Post-COVID-19 Pandemic Rebound of Macrolide-Resistant Mycoplasma pneumoniae Infection: A Descriptive Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. The Influenza A and B Antigen Test
4.2. Real-Time Quantitative Mycoplasma Pneumoniae PCR
4.3. Real-Time Qualitative SARS-CoV-2 PCR
4.4. Real-Time Qualitative 8-Multiplex Respiratory Virus RT-PCR Assay: 6-Multiplex Non-Influenza Respiratory Viruses and 2-Multiplex Influenza A and Influenza B RT-PCR Kits
4.5. Next-Generation Sequencing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, V.C.; Wong, S.C.; So, S.Y.; Chen, J.H.; Chau, P.H.; Au, A.K.; Chiu, K.H.; Li, X.; Ip, P.; Chuang, V.W.; et al. Decreased Antibiotic Consumption Coincided with Reduction in Bacteremia Caused by Bacterial Species with Respiratory Transmission Potential during the COVID-19 Pandemic. Antibiotics 2022, 11, 746. [Google Scholar] [CrossRef] [PubMed]
- Feldman, I.; Natsheh, A.; Nesher, G.; Breuer, G.S. Social distancing and bacteraemia in the time of COVID-19. Int. Med. J. 2022, 52, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Yum, S.; Hong, K.; Sohn, S.; Kim, J.; Chun, B.C. Trends in Viral Respiratory Infections During COVID-19 Pandemic, South Korea. Emerg. Infect. Dis. 2021, 27, 1685–1688. [Google Scholar] [CrossRef] [PubMed]
- Parums, D.V. Editorial: Outbreaks of Post-Pandemic Childhood Pneumonia and the Re-Emergence of Endemic Respiratory Infections. Med. Sci. Monit. 2023, 29, e943312. [Google Scholar] [CrossRef] [PubMed]
- Sauteur, P.M.M.; Beeton, M.L.; Pereyre, S.; Bébéar, C.; Gardette, M.; Hénin, N.; Wagner, N.; Fischer, A.; Vitale, A.; Lemaire, B.; et al. Mycoplasma pneumoniae: Delayed re-emergence after COVID-19 pandemic restrictions. Lancet Microbe 2023, 5, e100–e101. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.J.; Zhang, H.Y.; Ren, L.L.; Lu, Q.B.; Ren, X.; Zhang, C.H.; Wang, Y.F.; Lin, S.H.; Zhang, X.A.; Li, J.; et al. Etiological and epidemiological features of acute respiratory infections in China. Nat. Commun. 2021, 12, 5026. [Google Scholar] [CrossRef]
- Shin, S.; Koo, S.; Yang, Y.J.; Lim, H.J. Characteristics of the Mycoplasma pneumoniae Epidemic from 2019 to 2020 in Korea: Macrolide Resistance and Co-Infection Trends. Antibiotics 2023, 12, 1623. [Google Scholar] [CrossRef]
- Rangroo, R.; Young, M.; Davis, A.; Pack, S.; Thakore, S.; Schepcoff, A.; Oyesanmi, O. The Severity of the Co-infection of Mycoplasma pneumoniae in COVID-19 Patients. Cureus 2022, 14, e24563. [Google Scholar] [CrossRef]
- Chen, Q.; Lin, L.; Zhang, N.; Yang, Y. Adenovirus and Mycoplasma pneumoniae co-infection as a risk factor for severe community-acquired pneumonia in children. Front. Pediatr. 2024, 12, 1337786. [Google Scholar] [CrossRef]
- Choo, S.; Lee, Y.Y.; Lee, E. Clinical significance of respiratory virus coinfection in children with Mycoplasma pneumoniae pneumonia. BMC Pulm. Med. 2022, 22, 212. [Google Scholar] [CrossRef]
- Li, J.; Liu, L.; Zhang, H.; Guo, J.; Wei, X.; Xue, M.; Ma, X. Severe problem of macrolides resistance to common pathogens in China. Front. Cell Infect. Microbiol. 2023, 13, 1181633. [Google Scholar] [CrossRef]
