ApoE Mimetic Peptide COG1410 Kills Mycobacterium smegmatis via Directly Interfering ClpC’s ATPase Activity
Abstract
:1. Introduction
2. Results
2.1. Induced Resistance of AMP Is Developed via Serial Passage in M. smegmatis
2.2. Point Mutation of ClpC Is Involved in High Resistance of COG1410
2.3. Knockdown of clpC Leads to COG1410 Resistance
2.4. ClpC Is Involved in Resistance of Other AMPs, but Not Conventional Antibiotics
2.5. ClpC Expression Is Induced by COG1410 in M. smegmatis
2.6. Transcriptome Analysis of M. smegmatis Response to COG1410
2.7. COG1410 Enters the Cytoplasm and Colocalizes with ClpC
2.8. COG1410 Stimulates Its ATPase Activity
2.9. COG1410 Stimulates the Proteolytic Activity of Clp Protease in M. smegmatis
2.10. COG1410 Directly Binds with ClpC
3. Discussion
4. Methods and Materials
4.1. Bacterial Strains and Growth Conditions
4.2. Peptides
4.3. Plasmid Construction and Transformation
4.4. Drug-Resistance Development Assay
4.4.1. Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC)
4.4.2. Genomic SNP/InDel Analysis
4.4.3. qRT-PCR
4.4.4. RNA-Seq Analysis
4.4.5. Determination of Co-Localization between COG1410 and ClpC
4.4.6. Protein Purification for Functional Assay
4.4.7. In Vitro ATPase Activity Assay
4.4.8. In Vitro Protease Activity Assay
4.4.9. SPR Assay
4.4.10. Docking
4.4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liebenberg, D.; Gordhan, B.G.; Kana, B.D. Drug resistant tuberculosis: Implications for transmission, diagnosis, and disease management. Front. Cell. Infect. Microbiol. 2022, 12, 943545. [Google Scholar] [CrossRef]
- Petersen, E.; Hui, D.S.; Nachega, J.B.; Ntoumi, F.; Goletti, D.; Aklillu, E.; Sharma, A.; Nyirenda, T.; Yeboah-Manu, D.; Satta, G.; et al. End of the Bedaquiline patent—A crucial development for moving forward affordable drugs, diagnostics, and vaccines for infectious diseases in low- and middle-income countries. Int. J. Infect. Dis. 2023, 131, 180–182. [Google Scholar] [CrossRef]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef] [PubMed]
- Benfield, A.H.; Henriques, S.T. Mode-of-Action of Antimicrobial Peptides: Membrane Disruption vs. Intracellular Mechanisms. Front. Med. Technol. 2020, 2, 610997. [Google Scholar] [CrossRef] [PubMed]
- Mookherjee, N.; Anderson, M.A.; Haagsman, H.P.; Davidson, D.J. Antimicrobial host defence peptides: Functions and clinical potential. Nat. Rev. Drug Discov. 2020, 19, 311–332. [Google Scholar] [CrossRef] [PubMed]
- Baindara, P.; Singh, N.; Ranjan, M.; Nallabelli, N.; Chaudhry, V.; Pathania, G.L.; Sharma, N.; Kumar, A.; Patil, P.B.; Korpole, S. Laterosporulin10: A novel defensin like Class IId bacteriocin from Brevibacillus sp. strain SKDU10 with inhibitory activity against microbial pathogens. Microbiology 2016, 162, 1286–1299. [Google Scholar] [CrossRef]
- Usmani, S.S.; Kumar, R.; Kumar, V.; Singh, S.; Raghava, G.P.S. AntiTbPdb: A knowledgebase of anti-tubercular peptides. Database 2018, 2018, bay025. [Google Scholar] [CrossRef]
