Comparative Pharmacokinetics of Gentamicin C1, C1a and C2 in Healthy and Infected Piglets
Abstract
:1. Introduction
2. Results
2.1. Confirmation of Infection
2.2. Determination of Plasma Gentamicin Concentrations Using Validated LC/MS
2.3. Pharmacokinetic Analysis
2.4. PK/PD Analysis
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Chemicals and Reagents
5.2. Bacterial Culture and Confirmation of Infection
5.3. Animal Experimental Design
5.4. Drug Administration and Sample Collection
5.5. Liquid Chromatography/Mass Spectrometry Analysis
5.6. Pharmacokinetic Study
5.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Isoherranen, N.; Lavy, E.; Soback, S. Pharmacokinetics of gentamicin C1, C1a, and C2 in beagles after a single intravenous dose. Antimicrob. Agents Chemother. 2000, 44, 1443–1447. [Google Scholar] [CrossRef] [PubMed]
- Steinman, A.; Isoherranen, N.; Ashoach, O.; Soback, S. Pharmacokinetics of gentamicin C1, C1a and C2 in horses after single intravenous dose. Equine Vet. J. 2002, 34, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, H.J.; Bickford, S.M.; Kohn, F.S. Comparative in vitro activity of gentamicin and other antibiotics against bacteria isolated from clinical samples from dogs, cats, horses and cattle. Vet. Med. Small. Anim. Clin. 1975, 70, 1218–1222. [Google Scholar] [PubMed]
- Serio, A.W.; Keepers, T.; Andrews, L.; Krause, K.M. Aminoglycoside revival: Review of a historically important class of antimicrobials undergoing rejuvenation. EcoSal Plus 2018, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Taber, H.W.; Mueller, J.P.; Miller, P.F.; Arrow, A.S. Bacterial uptake of aminoglycoside antibiotics. Microbiol. Rev. 1987, 51, 439–457. [Google Scholar] [CrossRef] [PubMed]
- Ying, L.; Zhu, H.; Shoji, S.; Fredrick, K. Roles of specific aminoglycoside-ribosome interactions in the inhibition of translation. RNA 2019, 25, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Kohlhepp, S.J.; Loveless, M.O.; Kohnen, P.W.; Houghton, D.C.; Bennett, W.M.; Gilbert, D.N. Nephrotoxicity of the constituents of gentamicin complex. J. Infect. Dis. 1984, 149, 605–614. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, M.E.; Song, Y.; Greenhouse, R.; Lin, R.; Perez, A.; Atkinson, P.J.; MacDonald, J.P.; Siddiqui, Z.; Lagasca, D.; Comstock, K.; et al. Dissociating antibacterial from ototoxic effects of gentamicin C-subtypes. Proc. Natl. Acad. Sci. USA 2020, 117, 32423–32432. [Google Scholar] [CrossRef] [PubMed]
- Bulman, Z.P.; Cirz, R.; Hildebrandt, D.; Kane, T.; Rosario, Z.; Wlasichuk, K.; Park, M.; Andrews, L.D. Unraveling the gentamicin drug product complexity reveals variation in microbiological activities and nephrotoxicity. Antimicrob. Agents Chemother. 2020, 64, e00533-20. [Google Scholar] [CrossRef] [PubMed]
- Abu-Basha, E.A.; Al-Shunnaq, A.F.; Gehring, R. Pharmacokinetics of gentamicin C1, C1a, C2 and C2a in broiler chickens after IV, IM, SC and oral administration. J. Bioequiv. Availab. 2013, 5, 129–135. [Google Scholar] [CrossRef]
- Sun, X.; Yang, Y.; Tian, Q.; Shang, D.; Xing, J.; Zhai, Y. Determination of gentamicin C components in fish tissues through SPE-Hypercarb-HPLC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1093–1094, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Filazi, A.; Şireli, U.T.; Pehlivanlar-Onen, S.; Cadirci, O.; Aksoy, A. Comparative pharmacokinetics of gentamicin in laying hens. Kafkas Univ. Vet. Fak. Derg. 2013, 19, 495–498. [Google Scholar]