- Okazaki, N.; Narita, M.; Yamada, S.; Izumikawa, K.; Umetsu, M.; Kenri, T.; Sasaki, Y.; Arakawa, Y.; Sasaki, T. Characteristics of macrolide-resistant Mycoplasma pneumoniae strains isolated from patients and induced with erythromycin in vitro. Microbiol. Immunol. 2001, 45, 617–620. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, G.; Wu, J.; Cao, B.; Tao, X.; He, L.; Meng, F.; Zhu, L.; Lv, M.; Yin, Y.; et al. Surveillance of macrolide-resistant Mycoplasma pneumoniae in Beijing, China, from 2008 to 2012. Antimicrob. Agents Chemother. 2013, 57, 1521–1523. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, X.; Zhang, H.; Xu, X.; Li, W.; Zhu, D.; Wang, M. Antimicrobial susceptibility of Mycoplasma pneumoniae isolates and molecular analysis of macrolide-resistant strains from Shanghai, China. Antimicrob. Agents Chemother. 2009, 53, 2160–2162. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Mei, S.; Wang, Y.; Zheng, X.; Li, L.; Cheng, Y. Molecular typing of Mycoplasma pneumoniae and its correlation with macrolide resistance in children in Henan of China. Indian. J. Med. Microbiol. 2023, 46, 100435. [Google Scholar] [CrossRef]
- Woo, P.C.; Lau, S.K.; Yuen, K.Y. Macrolides as Immunomodulatory Agents. Curr. Med. Chem. —Anti-Inflamm. Anti-Allergy Agents 2002, 1, 131–141. [Google Scholar] [CrossRef]
- Lin, S.J.; Yan, D.C.; Lee, W.I.; Kuo, M.L.; Hsiao, H.S.; Lee, P.Y. Effect of azithromycin on natural killer cell function. Int. Immunopharmacol. 2012, 13, 8–14. [Google Scholar] [CrossRef]
- Waites, K.B.; Talkington, D.F. Mycoplasma pneumoniae and its role as a human pathogen. Clin. Microbiol. Rev. 2004, 17, 697–728. [Google Scholar] [CrossRef] [PubMed]
- Shames, J.M.; George, R.B.; Holliday, W.B.; Rasch, J.R.; Mogabgab, W.J. Comparison of antibiotics in the treatment of mycoplasmal pneumonia. Arch. Intern. Med. 1970, 125, 680–684. [Google Scholar] [CrossRef]
- Todd, S.R.; Dahlgren, F.S.; Traeger, M.S.; Beltran-Aguilar, E.D.; Marianos, D.W.; Hamilton, C.; McQuiston, J.H.; Regan, J.J. No visible dental staining in children treated with doxycycline for suspected Rocky Mountain Spotted Fever. J. Pediatr. 2015, 166, 1246–1251. [Google Scholar] [CrossRef] [PubMed]
- Stultz, J.S.; Eiland, L.S. Doxycycline and Tooth Discoloration in Children: Changing of Recommendations Based on Evidence of Safety. Ann. Pharmacother. 2019, 53, 1162–1166. [Google Scholar] [CrossRef]
- Yancey, A.L.; Watson, H.L.; Cartner, S.C.; Simecka, J.W. Gender is a major factor in determining the severity of mycoplasma respiratory disease in mice. Infect. Immun. 2001, 69, 2865–2871. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Guo, P.; Mei, S.; Li, M.; Yu, Z.; Zhang, Y.; Shen, A.; Sun, H.; Li, L. Influence of COVID-19 pandemic on the epidemiology of Mycoplasma pneumoniae infections among hospitalized children in Henan, China. Heliyon 2023, 9, e22213. [Google Scholar] [CrossRef] [PubMed]
- Kung, C.M.; Wang, H.L. Seroprevalence of Mycoplasma pneumoniae in healthy adolescents in Taiwan. Jpn. J. Infect. Dis. 2007, 60, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.G.; Cho, H.K.; Li, D.; Choi, M.; Lee, J.; Eun, B.W.; Jo, D.S.; Park, S.E.; Choi, E.H.; Yang, H.J.; et al. Efficacy of tetracyclines and fluoroquinolones for the treatment of macrolide-refractory Mycoplasma pneumoniae pneumonia in children: A systematic review and meta-analysis. BMC Infect. Dis. 2021, 21, 1003. [Google Scholar] [CrossRef] [PubMed]
- Influenza Virus Type A and Type B Antigen Test Package Insert (30 June 2023), ClearView; Abbott: Shanghai, China, 2023.
- Winchell, J.M.; Thurman, K.A.; Mitchell, S.L.; Thacker, W.L.; Fields, B.S. Evaluation of three real-time PCR assays for detection of Mycoplasma pneumoniae in an outbreak investigation. J. Clin. Microbiol. 2008, 46, 3116–3118. [Google Scholar] [CrossRef] [PubMed]
- 2019-nCoV Nucleic Acid Detection Kit (Real-Time PCR) Package Insert (11 January 2021); Shanghai Bio-Germ Biotech Inc.: Shanghai, China, 2021.