- Spohn, R.; Daruka, L.; Lazar, V.; Martins, A.; Vidovics, F.; Grezal, G.; Mehi, O.; Kintses, B.; Szamel, M.; Jangir, P.K.; et al. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat. Commun. 2019, 10, 4538. [Google Scholar] [CrossRef]
- Yu, G.; Baeder, D.Y.; Regoes, R.R.; Rolff, J. Predicting drug resistance evolution: Insights from antimicrobial peptides and antibiotics. Proc. Biol. Sci. 2018, 285, 2687. [Google Scholar] [CrossRef]
- Assoni, L.; Milani, B.; Carvalho, M.R.; Nepomuceno, L.N.; Waz, N.T.; Guerra, M.E.S.; Converso, T.R.; Darrieux, M. Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Front. Microbiol. 2020, 11, 593215. [Google Scholar] [CrossRef]
- Moravej, H.; Moravej, Z.; Yazdanparast, M.; Heiat, M.; Mirhosseini, A.; Moosazadeh Moghaddam, M.; Mirnejad, R. Antimicrobial Peptides: Features, Action, and Their Resistance Mechanisms in Bacteria. Microb. Drug Resist. 2018, 24, 747–767. [Google Scholar] [CrossRef] [PubMed]
- Sieprawska-Lupa, M.; Mydel, P.; Krawczyk, K.; Wójcik, K.; Puklo, M.; Lupa, B.; Suder, P.; Silberring, J.; Reed, M.; Pohl, J. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob. Agents Chemother. 2004, 48, 4673–4679. [Google Scholar] [CrossRef]
- Hirt, H.; Hall, J.W.; Larson, E.; Gorr, S.-U. A D-enantiomer of the antimicrobial peptide GL13K evades antimicrobial resistance in the Gram positive bacteria Enterococcus faecalis and Streptococcus gordonii. PLoS ONE 2018, 13, e0194900. [Google Scholar] [CrossRef] [PubMed]
- Kress, W.; Maglica, Z.; Weber-Ban, E. Clp chaperone-proteases: Structure and function. Res. Microbiol. 2009, 160, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Illigmann, A.; Thoma, Y.; Pan, S.; Reinhardt, L.; Brötz-Oesterhelt, H. Contribution of the Clp Protease to Bacterial Survival and Mitochondrial Homoeostasis. Microb. Physiol. 2021, 31, 260–279. [Google Scholar] [CrossRef] [PubMed]
- Frees, D.; Savijoki, K.; Varmanen, P.; Ingmer, H. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol. Microbiol. 2007, 63, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Benaroudj, N.; Raynal, B.; Miot, M.; Ortiz-Lombardia, M. Assembly and proteolytic processing of mycobacterial ClpP1 and ClpP2. BMC Biochem. 2011, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Akopian, T.; Kandror, O.; Raju, R.M.; Unnikrishnan, M.; Rubin, E.J.; Goldberg, A.L. The active ClpP protease from M. tuberculosis is a complex composed of a heptameric ClpP1 and a ClpP2 ring. EMBO J. 2012, 31, 1529–1541. [Google Scholar] [CrossRef]
- Leodolter, J.; Warweg, J.; Weber-Ban, E. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1. PLoS ONE 2015, 10, e0125345. [Google Scholar] [CrossRef]
- Olivares, A.O.; Baker, T.A.; Sauer, R.T. Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Nat. Rev. Microbiol. 2016, 14, 33–44. [Google Scholar] [CrossRef]
- Frees, D.; Chastanet, A.; Qazi, S.; Sorensen, K.; Hill, P.; Msadek, T.; Ingmer, H. Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol. Microbiol. 2004, 54, 1445–1462. [Google Scholar] [CrossRef] [PubMed]
- Frees, D.; Gerth, U.; Ingmer, H. Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. Int. J. Med. Microbiol. 2014, 304, 142–149. [Google Scholar] [CrossRef]
