 49, 924–933. [Google Scholar]
- Li, P.; Wang, X.; Wang, W.; Zhao, X. Comparison of the efficacies of three empirically-selected antibiotics for treating Acinetobacter baumannii pulmonary infection: Experience from a teaching hospital in China. Int. J. Clin. Pharmacol. Ther. 2017, 55, 588–593. [Google Scholar] [CrossRef]
- Li, Y.; Xie, J.; Chen, L.; Meng, T.; Liu, L.; Hao, R.; Dong, H.; Wang, X.; Dong, Y. Treatment efficacy of tigecycline in comparison to cefoperazone/sulbactam alone or in combination therapy for carbapenem-resistant Acinetobacter baumannii infections. Pak. J. Pharm. Sci. 2020, 33, 161–168. [Google Scholar] [PubMed]
- Qin, Y.; Zhang, J.; Wu, L.; Zhang, D.; Fu, L.; Xue, X. Comparison of the treatment efficacy between tigecycline plus high-dose cefoperazone-sulbactam and tigecycline monotherapy against ventilator-associated pneumonia caused by extensively drug-resistant Acinetobacter baumannii. Int. J. Clin. Pharmacol. Ther. 2018, 56, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Ungthammakhun, C.; Vasikasin, V.; Changpradub, D. Clinical Outcomes of Colistin in Combination with Either 6-G Sulbactam or Carbapenems for the Treatment of Extensively Drug-Resistant Acinetobacter baumannii Pneumonia with High MIC to Sulbactam, A Prospective Cohort Study. Infect. Drug Resist. 2019, 12, 2899–2904. [Google Scholar] [CrossRef] [PubMed]
- Khalili, H.; Shojaei, L.; Mohammadi, M.; Beigmohammadi, M.T.; Abdollahi, A.; Doomanlou, M. Meropenem/colistin versus meropenem/ampicillin-sulbactam in the treatment of carbapenem-resistant pneumonia. J. Comp. Eff. Res. 2018, 7, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Mosaed, R.; Haghighi, M.; Kouchak, M.; Miri, M.M.; Salarian, S.; Shojaei, S.; Javadi, A.; Taheri, S.; Nazirzadeh, P.; Foroumand, M.; et al. Interim Study: Comparison of Safety and Efficacy of Levofloxacin Plus Colistin Regimen with Levofloxacin Plus High Dose Ampicillin/Sulbactam Infusion In Treatment of Ventilator-Associated Pneumonia Due To Multi Drug Resistant Acinetobacter. Iran. J. Pharm. Res. 2018, 17, 206–213. [Google Scholar] [PubMed]
- Pourheidar, E.; Haghighi, M.; Kouchek, M.; Miri, M.M.; Shojaei, S.; Salarian, S.; Hassanpour, R.; Sistanizad, M. Comparison of Intravenous Ampicillin-sulbactam Plus Nebulized Colistin with Intravenous Colistin Plus Nebulized Colistin in Treatment of Ventilator Associated Pneumonia Caused by Multi Drug Resistant Acinetobacter baumannii: Randomized Open Label Trial. Iran. J. Pharm. Res. 2019, 18, 269–281. [Google Scholar] [PubMed]
- Kaye, K.S.; Shorr, A.F.; Wunderink, R.G.; Du, B.; Poirier, G.E.; Rana, K.; Miller, A.; Lewis, D.; O’Donnell, J.; Chen, L.; et al. Efficacy and safety of sulbactam-durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii-calcoaceticus complex: A multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect. Dis. 2023, 23, 1072–1084. [Google Scholar] [PubMed]
- Ungthammakhun, C.; Vasikasin, V.; Changpradub, D. A Randomized Controlled Trial of Colistin Combined with Sulbactam: 9 g per Day versus 12 g per Day in the Treatment of Extensively Drug-Resistant Acinetobacter baumannii Pneumonia: An Interim Analysis. Antibiotics 2022, 11, 1112. [Google Scholar] [CrossRef] [PubMed]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2021, 21, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Kadri, S.S.; Strich, J.R.; Swihart, B.J.; Hohmann, S.; Dekker, J.P.; Palmore, T.; Bonne, S.; Freeman, B.; Raybould, J.; Shah, N.G.; et al. Attributable mortality from extensively drug-resistant gram-negative infections using propensity-matched tracer antibiotic algorithms. Am. J. Infect. Control 2019, 47, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Pascale, R.; Pasquini, Z.; Bartoletti, M.; Caiazzo, L.; Fornaro, G.; Bussini, L.; Volpato, F.; Marchionni, E.; Rinaldi, M.; Trapani, F.; et al. Cefiderocol treatment for carbapenem-resistant Acinetobacter baumannii infection in the ICU during the COVID-19 pandemic: A multicentre cohort study. JAC-Antimicrob. Resist. 2021, 3, dlab174. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Leonildi, A.; Della Sala, L.; Vecchione, A.; Barnini, S.; Farcomeni, A.; Menichetti, F. Cefiderocol-Compared to Colistin-Based Regimens for the Treatment of Severe Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2022, 66, e0214221. [Google Scholar] [CrossRef]