- Jernigan, A.D.; Hatch, R.C.; Wilson, R.C.; Brown, J.; Tuler, S.M. Pharmacokinetics of gentamicin in cats given Escherichia coli endotoxin. Am. J. Vet. Res. 1988, 49, 603–607. [Google Scholar] [PubMed]
- Giroux, D.; Sirois, G.; Martineau, G.P. Gentamicin pharmacokinetics in newborn and 42-day-old male piglets. J. Vet. Pharmacol. Ther. 1995, 18, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A.; Riviere, J.E.; Coppoc, G.L.; Hinsman, E.J.; Carlton, W.W.; Steckel, R.R. Single intravenous and multiple intramuscular dose pharmacokinetics and tissue residue profile of gentamicin in sheep. Am. J. Vet. Res. 1985, 46, 69–74. [Google Scholar] [PubMed]
- Clarke, C.R.; Short, C.R.; Hsu, R.C.; Baggot, J.D. Pharmacokinetics of gentamicin in the calf: Developmental changes. Am. J. Vet. Res. 1985, 46, 2461–2466. [Google Scholar] [PubMed]
- Garg, S.K.; Verma, S.P.; Garg, B.D. Disposition kinetics of gentamicin in buffalo calves (Bubalus bubalis) following single intravenous administration. J. Vet. Pharmacol. Ther. 1991, 14, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Renton, K.W. Regulation of drug metabolism and disposition during inflammation and infection Expert. Opin. Drug. Metab. Toxicol. 2005, 1, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Eddicks, M.; Eddicks, L.; Stadler, J.; Hermanns, W.; Ritzmann, M. The porcine respiratory disease complex (PRDC)—A clinical review. Tierarztl. Prax. Ausg. G Grosstiere Nutztiere 2021, 49, 120–132. [Google Scholar] [PubMed]
- Cheong, Y.; Oh, C.; Lee, K.; Cho, K.H. Survey of porcine respiratory disease complex-associated pathogens among commercial pig farms in Korea via oral fluid method. J. Vet. Sci. 2017, 18, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Asín-Prieto, E.; Rodríguez-Gascón, A.; Isla, A. Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J. Infect. Chemother. 2015, 21, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.N.; Papich, M.G.; Drusano, G.L. Dosing regimen matters: The importance of early intervention and rapid attainment of the pharmacokinetic/pharmacodynamic target. Antimicrob. Agents Chemother. 2012, 56, 2795–2805. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, J.W.; Oh, S.I.; So, B.; Kim, W.I.; Kim, H.Y. Characterisation of Pasteurella multocida isolates from pigs with pneumonia in Korea. BMC Vet. Res. 2019, 15, 119. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.H.; Moon, D.C.; Lee, Y.J.; Hyun, B.H.; Lim, S.K. Antimicrobial resistance of Pasteurella multocida strains isolated from pigs between 2010 and 2016. Vet. Rec. 2018, 5, e000293. [Google Scholar] [CrossRef] [PubMed]
- Ensley, L.E.; Hennessey, P.W.; Houdeshell, J.W. Gentamicin for the prevention and treatment of colibacillosis in piglets. Vet. Med. Small Anim. Clin. 1979, 74, 89–92. [Google Scholar] [PubMed]
- Martinez, M.N.; Greene, J.; Kenna, L.; Kissell, L.; Kuhn, M. The impact of infection and inflammation on drug metabolism, active transport, and systemic drug concentrations in veterinary species. Drug. Metab. Dispos. 2020, 48, 631–644. [Google Scholar] [CrossRef] [PubMed]