- Carroll, P.; Faray-Kele, M.C.; Parish, T. Identifying vulnerable pathways in Mycobacterium tuberculosis by using a knockdown approach. Appl. Environ. Microbiol. 2011, 77, 5040–5043. [Google Scholar] [CrossRef] [PubMed]
- Raju, R.M.; Unnikrishnan, M.; Rubin, D.H.; Krishnamoorthy, V.; Kandror, O.; Akopian, T.N.; Goldberg, A.L.; Rubin, E.J. Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. PLoS Pathog. 2012, 8, e1002511. [Google Scholar] [CrossRef]
- Sassetti, C.M.; Boyd, D.H.; Rubin, E.J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 2003, 48, 77–84. [Google Scholar] [CrossRef]
- Singh, L.K.; Dhasmana, N.; Sajid, A.; Kumar, P.; Bhaduri, A.; Bharadwaj, M.; Gandotra, S.; Kalia, V.C.; Das, T.K.; Goel, A.K.; et al. clpC operon regulates cell architecture and sporulation in Bacillus anthracis. Environ. Microbiol. 2015, 17, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Y.; Wang, C.; Wang, W.X.; Han, L.M.; Zhang, C.; Yu, J.Y.; Chen, W.; Hu, C.M. ApoE Mimetic Peptide COG1410 Exhibits Strong Additive Interaction with Antibiotics against Mycobacterium smegmatis. Infect. Drug Resist. 2023, 16, 1801–1812. [Google Scholar] [CrossRef]
- Zanfardino, A.; Bosso, A.; Gallo, G.; Pistorio, V.; Di Napoli, M.; Gaglione, R.; Dell’Olmo, E.; Varcamonti, M.; Notomista, E.; Arciello, A.; et al. Human apolipoprotein E as a reservoir of cryptic bioactive peptides: The case of ApoE 133-167. J. Pept. Sci. 2018, 24, e3095. [Google Scholar] [CrossRef]
- Wang, C.Q.; Yang, C.S.; Yang, Y.; Pan, F.; He, L.Y.; Wang, A.M. An apolipoprotein E mimetic peptide with activities against multidrug-resistant bacteria and immunomodulatory effects. J. Pept. Sci. 2013, 19, 745–750. [Google Scholar] [CrossRef]
- Pane, K.; Sgambati, V.; Zanfardino, A.; Smaldone, G.; Cafaro, V.; Angrisano, T.; Pedone, E.; Di Gaetano, S.; Capasso, D.; Haney, E.F.; et al. A new cryptic cationic antimicrobial peptide from human apolipoprotein E with antibacterial activity and immunomodulatory effects on human cells. FEBS J. 2016, 283, 2115–2131. [Google Scholar] [CrossRef]
- Puthia, M.; Marzinek, J.K.; Petruk, G.; Erturk Bergdahl, G.; Bond, P.J.; Petrlova, J. Antibacterial and Anti-Inflammatory Effects of Apolipoprotein E. Biomedicines 2022, 10, 1430. [Google Scholar] [CrossRef] [PubMed]
- Petruk, G.; Elven, M.; Hartman, E.; Davoudi, M.; Schmidtchen, A.; Puthia, M.; Petrlova, J. The role of full-length apoE in clearance of Gram-negative bacteria and their endotoxins. J. Lipid Res. 2021, 62, 100086. [Google Scholar] [CrossRef] [PubMed]
- Laskowitz, D.T.; McKenna, S.E.; Song, P.; Wang, H.; Durham, L.; Yeung, N.; Christensen, D.; Vitek, M.P. COG1410, a novel apolipoprotein E-based peptide, improves functional recovery in a murine model of traumatic brain injury. J. Neurotrauma 2007, 24, 1093–1107. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, F.W.; Wang, W.X.; Zhao, Y.Y.; Sun, S.Y.; Yu, J.H.; Vitek, M.P.; Li, G.F.; Ma, R.; Wang, S.; et al. Apolipoprotein E mimetic peptide COG1410 combats pandrug-resistant Acinetobacter baumannii. Front. Microbiol. 2022, 13, 934765. [Google Scholar] [CrossRef]