- 6-in-1 Respiratory Virus Nucleic Acid Detection Kit (PCR-Fluorescence Probing) Package Insert (16 August 2023); Shanghai Bio-Germ Biotech Inc.: Shanghai, China, 2023.
- Influenza A/B Virus Nucleic Acid Detection Kit (PCR-Fluorescence Probing) Package Insert (22 August 2023); Shanghai Bio-Germ Biotech Inc.: Shanghai, China, 2023.
- Li, S.; Tong, J.; Liu, Y.; Shen, W.; Hu, P. Targeted next generation sequencing is comparable with metagenomic next generation sequencing in adults with pneumonia for pathogenic microorganism detection. J. Infect. 2022, 85, e127–e129. [Google Scholar] [CrossRef]
- Li, S.; Tong, J.; Li, H.; Mao, C.; Shen, W.; Lei, Y.; Hu, P.L. pneumophila Infection Diagnosed by tNGS in a Lady with Lymphadenopathy. Infect. Drug Resist. 2023, 16, 4435–4442. [Google Scholar] [CrossRef]
Respiratory Viruses | M. pneumoniae | |
---|---|---|
Total No. of +ve specimens | 2694 1 | 4094 |
No. of +ve specimens in children | 1120 | 3687 |
Female/Male | 1264/1430 | 1961/2133 |
Age (years), median (IQR) | 35 (4, 65) | 7 (5, 9) |
Hospitalization (%) | 1289 (47.8%) | 1438 (35.1%) |
Hospitalization in children (%) | 740 (66.1%) | 1253 (34.0%) |
Children (Younger Than 18 Years) | Adults | p-Value | |
---|---|---|---|
All Mycoplasma pneumoniae infection | |||
No. of specimens | 3216 (90.5%) | 339 (9.5%) | |
Female/Male | 1462/1754 | 231/108 | <0.001 |
Median age (IQR) | 7 years (5, 9) | 36 years (32, 41) | |
Hospitalized Mycoplasma pneumoniae infection | |||
No. of patients | 1049 | 99 | |
Female/Male | 448/561 | 72/27 | <0.001 |
Median age (IQR) | 6 years (5, 8) | 35 years (31, 41) | |
No. of patients with underlying disease(s) | 42 (4.0%) | 34 (34.3%) | <0.001 |
Underlying chronic diseases (>1 disease in some patients) | |||
Atopy (rhinitis, asthma, dermatitis) | 6 | 2 | |
Malnutrition | 2 | 0 | |
Thyroid nodule | 1 | 3 | |
Hypertension | 0 | 3 | |
Diabetes mellitus | 0 | 4 | |
Hyperuricemia | 1 | 4 | |
Cardiovascular disease | 4 | 3 | |
Pulmonary disease | 0 | 8 | |
Chronic renal impairment | 4 | 3 | |
Chronic liver impairment | 0 | 8 | |
Gastrointestinal disease | 2 | 2 | |
Neurological disease | 3 | 3 | |
Solid organ malignancies | 0 | 6 | |
Hematological diseases | 17 | 5 | |
Precocious puberty | 1 | 0 | |
Down syndrome | 1 | 0 | |
Symptoms and signs | |||
Fever | 1036 (98.8%) | 92 (92.9%) | <0.001 |
Cough | 1043 (99.4%) | 99 (100%) | 1.000 |
Fatigue | 10 (1.0%) | 10 (10.1%) | <0.001 |
Shortness of breath | 29 (2.8%) | 7 (7.1%) | 0.030 |
Headache | 13 (1.2%) | 12 (12.1%) | <0.001 |
Sore throat | 34 (3.2%) | 12 (12.1%) | <0.001 |
Asthma | 12 (1.1%) | 2 (2.0%) | 0.344 |
Rash | 27 (2.6%) | 0 (0.0%) | 0.085 |
Neurological manifestations | 8 (0.8%) | 3 (3.0%) | 0.062 |
Median days of hospitalization (IQR) | 4 (3–6) | 4 (3–5) | 0.224 |
Favorable outcome 1 | 1046 (99.7%) | 99 (100%) | 1.000 |
Children (Less Than 18 Years) | Adults | p-Value | |
---|---|---|---|
Radiology | |||
Pulmonary infiltrates | 952 (90.8%) | 83 (83.8%) | 0.027 |