- Stranieri, I.; Kanunfre, K.A.; Rodrigues, J.C.; Yamamoto, L.; Nadaf, M.I.V.; Palmeira, P.; Okay, T.S. Assessment and comparison of bacterial load levels determined by quantitative amplifications in blood culture-positive and negative neonatal sepsis. Rev. Inst. Med. Trop. São Paulo 2018, 25, e61. [Google Scholar] [CrossRef]
- Klebanov, N. Genetic Predisposition to Infectious Disease. Cureus 2018, 10, e3210. [Google Scholar] [CrossRef]
- Sly, P.D.; Trottier, B.; Ikeda-Araki, A.; Vilcins, D. Environmental Impacts on Infectious Disease: A Literature View of Epidemiological Evidence. Ann. Glob. Health 2022, 88, 91. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Bai, X.; Tang, B.; Yang, Y.; Wang, X.; Zhu, H.; Luo, X.; Yan, H.; Jia, H.; Liu, M.; et al. Primary characterization of the immune response in pigs infected with Trichinella spiralis. Vet. Res. 2020, 51, 17. [Google Scholar] [CrossRef] [PubMed]
- Wells, K.; Hamede, R.K.; Jones, M.E.; Hohenlohe, P.A.; Storfer, A.; McCallum, H.I. Individual and temporal variation in pathogen load predicts long-term impacts of an emerging infectious disease. Ecology 2019, 100, e02613. [Google Scholar] [CrossRef] [PubMed]
- Araujo, P. Key aspects of analytical method validation and linearity evaluation. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 2224–2234. [Google Scholar] [CrossRef] [PubMed]
- Pum, J. A practical guide to validation and verification of analytical methods in the clinical laboratory. Adv. Clin. Chem. 2019, 90, 215–281. [Google Scholar] [PubMed]
- Uhrovčík, J. Strategy for determination of LOD and LOQ values–Some basic aspects. Talanta 2014, 119, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.A.; Beaumont, K.; Maurer, T.S.; Di, L. Volume of distribution in drug design. J. Med. Chem. 2015, 58, 5691–5698. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.; Nylandsted, J. Plasma membrane integrity in health and disease: Significance and therapeutic potential. Cell Discov. 2021, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.B.; Abbas, M.A.; Park, J.; Tassew, D.D.; Park, S.C. Optimizing tylosin dosage for co-infection of Actinobacillus pleuropneumoniae and Pasteurella multocida in pigs using pharmacokinetic/pharmacodynamic modeling. Front. Pharmacol. 2023, 14, 1258403. [Google Scholar] [CrossRef] [PubMed]
- Schaller, A.; Djordjevic, S.P.; Eamens, G.J.; Forbes, W.A.; Kuhn, R.; Kuhnert, P.; Gottschalk, M.; Nicolet, J.; Frey, J. Identification and detection of Actinobacillus pleuropneumoniae by PCR based on the gene apxIVA. Vet. Microbiol. 2001, 79, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, A.G.; Bakry, N.R.; El-Demerdash, A.S. Virulence attitude estimation of Pasteurella multocida isolates in embryonated chicken eggs. Arch. Microbiol. 2021, 203, 6153–6162. [Google Scholar] [CrossRef] [PubMed]
- List of the Names, Pharmaceutical Forms, Strengths of the Veterinary Medicinal Products, Animal Species, Applicants/Marketing Authorisation Holders in the Member States. Available online: https://www.ema.europa.eu/en/documents/referral/gentamicin-article-35-veterinary-medicinal-products-containing-gentamicin-presented-solutions-injection-be-administered-horses-annex-i-ii-iii_en.pdf (accessed on 4 October 2015).