- Bai, J.-C.; Chi, M.-Z.; Hu, Y.-W.; Hao, M.; Hao, X.-L. Construction and Biological Characteristics of ClpC and ClpX Knock-down Strains in Mycobacterium smegmatis. China Biotechnol. 2021, 41, 13–22. [Google Scholar]
- Ramón-García, S.; Mikut, R.; Ng, C.; Ruden, S.; Volkmer, R.; Reischl, M.; Hilpert, K.; Thompson, C.J. Targeting Mycobacterium tuberculosis and other microbial pathogens using improved synthetic antibacterial peptides. Antimicrob. Agents Chemother. 2013, 57, 2295–2303. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, N.A.; Beare, J.E.; Tan, A.A.; Vitek, M.P.; McKenna, S.E.; Hoane, M.R. COG1410, an apolipoprotein E-based peptide, improves cognitive performance and reduces cortical loss following moderate fluid percussion injury in the rat. Behav. Brain Res. 2010, 214, 395–401. [Google Scholar] [CrossRef]
- Xue, Y.; Gu, M.; Chen, C.; Yao, Y.; Li, Y.; Weng, G.; Gu, Y. Apolipoprotein E mimetic peptide COG1410 alleviates blood-brain barrier injury in a rat model of ischemic stroke. Mol. Med. Rep. 2023, 27, 85. [Google Scholar] [CrossRef]
- Christensen, D.J.; Ohkubo, N.; Oddo, J.; Van Kanegan, M.J.; Neil, J.; Li, F.; Colton, C.A.; Vitek, M.P. Apolipoprotein E and peptide mimetics modulate inflammation by binding the SET protein and activating protein phosphatase 2A. J. Immunol. 2011, 186, 2535–2542. [Google Scholar] [CrossRef]
- Schmitt, E.K.; Riwanto, M.; Sambandamurthy, V.; Roggo, S.; Miault, C.; Zwingelstein, C.; Krastel, P.; Noble, C.; Beer, D.; Rao, S.P.; et al. The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angew. Chem. Int. Ed. 2011, 50, 5889–5891. [Google Scholar] [CrossRef]
- Gavrish, E.; Sit, C.S.; Cao, S.; Kandror, O.; Spoering, A.; Peoples, A.; Ling, L.; Fetterman, A.; Hughes, D.; Bissell, A.; et al. Lassomycin, a ribosomally synthesized cyclic peptide, kills mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem. Biol. 2014, 21, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Choules, M.P.; Wolf, N.M.; Lee, H.; Anderson, J.R.; Grzelak, E.M.; Wang, Y.; Ma, R.; Gao, W.; McAlpine, J.B.; Jin, Y.Y.; et al. Rufomycin Targets ClpC1 Proteolysis in Mycobacterium tuberculosis and M. abscessus. Antimicrob. Agents Chemother. 2019, 63, e02204-18. [Google Scholar] [CrossRef] [PubMed]
- Taylor, G.; Cui, H.; Leodolter, J.; Giese, C.; Weber-Ban, E. ClpC2 protects mycobacteria against a natural antibiotic targeting ClpC1-dependent protein degradation. Commun. Biol. 2023, 6, 301. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.; Hernandez-Alicea, L.; Vass, R.H.; Chien, P. A Phosphosignaling Adaptor Primes the AAA+ Protease ClpXP to Drive Cell Cycle-Regulated Proteolysis. Mol. Cell 2015, 59, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Kirstein, J.; Schlothauer, T.; Dougan, D.A.; Lilie, H.; Tischendorf, G.; Mogk, A.; Bukau, B.; Turgay, K. Adaptor protein controlled oligomerization activates the AAA+ protein ClpC. EMBO J. 2006, 25, 1481–1491. [Google Scholar] [CrossRef] [PubMed]