- Mazzitelli, M.; Gregori, D.; Sasset, L.; Trevenzoli, M.; Scaglione, V.; Lo Menzo, S.; Marinello, S.; Mengato, D.; Venturini, F.; Tiberio, I.; et al. Cefiderocol-Based versus Colistin-Based Regimens for Severe Carbapenem-Resistant Acinetobacter baumannii Infections: A Propensity Score-Weighted, Retrospective Cohort Study during the First Two Years of the COVID-19 Pandemic. Microorganisms 2023, 11, 984. [Google Scholar] [CrossRef]
- Bavaro, D.F.; Papagni, R.; Belati, A.; Diella, L.; De Luca, A.; Brindicci, G.; De Gennaro, N.; Di Gennaro, F.; Romanelli, F.; Stolfa, S.; et al. Cefiderocol Versus Colistin for the Treatment of Carbapenem-Resistant Acinetobacter baumannii Complex Bloodstream Infections: A Retrospective, Propensity-Score Adjusted, Monocentric Cohort Study. Infect. Dis. Ther. 2023, 12, 2147–2163. [Google Scholar] [CrossRef]
- Rando, E.; Cutuli, S.L.; Sangiorgi, F.; Tanzarella, E.S.; Giovannenze, F.; De Angelis, G.; Murri, R.; Antonelli, M.; Fantoni, M.; De Pascale, G. Cefiderocol-containing regimens for the treatment of carbapenem-resistant A. baumannii ventilator-associated pneumonia: A propensity-weighted cohort study. JAC-Antimicrob. Resist. 2023, 5, dlad085. [Google Scholar] [CrossRef]
- Dalfino, L.; Stufano, M.; Bavaro, D.F.; Diella, L.; Belati, A.; Stolfa, S.; Romanelli, F.; Ronga, L.; Di Mussi, R.; Murgolo, F.; et al. Effectiveness of First-Line Therapy with Old and Novel Antibiotics in Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter baumannii: A Real Life, Prospective, Observational, Single-Center Study. Antibiotics 2023, 12, 1048. [Google Scholar] [CrossRef]
- Russo, A.; Bruni, A.; Gullì, S.; Borrazzo, C.; Quirino, A.; Lionello, R.; Serapide, F.; Garofalo, E.; Serraino, R.; Romeo, F.; et al. Efficacy of cefiderocol- vs colistin-containing regimen for treatment of bacteraemic ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii in patients with COVID-19. Int. J. Antimicrob. Agents 2023, 62, 106825. [Google Scholar] [CrossRef]
- Mezcord, V.; Escalante, J.; Nishimura, B.; Traglia, G.M.; Sharma, R.; Vallé, Q.; Tuttobene, M.R.; Subils, T.; Marin, I.; Pasteran, F.; et al. Induced Heteroresistance in Carbapenem-Resistant Acinetobacter baumannii (CRAB) via Exposure to Human Pleural Fluid (HPF) and Its Impact on Cefiderocol Susceptibility. Int. J. Mol. Sci. 2023, 24, 11752. [Google Scholar] [CrossRef]
- Katsube, T.; Saisho, Y.; Shimada, J.; Furuie, H. Intrapulmonary pharmacokinetics of cefiderocol, a novel siderophore cephalosporin, in healthy adult subjects. J. Antimicrob. Chemother. 2019, 74, 1971–1974. [Google Scholar] [CrossRef]
- Wise, M.G.; Karlowsky, J.A.; Hackel, M.A.; Takemura, M.; Yamano, Y.; Echols, R.; Sahm, D.F. In Vitro Activity of Cefiderocol Against Meropenem-Nonsusceptible Gram-Negative Bacilli with Defined β-Lactamase Carriage: SIDERO-WT Surveillance Studies, 2014–2019. Microb. Drug Resist. 2023, 29, 360–370. [Google Scholar] [CrossRef]
- Takemura, M.; Wise, M.G.; Hackel, M.A.; Sahm, D.F.; Yamano, Y. In vitro activity of cefiderocol against MBL-producing Gram-negative bacteria collected in North America and Europe in five consecutive annual multinational SIDERO-WT surveillance studies (2014–2019). J. Antimicrob. Chemother. 2023, 78, 2019–2027. [Google Scholar] [CrossRef]
- Shortridge, D.; Streit, J.M.; Mendes, R.; Castanheira, M. In Vitro Activity of Cefiderocol against U.S. and European Gram-Negative Clinical Isolates Collected in 2020 as Part of the SENTRY Antimicrobial Surveillance Program. Microbiol. Spectr. 2022, 10, e0271221. [Google Scholar] [CrossRef] [PubMed]
- Alzayer, M.; Alghoribi, M.F.; Alalwan, B.; Alreheli, A.; Aljohani, S.; Bosaeed, M.; Doumith, M. In vitro activity of cefiderocol against clinically important carbapenem non-susceptible Gram-negative bacteria from Saudi Arabia. J. Glob. Antimicrob. Resist. 2023, 32, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Galani, I.; Papoutsaki, V.; Karaiskos, I.; Moustakas, N.; Galani, L.; Maraki, S.; Mavromanolaki, V.E.; Legga, O.; Fountoulis, K.; Platsouka, E.D.; et al. In vitro activities of omadacycline, eravacycline, cefiderocol, apramycin, and comparator antibiotics against Acinetobacter baumannii causing bloodstream infections in Greece, 2020–2021: A multicenter study. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Lupia, T.; Corcione, S.; Shbaklo, N.; Montrucchio, G.; De Benedetto, I.; Fornari, V.; Bosio, R.; Rizzello, B.; Mornese Pinna, S.; Brazzi, L.; et al. Meropenem/Vaborbactam and Cefiderocol as Combination or Monotherapy to Treat Multi-Drug Resistant Gram-Negative Infections: A Regional Cross-Sectional Survey from Piedmont Infectious Disease Unit Network (PIDUN). J. Funct. Biomater. 2022, 13, 174. [Google Scholar] [CrossRef]