- Bijleveld, Y.; de Haan, T.R.; Toersche, J.; Jorjani, S.; van der Lee, J.; Groenendaal, F.; Dijk, P.; van Heijst, A.; Gavilanes, A.W.; de Jonge, R.; et al. A simple quantitative method analysing amikacin, gentamicin, and vancomycin levels in human newborn plasma using ion-pair liquid chromatography/tandem mass spectrometry and its applicability to a clinical study. J. Chromatogr. B 2014, 951, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, A.L.A.; da Silva, A.C.C.; Lizot, L.D.L.F.; Schneider, A.; Meireles, Y.F.; Hahn, R.Z.; Pagnussat, L.R.; Nonnenmacher, J.L.; Hahn, S.R.; Linden, R. Development and validation of an assay for the measurement of gentamicin concentrations in dried blood spots using UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2022, 208, 114448. [Google Scholar]
Intra-Assay | Inter-Assay | |||||
---|---|---|---|---|---|---|
C1 | C1a | C2 | C1 | C1a | C2 | |
Slope | 0.928 | 0.938 | 0.986 | 0.996 | 0.970 | 1.011 |
Intercept | 0.397 | 0.297 | −0.156 | 0.229 | 0.267 | 0.098 |
R2 | 0.999 | 0.999 | 0.999 | 1.000 | 0.998 | 1.000 |
LOD | 0.023 | 0.016 | 0.095 | 0.008 | 0.081 | 0.111 |
LOQ | 0.076 | 0.054 | 0.313 | 0.026 | 0.267 | 0.365 |
Gentamicin Component | Nominal Concentration (μg/mL) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.5 | 1 | 2 | 5 | 10 | 20 | 50 | |||
C1 | Intra-assay | Mean concentration (n = 6) | 0.12 | 0.22 | 0.58 | 1.09 | 2.06 | 5.54 | 10.69 | 19.80 | 46.20 |
Precision (RSD, %) | 1.00 | 3.15 | 3.26 | 4.89 | 7.48 | 8.06 | 9.57 | 4.54 | 10.91 | ||
Accuracy (%) | 115.35 | 110.21 | 116.68 | 108.73 | 103.00 | 110.75 | 106.88 | 98.99 | 92.41 | ||
Inter-assay | Mean concentration (n = 6) | 0.11 | 0.23 | 0.56 | 1.04 | 1.96 | 5.42 | 9.99 | 20.50 | 48.12 | |
Precision (RSD, %) | 10.50 | 7.71 | 8.13 | 2.42 | 1.73 | 10.73 | 1.61 | 0.57 | 4.77 | ||
Accuracy (%) | 111.52 | 113.64 | 112.53 | 103.59 | 98.03 | 108.49 | 99.94 | 102.50 | 96.24 | ||
C1a | Intra-assay | Mean concentration (n = 6) | 0.12 | 0.22 | 0.54 | 1.09 | 2.00 | 5.14 | 10.94 | 19.39 | 46.81 |
Precision (RSD, %) | 4.82 | 2.75 | 13.03 | 5.66 | 13.05 | 0.43 | 6.08 | 7.58 | 3.89 | ||
Accuracy (%) | 117.40 | 109.06 | 107.23 | 109.18 | 99.89 | 102.82 | 109.45 | 96.96 | 93.61 | ||
Inter-assay | Mean concentration (n = 6) | 0.12 | 0.25 | 0.52 | 1.17 | 1.92 | 5.20 | 10.14 | 21.40 | 48.05 | |
Precision (RSD, %) | 13.79 | 13.05 | 3.36 | 18.67 | 3.28 | 1.05 | 0.96 | 5.51 | 2.66 | ||
Accuracy (%) | 118.90 | 123.28 | 103.84 | 117.31 | 96.17 | 104.05 | 101.38 | 107.00 | 96.11 | ||