- Morreale, F.E.; Kleine, S.; Leodolter, J.; Junker, S.; Hoi, D.M.; Ovchinnikov, S.; Okun, A.; Kley, J.; Kurzbauer, R.; Junk, L.; et al. BacPROTACs mediate targeted protein degradation in bacteria. Cell 2022, 185, 2338–2353.e18. [Google Scholar] [CrossRef] [PubMed]
- Parish, T. Electroporation of Mycobacteria. In Mycobacteria Protocols; Parish, T., Kumar, A., Eds.; Springer: New York, NY, USA, 2021; pp. 273–284. [Google Scholar] [CrossRef]
- Twining, S.S. Fluorescein isothiocyanate-labeled casein assay for proteolytic enzymes. Anal. Biochem. 1984, 143, 30–34. [Google Scholar] [CrossRef]
- Carroll, P.; Schreuder, L.J.; Muwanguzi-Karugaba, J.; Wiles, S.; Robertson, B.D.; Ripoll, J.; Parish, T. Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. PLoS ONE 2010, 5, e9823. [Google Scholar] [CrossRef]
Strains | MIC (µg/mL) | MBC (µg/mL) |
---|---|---|
WT | 16 | 32 |
30g | 16 | 32 |
35g | 256 | >256 |
35g/pSMT3 | 256 | >256 |
35g/pSMT3-ClpC | 16 | 64 |
35g/pSMT3-ClpC (S437P) | 256 | >256 |
clpC (KD) | >256 | >256 |
clpC (KD)/pSMT3 | >256 | >256 |
clpC (KD)/pSMT3-ClpC | 8 | 16 |
clpC (KD)/pSMT3-ClpC (S437P) | >256 | >256 |
WT/pSMT3 | 16 | 32 |
WT/pSMT3-ClpC | 16 | 32 |
Peptides | WT | 35g | clpC (KD) | Sequences | Sources |
---|---|---|---|---|---|
COG1410 | 16 | 256 | 256 | AS(Aib)LRKL(Aib)KRLL | [31] |
ApoE23 | 128 | >128 | >128 | LRKLRKRLVRLASHLRKLRKRLL | [35] |
COG133 | >256 | >256 | >256 | LRVRLASHLRKLRKRLL | [28] |
antiTB_1026 | 32 | 256 | >256 | WKWLKKWIK | [34] |
antiTB_1080 | 32 | 128 | >256 | IRMRIRVLL | [34] |
Antibiotics | WT | 35g | clpC (KD) |
---|---|---|---|
azithromycin | 2 | 2 | 2 |
amikacin | 0.5 | 0.5 | 0.5 |
linezolid | 1 | 1 | 1 |
ciprofloxacin | 0.5 | 0.5 | 0.5 |
cefoxitin | 16 | 16 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Ren, Y.-Y.; Han, L.-M.; Yi, P.-C.; Wang, W.-X.; Zhang, C.-Y.; Chen, X.-Z.; Chi, M.-Z.; Wang, A.; Chen, W.; et al. ApoE Mimetic Peptide COG1410 Kills Mycobacterium smegmatis via Directly Interfering ClpC’s ATPase Activity. Antibiotics 2024, 13, 278. https://doi.org/10.3390/antibiotics13030278
Wang C, Ren Y-Y, Han L-M, Yi P-C, Wang W-X, Zhang C-Y, Chen X-Z, Chi M-Z, Wang A, Chen W, et al. ApoE Mimetic Peptide COG1410 Kills Mycobacterium smegmatis via Directly Interfering ClpC’s ATPase Activity. Antibiotics. 2024; 13(3):278. https://doi.org/10.3390/antibiotics13030278
Chicago/Turabian StyleWang, Chun, Yun-Yao Ren, Li-Mei Han, Peng-Cheng Yi, Wei-Xiao Wang, Cai-Yun Zhang, Xiu-Zhen Chen, Ming-Zhe Chi, Apeng Wang, Wei Chen, and et al. 2024. "ApoE Mimetic Peptide COG1410 Kills Mycobacterium smegmatis via Directly Interfering ClpC’s ATPase Activity" Antibiotics 13, no. 3: 278. https://doi.org/10.3390/antibiotics13030278
APA StyleWang, C., Ren, Y. -Y., Han, L. -M., Yi, P. -C., Wang, W. -X., Zhang, C. -Y., Chen, X. -Z., Chi, M. -Z., Wang, A., Chen, W., & Hu, C. -M. (2024). ApoE Mimetic Peptide COG1410 Kills Mycobacterium smegmatis via Directly Interfering ClpC’s ATPase Activity. Antibiotics, 13(3), 278. https://doi.org/10.3390/antibiotics13030278