- Wright, H.; Harris, P.N.A.; Chatfield, M.D.; Lye, D.; Henderson, A.; Harris-Brown, T.; Donaldson, A.; Paterson, D.L. Investigator-Driven Randomised Controlled Trial of Cefiderocol versus Standard Therapy for Healthcare-Associated and Hospital-Acquired Gram-negative Bloodstream Infection: Study protocol (the GAME CHANGER trial): Study protocol for an open-label, randomised controlled trial. Trials 2021, 22, 889. [Google Scholar]
- Liu, J.; Shu, Y.; Zhu, F.; Feng, B.; Zhang, Z.; Liu, L.; Wang, G. Comparative efficacy and safety of combination therapy with high-dose sulbactam or colistin with additional antibacterial agents for multiple drug-resistant and extensively drug-resistant Acinetobacter baumannii infections: A systematic review and network meta-analysis. J. Glob. Antimicrob. Resist. 2021, 24, 136–147. [Google Scholar]
- Levin, A.S.; Barone, A.A.; Penço, J.; Santos, M.V.; Marinho, I.S.; Arruda, E.A.; Manrique, E.I.; Costa, S.F. Intravenous colistin as therapy for nosocomial infections caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Clin. Infect. Dis. 1999, 28, 1008–1011. [Google Scholar] [CrossRef]
- Markou, N.; Apostolakos, H.; Koumoudiou, C.; Athanasiou, M.; Koutsoukou, A.; Alamanos, I.; Gregorakos, L. Intravenous colistin in the treatment of sepsis from multiresistant Gram-negative bacilli in critically ill patients. Crit. Care 2003, 7, R78–R83. [Google Scholar] [CrossRef]
- Garnacho-Montero, J.; Ortiz-Leyba, C.; Jiménez-Jiménez, F.J.; Barrero-Almodóvar, A.E.; García-Garmendia, J.L.; Bernabeu-WittelI, M.; Gallego-Lara, S.L.; Madrazo-Osuna, J. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: A comparison with imipenem-susceptible VAP. Clin. Infect. Dis. 2003, 36, 1111–1118. [Google Scholar] [CrossRef]
- Reina, R.; Estenssoro, E.; Sáenz, G.; Canales, H.S.; Gonzalvo, R.; Vidal, G.; Martins, G.; Das Neves, A.; Santander, O.; Ramos, C. Safety and efficacy of colistin in Acinetobacter and Pseudomonas infections: A prospective cohort study. Intensive Care Med. 2005, 31, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Rafailidis, P.I.; Kasiakou, S.K.; Hatzopoulou, P.; Michalopoulos, A. Effectiveness and nephrotoxicity of colistin monotherapy vs. colistin-meropenem combination therapy for multidrug-resistant Gram-negative bacterial infections. Clin. Microbiol. Infect. 2006, 12, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Kallel, H.; Hergafi, L.; Bahloul, M.; Hakim, A.; Dammak, H.; Chelly, H.; Hamida, C.B.; Chaari, A.; Rekik, N.; Bouaziz, M. Safety and efficacy of colistin compared with imipenem in the treatment of ventilator-associated pneumonia: A matched case-control study. Intensive Care Med. 2007, 33, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Koomanachai, P.; Tiengrim, S.; Kiratisin, P.; Thamlikitkul, V. Efficacy and safety of colistin (colistimethate sodium) for therapy of infections caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii in Siriraj Hospital, Bangkok, Thailand. Int. J. Infect. Dis. 2007, 11, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Rafailidis, P.I.; Ioannidou, E.; Alexiou, V.G.; Matthaiou, D.K.; Karageorgopoulos, D.E.; Kapaskelis, A.; Nikita, D.; Michalopoulos, A. Colistin therapy for microbiologically documented multidrug-resistant Gram-negative bacterial infections: A retrospective cohort study of 258 patients. Int. J. Antimicrob. Agents 2010, 35, 194–199. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Signoriello, G.; Andini, R.; Mattei, A.; De Cristoforo, M.; Murino, P.; Bassetti, M.; Malacarne, P.; Petrosillo, N.; Galdieri, N.; et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: A multicenter, randomized clinical trial. Clin. Infect. Dis. 2013, 57, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Batirel, A.; Balkan, I.I.; Karabay, O.; Agalar, C.; Akalin, S.; Alici, O.; Alp, E.; Altay, F.A.; Altin, N.; Arslan, F.; et al. Comparison of colistin-carbapenem, colistin-sulbactam, and colistin plus other antibacterial agents for the treatment of extremely drug-resistant Acinetobacter baumannii bloodstream infections. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1311–1322. [Google Scholar] [CrossRef] [PubMed]
- Kalin, G.; Alp, E.; Akin, A.; Coskun, R.; Doganay, M. Comparison of colistin and colistin/sulbactam for the treatment of multidrug resistant Acinetobacter baumannii ventilator-associated pneumonia. Infection 2014, 42, 37–42. [Google Scholar] [CrossRef] [PubMed]