Consolidation | 117 (11.2%) | 32 (32.3%) | <0.001 |
Pleural effusion | 40 (4.4%) | 6 (6.1%) | 0.273 |
Lab test, median (IQR) | |||
White blood cell count (×109/L) | 7.10 (5.73, 8.94) | 7.08 (5.87, 8.49) | NA 1 |
Neutrophil count (×109/L) | 4.21 (3.17, 5.64) | 4.93 (4.04, 6.31) | NA 1 |
Lymphocyte count (×109/L) | 1.99 (1.51, 2.58) | 1.44 (1.10, 1.76) | NA 1 |
Monocyte count (×109/L) | 0.59 (0.45, 0.78) | 0.61 (0.44, 0.79) | NA 1 |
Platelet count (×109/L) | 263 (219, 321) | 225 (190, 279) | NA 1 |
Hemoglobin (g/L) | 125 (119, 131) | 129 (122, 139) | NA 1 |
Alanine aminotransferase (U/L) | 12.6 (10.4, 16.33) | 17.75 (12.33, 28.70) | NA 1 |
Aspartate aminotransferase (U/L) | 28 (23.8, 33.5) | 19.3 (16.2, 25.0) | NA 1 |
Total bilirubin (μmol/L) | 4.6 (3.5, 6.0) | 8.1 (5.4, 10.8) | NA 1 |
Direct bilirubin (μmol/L) | 2.0 (1.5, 2.5) | 3.5 (2.6, 4.4) | NA 1 |
Albumin (g/L) | 41.8 (40.2, 43.4) | 41.6 (38.8, 43.1) | NA 1 |
Creatinine (μmol/L) | 40 (34, 47) | 63 (54, 72) | NA 1 |
C-reactive protein (mg/L) | 11 (5.1, 20) | 35.34 (15.09, 70.70) | <0.001 |
Procalcitonin (ng/mL) | 0.15 (0.10, 0.24) | 0.09 (0.06, 0.13) | NA 1 |
M. pneumoniae DNA by quantitative PCR (copies/mL) | 102,000 in 811 patients (124,500, 533,500) | 25,000 in 75 patients (7300, 184,000) | 0.002 |
Normalized sequence reads of M. pneumoniae detected via tNGS (per 100 kb primary sequence reads) | 69,045 in 870 patients (1484, 21,983.75) | 41,144 in 10 patients (7323.75, 46,504.25) | NA 2 |
Detection of other respiratory pathogens in tNGS and pathogen-specific PCR | 275 (26.2%) | 2 (2.0%) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, F.-F.; Chiu, K.H.-Y.; Deng, C.-W.; Ye, H.-Y.; Sun, L.-L.; Su, Y.-X.; Cai, H.-J.; Lo, S.K.-F.; Rong, L.; Chen, J.-L.; et al. Post-COVID-19 Pandemic Rebound of Macrolide-Resistant Mycoplasma pneumoniae Infection: A Descriptive Study. Antibiotics 2024, 13, 262. https://doi.org/10.3390/antibiotics13030262
Xing F-F, Chiu KH-Y, Deng C-W, Ye H-Y, Sun L-L, Su Y-X, Cai H-J, Lo SK-F, Rong L, Chen J-L, et al. Post-COVID-19 Pandemic Rebound of Macrolide-Resistant Mycoplasma pneumoniae Infection: A Descriptive Study. Antibiotics. 2024; 13(3):262. https://doi.org/10.3390/antibiotics13030262
Chicago/Turabian StyleXing, Fan-Fan, Kelvin Hei-Yeung Chiu, Chao-Wen Deng, Hai-Yan Ye, Lin-Lin Sun, Yong-Xian Su, Hui-Jun Cai, Simon Kam-Fai Lo, Lei Rong, Jian-Liang Chen, and et al. 2024. "Post-COVID-19 Pandemic Rebound of Macrolide-Resistant Mycoplasma pneumoniae Infection: A Descriptive Study" Antibiotics 13, no. 3: 262. https://doi.org/10.3390/antibiotics13030262
APA StyleXing, F. -F., Chiu, K. H. -Y., Deng, C. -W., Ye, H. -Y., Sun, L. -L., Su, Y. -X., Cai, H. -J., Lo, S. K. -F., Rong, L., Chen, J. -L., Cheng, V. C. -C., Lung, D. C., Sridhar, S., Chan, J. F. -W., Hung, I. F. -N., & Yuen, K. -Y. (2024). Post-COVID-19 Pandemic Rebound of Macrolide-Resistant Mycoplasma pneumoniae Infection: A Descriptive Study. Antibiotics, 13(3), 262. https://doi.org/10.3390/antibiotics13030262