- López-Cortés, L.E.; Cisneros, J.M.; Fernández-Cuenca, F.; Bou, G.; Tomás, M.; Garnacho-Montero, J.; Pascual, A.; Martínez-Martínez, L.; Vila, J.; Pachón, J.; et al. Monotherapy versus combination therapy for sepsis due to multidrug-resistant Acinetobacter baumannii: Analysis of a multicentre prospective cohort. J. Antimicrob. Chemother. 2014, 69, 3119–3126. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.; Chuang, Y.C.; Sun, H.Y.; Sheng, W.H.; Yang, C.J.; Liao, C.H.; Hsueh, P.R.; Yang, J.L.; Shen, N.J.; Wang, J.T.; et al. Excess Mortality Associated with Colistin-Tigecycline Compared with Colistin-Carbapenem Combination Therapy for Extensively Drug-Resistant Acinetobacter baumannii Bacteremia: A Multicenter Prospective Observational Study. Crit. Care Med. 2015, 43, 1194–1204. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, G.R.; Guven, T.; Guner, R.; Kocak Tufan, Z.; Izdes, S.; Tasyaran, M.A.; Acikgoz, Z.C. Colistin alone or combined with sulbactam or carbapenem against A. baumannii in ventilator-associated pneumonia. J. Infect. Dev. Ctries. 2015, 9, 476–485. [Google Scholar] [CrossRef]
- Balkan, I.I.; Batirel, A.; Karabay, O.; Agalar, C.; Akalin, S.; Alici, O.; Alp, E.; Altay, F.A.; Altin, N.; Arslan, F.; et al. Comparison of colistin monotherapy and non-colistin combinations in the treatment of multi-drug resistant Acinetobacter spp. bloodstream infections: A multicenter retrospective analysis. Indian. J. Pharmacol. 2015, 47, 95–100. [Google Scholar] [CrossRef]
- Amat, T.; Gutiérrez-Pizarraya, A.; Machuca, I.; Gracia-Ahufinger, I.; Pérez-Nadales, E.; Torre-Giménez, Á.; Garnacho-Montero, J.; Cisneros, J.M.; Torre-Cisneros, J. The combined use of tigecycline with high-dose colistin might not be associated with higher survival in critically ill patients with bacteraemia due to carbapenem-resistant Acinetobacter baumannii. Clin. Microbiol. Infect. 2018, 24, 630–634. [Google Scholar] [CrossRef]
- Makris, D.; Petinaki, E.; Tsolaki, V.; Manoulakas, E.; Mantzarlis, K.; Apostolopoulou, O.; Sfyras, D.; Zakynthinos, E. Colistin versus Colistin Combined with Ampicillin-Sulbactam for Multiresistant Acinetobacter baumannii Ventilator-associated Pneumonia Treatment: An Open-label Prospective Study. Indian J. Crit. Care Med. 2018, 22, 67–77. [Google Scholar] [CrossRef]
- Park, S.Y.; Si, H.J.; Eom, J.S.; Lee, J.S. Survival of carbapenem-resistant Acinetobacter baumannii bacteremia: Colistin monotherapy versus colistin plus meropenem. J. Int. Med. Res. 2019, 47, 5977–5985. [Google Scholar] [CrossRef]
- Chen, C.Y.; Yang, K.Y.; Peng, C.K.; Sheu, C.C.; Chan, M.C.; Feng, J.Y.; Wang, S.H.; Chen, C.M.; Zheng, Z.R.; Liang, S.J.; et al. Clinical outcome of nosocomial pneumonia caused by Carbapenem-resistant gram-negative bacteria in critically ill patients: A multicenter retrospective observational study. Sci. Rep. 2022, 12, 7501. [Google Scholar] [CrossRef]
- Kaye, K.S.; Marchaim, D.; Thamlikitkul, V.; Carmeli, Y.; Chiu, C.H.; Daikos, G.; Dhar, S.; Durante-Mangoni, E.; Gikas, A.; Kotanidou, A.; et al. Colistin Monotherapy versus Combination Therapy for Carbapenem-Resistant Organisms. NEJM Evid. 2023, 2, EVIDoa2200131. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: An open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Voulgaris, G.L.; Samonis, G.; Falagas, M.E. Inhaled colistin monotherapy for respiratory tract infections in adults without cystic fibrosis: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2018, 51, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cui, X.; Jiang, M.; Huang, S.; Yang, M. Nebulized colistin as the adjunctive treatment for ventilator-associated pneumonia: A systematic review and meta-analysis. J. Crit. Care 2023, 77, 154315. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, N.; Savardekar, A.R.; Patra, D.P.; Narayan, V.; Nanda, A. The 21st-century challenge to neurocritical care: The rise of the superbug Acinetobacter baumannii. A meta-analysis of the role of intrathecal or intraventricular antimicrobial therapy in reduction of mortality. Neurosurg. Focus. 2017, 43, E8. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.M.; Teng, C.B.; Lye, D.C.; Apisarnthanarak, A. A multicenter case-case control study for risk factors and outcomes of extensively drug-resistant Acinetobacter baumannii bacteremia. Infect. Control Hosp. Epidemiol. 2014, 35, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Phe, K.; Lee, Y.; McDaneld, P.M.; Prasad, N.; Yin, T.; Figueroa, D.A.; Musick, W.L.; Cottreau, J.M.; Hu, M.; Tam, V.H. In vitro assessment and multicenter cohort study of comparative nephrotoxicity rates associated with colistimethate versus polymyxin B therapy. Antimicrob. Agents Chemother. 2014, 58, 2740–2746. [Google Scholar] [CrossRef] [PubMed]
- Crusio, R.; Rao, S.; Changawala, N.; Paul, V.; Tiu, C.; van Ginkel, J.; Chapnick, E.; Kupfer, Y. Epidemiology and outcome of infections with carbapenem-resistant Gram-negative bacteria treated with polymyxin B-based combination therapy. Scand. J. Infect. Dis. 2014, 46, 1–8. [Google Scholar] [CrossRef]
- Nelson, B.C.; Eiras, D.P.; Gomez-Simmonds, A.; Loo, A.S.; Satlin, M.J.; Jenkins, S.G.; Whittier, S.; Calfee, D.P.; Furuya, E.Y.; Kubin, C.J. Clinical outcomes associated with polymyxin B dose in patients with bloodstream infections due to carbapenem-resistant Gram-negative rods. Antimicrob. Agents Chemother. 2015, 59, 7000–7006. [Google Scholar] [CrossRef]
- Rigatto, M.H.; Behle, T.F.; Falci, D.R.; Freitas, T.; Lopes, N.T.; Nunes, M.; Costa, L.W.; Zavascki, A.P. Risk factors for acute kidney injury (AKI) in patients treated with polymyxin B and influence of AKI on mortality: A multicentre prospective cohort study. J. Antimicrob. Chemother. 2015, 70, 1552–1557. [Google Scholar] [CrossRef] [PubMed]
- Rigatto, M.H.; Vieira, F.J.; Antochevis, L.C.; Behle, T.F.; Lopes, N.T.; Zavascki, A.P. Polymyxin B in Combination with Antimicrobials Lacking In Vitro Activity versus Polymyxin B in Monotherapy in Critically Ill Patients with Acinetobacter baumannii or Pseudomonas aeruginosa Infections. Antimicrob. Agents Chemother. 2015, 59, 6575–6580. [Google Scholar] [CrossRef]
- Rigatto, M.H.; Oliveira, M.S.; Perdigão-Neto, L.V.; Levin, A.S.; Carrilho, C.M.; Tanita, M.T.; Tuon, F.F.; Cardoso, D.E.; Lopes, N.T.; Falci, D.R.; et al. Multicenter Prospective Cohort Study of Renal Failure in Patients Treated with Colistin versus Polymyxin B. Antimicrob. Agents Chemother. 2016, 60, 2443–2449. [Google Scholar] [CrossRef]
- Cai, B.; Cai, Y.; Liew, Y.X.; Chua, N.G.; Teo, J.Q.M.; Lim, T.P.; Kurup, A.; Ee, P.L.; Tan, T.T.; Lee, W.; et al. Clinical efficacy of polymyxin monotherapy versus nonvalidated polymyxin combination therapy versus validated polymyxin combination therapy in extensively drug-resistant Gram-negative bacillus infections. Antimicrob. Agents Chemother. 2016, 60, 4013–4022. [Google Scholar] [CrossRef]
- Mattos, K.P.H.; Gouvêa, I.R.; Quintanilha, J.C.F.; Cursino, M.A.; Vasconcelos, P.E.N.S.; Moriel, P. Polymyxin B clinical outcomes: A prospective study of patients undergoing intravenous treatment. J. Clin. Pharm. Ther. 2019, 44, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Huang, X.; Wang, Y.; Li, L.; Zhao, C.; Yao, Z.; Cui, W.; Zhang, G. Efficacy of intravenous plus intrathecal/intracerebral ventricle injection of polymyxin B for post-neurosurgical intracranial infections due to MDR/XDR Acinectobacter baumannii: A retrospective cohort study. Antimicrob. Resist. Infect. Control 2018, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Simon, V.; Viswam, A.; Alexander, P.S.; James, E.; Sudhindran, S. Colistin versus polymyxin B: A pragmatic assessment of renal and neurological adverse effects and effectiveness in multidrug-resistant Gram-negative bacterial infections. Indian J. Pharmacol. 2023, 55, 229–236. [Google Scholar]
- Liu, S.; Wu, Y.; Qi, S.; Shao, H.; Feng, M.; Xing, L.; Liu, H.; Gao, Y.; Zhu, Z.; Zhang, S.; et al. Polymyxin B therapy based on therapeutic drug monitoring in carbapenem-resistant organisms sepsis: The PMB-CROS randomized clinical trial. Crit. Care 2023, 27, 232. [Google Scholar] [CrossRef]
- Garcia, R.C.L.; Rodrigues, R.D.; Garcia, E.C.L.; Rigatto, M.H. Comparison between Colistin and Polymyxin B in the Treatment of Bloodstream Infections Caused by Carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii-calcoaceticus Complex. Antibiotics 2023, 12, 1317. [Google Scholar] [CrossRef]
- Chang, K.; Wang, H.; Zhao, J.; Yang, X.; Wu, B.; Sun, W.; Huang, M.; Cheng, Z.; Chen, H.; Song, Y.; et al. Polymyxin B/Tigecycline Combination vs. Polymyxin B or Tigecycline Alone for the Treatment of Hospital-Acquired Pneumonia Caused by Carbapenem-Resistant Enterobacteriaceae or Carbapenem-Resistant Acinetobacter baumannii. Front. Med. 2022, 9, 772372. [Google Scholar] [CrossRef]
- Zha, L.; Zhang, X.; Cheng, Y.; Xu, Q.; Liu, L.; Chen, S.; Lu, Z.; Guo, J.; Tefsen, B. Intravenous Polymyxin B as Adjunctive Therapy to High-Dose Tigecycline for the Treatment of Nosocomial Pneumonia Due to Carbapenem-Resistant Acinetobacter baumannii and Klebsiella pneumoniae: A Propensity Score-Matched Cohort Study. Antibiotics 2023, 12, 273. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Zuo, W.; Yang, Y.; Liu, X.; Wang, Q.; Yu, J.; Wu, J.; Xu, T.; Jiang, J.; Zhang, B.; et al. Clinical outcomes and safety of intravenous polymyxin B-based treatment in critically ill patients with carbapenem-resistant Acinetobacter baumannii nosocomial pneumonia. Int. J. Antimicrob. Agents 2023, 62, 106880. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.L.; Shi, X.P.; Huang, J.F.; Gong, Y.; Cui, C.X.; Wang, T. A retrospective observational study of the treatment with polymyxin B for liver transplantation recipients infected by multidrug-resistant gram-negative bacteria. J. Clin. Pharm. Ther. 2022, 47, 1563–1569. [Google Scholar] [CrossRef] [PubMed]
- Ngamprasertchai, T.; Boonyasiri, A.; Charoenpong, L.; Nimitvilai, S.; Lorchirachoonkul, N.; Wattanamongkonsil, L.; Thamlikitkul, V. Effectiveness and safety of polymyxin B for the treatment of infections caused by extensively drug-resistant Gram-negative bacteria in Thailand. Infect. Drug Resist. 2018, 11, 1219–1224. [Google Scholar] [CrossRef] [PubMed]
- Quintanilha, J.C.F.; Duarte, N.D.C.; Lloret, G.R.; Visacri, M.B.; Mattos, K.P.H.; Dragosavac, D.; Falcão, A.L.E.; Moriel, P. Colistin and polymyxin B for treatment of nosocomial infections in intensive care unit patients: Pharmacoeconomic analysis. Int. J. Clin. Pharm. 2019, 41, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Baradaran, S.; Black, D.J.; Keyloun, K.R.; Hansen, R.N.; Gillard, P.J.; Devine, B. The Impact of Acute Kidney Injury on the Risk of Mortality and Health Care Utilization Among Patients Treated with Polymyxins for Severe Gram-Negative Infections. Open Forum Infect. Dis. 2018, 5, ofy191. [Google Scholar] [CrossRef]
- Wang, J.; Shah, B.K.; Zhao, J.; Xiong, J.; Wang, C.; Xie, S. Comparative study of polymyxin B and colistin sulfate in the treatment of severe comorbid patients infected with CR-GNB. BMC Infect. Dis. 2023, 23, 351. [Google Scholar] [CrossRef]
- Ismail, B.; Shafei, M.N.; Harun, A.; Ali, S.; Omar, M.; Deris, Z.Z. Predictors of polymyxin B treatment failure in Gram-negative healthcare-associated infections among critically ill patients. J. Microbiol. Immunol. Infect. 2018, 51, 763–769. [Google Scholar] [CrossRef]
- Pereira, G.H.; Muller, P.R.; Levin, A.S. Salvage treatment of pneumonia and initial treatment of tracheobronchitis caused by multidrug-resistant Gram-negative bacilli with inhaled polymyxin B. Diagn. Microbiol. Infect. Dis. 2007, 58, 235–240. [Google Scholar] [CrossRef]
- Okoduwa, A.; Ahmed, N.; Guo, Y.; Scipione, M.R.; Papadopoulos, J.; Eiras, D.P.; Dubrovskaya, Y. Nephrotoxicity Associated with Intravenous Polymyxin B Once- versus Twice-Daily Dosing Regimen. Antimicrob. Agents Chemother. 2018, 62, e00025-18. [Google Scholar] [CrossRef]
- John, J.F.; Falci, D.R.; Rigatto, M.H.; Oliveira, R.D.; Kremer, T.G.; Zavascki, A.P. Severe Infusion-Related Adverse Events and Renal Failure in Patients Receiving High-Dose Intravenous Polymyxin B. Antimicrob. Agents Chemother. 2017, 62, e01617-17. [Google Scholar] [CrossRef]
- Oliota, A.F.; Penteado, S.T.; Tonin, F.S.; Fernandez-Llimos, F.; Sanches, A.C. Nephrotoxicity prevalence in patients treated with polymyxins: A systematic review with meta-analysis of observational studies. Diagn. Microbiol. Infect. Dis. 2019, 94, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Seifert, H.; Blondeau, J.; Lucaßen, K.; Utt, E.A. Global update on the in vitro activity of tigecycline and comparators against isolates of Acinetobacter baumannii and rates of resistant phenotypes (2016–2018). J. Glob. Antimicrob. Resist. 2022, 31, 82–89. [Google Scholar] [CrossRef]
- Hua, X.; He, J.; Wang, J.; Zhang, L.; Zhang, L.; Xu, Q.; Shi, K.; Leptihn, S.; Shi, Y.; Fu, X.; et al. Novel tigecycline resistance mechanisms in Acinetobacter baumannii mediated by mutations in adeS, rpoB and rrf. Emerg. Microbes Infect. 2021, 10, 1404–1417. [Google Scholar] [CrossRef] [PubMed]
- Barbour, A.; Schmidt, S.; Ma, B.; Schiefelbein, L.; Rand, K.H.; Burkhardt, O.; Derendorf, H. Clinical pharmacokinetics and pharmacodynamics of tigecycline. Clin. Pharmacokinet. 2009, 48, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Gotfried, M.H.; Horn, K.; Garrity-Ryan, L.; Villano, S.; Tzanis, E.; Chitra, S.; Manley, A.; Tanaka, S.K.; Rodvold, K.A. Comparison of Omadacycline and Tigecycline Pharmacokinetics in the Plasma, Epithelial Lining Fluid, and Alveolar Cells of Healthy Adult Subjects. Antimicrob. Agents Chemother. 2017, 61, e01135-17. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, G.; Lisi, L.; Ciotti, G.M.P.; Vallecoccia, M.S.; Cutuli, S.L.; Cascarano, L.; Gelormini, C.; Bello, G.; Montini, L.; Carelli, S.; et al. Pharmacokinetics of high-dose tigecycline in critically ill patients with severe infections. Ann. Intensive Care 2020, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Sodeifian, F.; Zangiabadian, M.; Arabpour, E.; Kian, N.; Yazarlou, F.; Goudarzi, M.; Centis, R.; Seghatoleslami, Z.S.; Kameh, M.C.; Danaei, B.; et al. Tigecycline-Containing Regimens and Multi Drug-Resistant Acinetobacter baumannii: A Systematic Review and Meta-Analysis. Microb. Drug Resist. 2023, 29, 344–359. [Google Scholar] [CrossRef]
- Gong, J.; Su, D.; Shang, J.; Yu, H.; Du, G.; Lin, Y.; Sun, Z.; Liu, G. Efficacy and safety of high-dose tigecycline for the treatment of infectious diseases: A meta-analysis. Medicine 2019, 98, e17091. [Google Scholar] [CrossRef]
- Chuang, Y.C.; Cheng, C.Y.; Sheng, W.H.; Sun, H.Y.; Wang, J.T.; Chen, Y.C.; Chang, S.C. Effectiveness of tigecycline-based versus colistin- based therapy for treatment of pneumonia caused by multidrug-resistant Acinetobacter baumannii in a critical setting: A matched cohort analysis. BMC Infect. Dis. 2014, 14, 102. [Google Scholar] [CrossRef]
- Kwon, S.H.; Ahn, H.L.; Han, O.Y.; La, H.O. Efficacy and safety profile comparison of colistin and tigecycline on the extensively drug resistant Acinetobacter baumannii. Biol. Pharm. Bull. 2014, 37, 340–346. [Google Scholar] [CrossRef]
- Chaari, A.; Pham, T.; Mnif, B.; Chtara, K.; Medhioub, F.; Baccouche, N.; Bahloul, M.; Hammami, A.; Bouaziz, M. Colistin-tigecycline versus colistin-imipenem-cilastatin combinations for the treatment of Acinetobacter baumannii ventilator-acquired pneumonia: A prognosis study. Intensive Care Med. 2015, 41, 2018–2019. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.Y.; Moon, J.Y.; Huh, J.W.; Choi, S.H.; Lim, C.M.; Koh, Y.; Chong, Y.P.; Hong, S.B. Comparable Efficacy of Tigecycline versus Colistin Therapy for Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Pneumonia in Critically Ill Patients. PLoS ONE 2016, 11, e0150642. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.J.; Lin, H.S.; Yeh, C.F.; Wu, Y.M.; Huang, P.Y.; Yang, C.C.; Huang, C.T.; Lee, M.H. Tigecycline-based versus sulbactam-based treatment for pneumonia involving multidrug-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii complex. BMC Infect. Dis. 2016, 16, 374. [Google Scholar] [CrossRef]
- Jean, S.S.; Hsieh, T.C.; Lee, W.S.; Hsueh, P.R.; Hsu, C.W.; Lam, C. Treatment outcomes of patients with non-bacteremic pneumonia caused by extensively drug-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii complex isolates: Is there any benefit of adding tigecycline to aerosolized colistimethate sodium? Medicine 2018, 97, e12278. [Google Scholar] [CrossRef]
- Niu, T.; Luo, Q.; Li, Y.; Zhou, Y.; Yu, W.; Xiao, Y. Comparison of Tigecycline or Cefoperazone/Sulbactam therapy for bloodstream infection due to Carbapenem-resistant Acinetobacter baumannii. Antimicrob. Resist. Infect. Control 2019, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Hoban, D.J.; Reinert, R.R.; Bouchillon, S.K.; Dowzicky, M.J. Global in vitro activity of tigecycline and comparator agents: Tigecycline Evaluation and Surveillance Trial 2004–2013. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 27. [Google Scholar] [CrossRef] [PubMed]
- Lodise, T.P.; Van Wart, S.; Sund, Z.M.; Bressler, A.M.; Khan, A.; Makley, A.T.; Hamad, Y.; Salata, R.A.; Silveira, F.P.; Sims, M.D.; et al. Pharmacokinetic and Pharmacodynamic Profiling of Minocycline for Injection following a Single Infusion in Critically Ill Adults in a Phase IV Open-Label Multicenter Study (ACUMIN). Antimicrob. Agents Chemother. 2021, 65, e01809-20. [Google Scholar] [CrossRef] [PubMed]
- Fragkou, P.C.; Poulakou, G.; Blizou, A.; Blizou, M.; Rapti, V.; Karageorgopoulos, D.E.; Koulenti, D.; Papadopoulos, A.; Matthaiou, D.K.; Tsiodras, S. The Role of Minocycline in the Treatment of Nosocomial Infections Caused by Multidrug, Extensively Drug and Pandrug Resistant Acinetobacter baumannii: A Systematic Review of Clinical Evidence. Microorganisms 2019, 7, 159. [Google Scholar] [CrossRef]
- Pogue, J.M.; Neelakanta, A.; Mynatt, R.P.; Sharma, S.; Lephart, P.; Kaye, K.S. Carbapenem-resistance in gram-negative bacilli and intravenous minocycline: An antimicrobial stewardship approach at the Detroit Medical Center. Clin. Infect. Dis. 2014, 59, S388–S393. [Google Scholar] [CrossRef]
- Goff, D.A.; Bauer, K.A.; Mangino, J.E. Bad bugs need old drugs: A stewardship program’s evaluation of minocycline for multidrug-resistant Acinetobacter baumannii infections. Clin. Infect. Dis. 2014, 59, S381–S387. [Google Scholar] [CrossRef]
- Wang, L.; Zou, L.; Li, H.; Li, T. Preliminary Analysis on the Treatment of Ventilator-Associated Pneumonia Caused by Pandrug-Resistant Acinetobacter baumannii. Zhongguo Yi XueKeXue Yuan Xue Bao 2014, 36, 185–188. [Google Scholar]
- Bremmer, D.N.; Bauer, K.A.; Pouch, S.M.; Thomas, K.; Smith, D.; Goff, D.A.; Pancholi, P.; Balada-Llasat, J.M. Correlation of Checkerboard Synergy Testing with Time-Kill Analysis and Clinical Outcomes of Extensively Drug-Resistant Acinetobacter baumannii Respiratory Infections. Antimicrob. Agents Chemother. 2016, 60, 6892–6895. [Google Scholar] [CrossRef]
- Bishburg, E.; Shah, M.; Chan, T. Use of Intravenous Minocycline for the Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) and Resistant Gram-Negati132-135ve Organisms: Experience in a Tertiary Care Hospital. Infect. Dis. Clin. Pract. 2014, 22, 26–31. [Google Scholar] [CrossRef]
- Lomovskaya, O.; Sun, D.; Rubio-Aparicio, D.; Nelson, K.J.; Thamlikitkul, V.; Dudley, M.N.; Redell, M.A. Absence of TetB identifies minocycline-susceptible isolates of Acinetobacter baumannii. Int. J. Antimicrob. Agents 2018, 52, 404–406. [Google Scholar] [CrossRef]
- Raz-Pasteur, A.; Liron, Y.; Amir-Ronen, R.; Abdelgani, S.; Ohanyan, A.; Geffen, Y.; Paul, M. Trimethoprim-sulfamethoxazole vs. colistin or ampicillin-sulbactam for the treatment of carbapenem-resistant Acinetobacter baumannii: A retrospective matched cohort study. J. Glob. Antimicrob. Resist. 2019, 17, 168–172. [Google Scholar] [CrossRef]
- Sirijatuphat, R.; Thamlikitkul, V. Preliminary study of colistin versus colistin plus fosfomycin for treatment of carbapenem-resistant Acinetobacter baumannii infections. Antimicrob. Agents Chemother. 2014, 58, 5598–5601. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Bassetti, M.; Bellelli, V.; Bianchi, L.; Marincola Cattaneo, F.; Mazzocchetti, S.; Paciacconi, E.; Cottini, F.; Schiattarella, A.; Tufaro, G.; et al. Efficacy of a Fosfomycin-Containing Regimen for Treatment of Severe Pneumonia Caused by Multidrug-Resistant Acinetobacter baumannii: A Prospective, Observational Study. Infect. Dis. Ther. 2021, 10, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Cho, J.H.; Kim, H.J.; Han, S.H.; Jeong, S.H.; Byun, M.K. Colistin monotherapy versus colistin/rifampicin combination therapy in pneumonia caused by colistin-resistant Acinetobacter baumannii: A randomised controlled trial. J. Glob. Antimicrob. Resist. 2019, 17, 66–71. [Google Scholar] [CrossRef]
- Aydemir, H.; Akduman, D.; Piskin, N.; Comert, F.; Horuz, E.; Terzi, A.; Kokturk, F.; Ornek, T.; Celebi, G. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol. Infect. 2013, 141, 1214–1222. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Andini, R.; Signoriello, S.; Cavezza, G.; Murino, P.; Buono, S.; De Cristofaro, M.; Taglialatela, C.; Bassetti, M.; Malacarne, P.; et al. Acute kidney injury during colistin therapy: A prospective study in patients with extensively-drug resistant Acinetobacter baumannii infections. Clin. Microbiol. Infect. 2016, 22, 984–989. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I.; et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019, 39, 10–39. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafailidis, P.; Panagopoulos, P.; Koutserimpas, C.; Samonis, G. Current Therapeutic Approaches for Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Infections. Antibiotics 2024, 13, 261. https://doi.org/10.3390/antibiotics13030261
Rafailidis P, Panagopoulos P, Koutserimpas C, Samonis G. Current Therapeutic Approaches for Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Infections. Antibiotics. 2024; 13(3):261. https://doi.org/10.3390/antibiotics13030261
Chicago/Turabian StyleRafailidis, Petros, Periklis Panagopoulos, Christos Koutserimpas, and George Samonis. 2024. "Current Therapeutic Approaches for Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Infections" Antibiotics 13, no. 3: 261. https://doi.org/10.3390/antibiotics13030261
APA StyleRafailidis, P., Panagopoulos, P., Koutserimpas, C., & Samonis, G. (2024). Current Therapeutic Approaches for Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Infections. Antibiotics, 13(3), 261. https://doi.org/10.3390/antibiotics13030261