C2 | Intra-assay | Mean concentration (n = 6) | 0.12 | 0.23 | 0.49 | 1.27 | 1.72 | 4.83 | 9.35 | 18.19 | 49.73 |
Precision (RSD, %) | 10.85 | 16.32 | 1.89 | 10.32 | 5.70 | 2.22 | 4.93 | 8.95 | 4.36 | ||
Accuracy (%) | 118.07 | 116.24 | 98.01 | 127.18 | 86.07 | 96.59 | 93.48 | 90.95 | 99.47 | ||
Inter-assay | Mean concentration (n = 6) | 0.11 | 0.21 | 0.48 | 1.19 | 2.29 | 5.01 | 10.37 | 20.50 | 50.56 | |
Precision (RSD, %) | 13.87 | 2.07 | 3.24 | 4.75 | 11.47 | 0.92 | 4.02 | 1.99 | 0.73 | ||
Accuracy (%) | 114.40 | 103.82 | 95.83 | 118.85 | 114.46 | 100.12 | 103.71 | 102.48 | 101.11 |
Parameter | C1 | C1a | C2 | |||
---|---|---|---|---|---|---|
Healthy | Infected | Healthy | Infected | Healthy | Infected | |
T1/2 (h) | 24.94 ± 7.32 ** | 11.94 ± 0.08 | 21.72 ± 3.06 * | 14.38 ± 3.26 | 17.34 ± 2.75 * | 13.18 ± 2.82 |
Tmax (h) | 0.38 ± 0.13 | 0.25 ± 0.00 | 0.38 ± 0.13 | 0.38 ± 0.13 | 0.38 ± 0.13 | 0.25 ± 0.00 |
Cmax (μg/mL) | 23.35 ± 2.83 * | 18.70 ± 0.41 | 31.10 ± 2.59 | 29.01 ± 5.33 | 39.30 ± 4.67 * | 32.88 ± 1.13 |
AUC24h (h∙μg/mL) | 68.77 ± 4.82 ** | 51.65 ± 1.19 | 115.19 ± 0.51 *** | 83.32 ± 8.62 | 128.72 ± 6.25 ** | 94.82 ± 19.52 |
Vz/F (mL/kg) | 2928.66 ± 338.05 * | 5589.60 ± 2374.77 | 1756.42 ± 430.35 ** | 3449.78 ± 919.74 | 1357.81 ± 280.39 * | 2739.07 ± 845.51 |
CL/F (mL/h/kg) | 139.97 ± 11.43 | 185.38 ± 178.25 | 81.94 ± 0.67 ** | 110.80 ± 11.39 | 74.93 ± 2.86 * | 102.85 ± 20.84 |
MRT (h) | 6.86 ± 0.63 | 6.19 ± 1.13 | 8.04 ± 0.72 ** | 6.66 ± 0.36 | 7.39 ± 0.30 * | 6.70 ± 0.36 |
Status | Component | % of Total Cmax | % of Total AUC24h |
---|---|---|---|
Healthy | C1 | 24.9 | 22.0 |
C1a | 33.2 | 36.8 | |
C2 | 41.9 | 41.2 | |
Total | 100.0 | 100.0 | |
Infected | C1 | 23.2 | 22.5 |
C1a | 36.0 | 36.3 | |
C2 | 40.8 | 41.3 | |
Total | 100.0 | 100.0 |
Status | Total Cmax (μg/mL) | Total AUC24h (h·μg/mL) | MIC (μg/mL) | Cmax/MIC | AUC24h/MIC | MIC Source a |
---|---|---|---|---|---|---|
Healthy | 93.8 | 312.7 | MIC50 = 2 | 46.9 | 156.3 | [23,24] |
MIC90 = 4 | 23.4 | 78.1 | ||||
Infected | 80.6 | 229.8 | MIC50 = 2 | 40.3 | 114.9 | |
MIC90 = 4 | 20.1 | 57.4 |
Time (min) | A a (%) | B b (%) |
---|---|---|
0 | 80 | 20 |
1 | 5 | 95 |
1.3 | 5 | 95 |
4 | 80 | 20 |
4.1 | 80 | 20 |
5 | 80 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.-Y.; Kim, T.-W.; Awji, E.G.; Lee, E.-B.; Park, S.-C. Comparative Pharmacokinetics of Gentamicin C1, C1a and C2 in Healthy and Infected Piglets. Antibiotics 2024, 13, 372. https://doi.org/10.3390/antibiotics13040372
Kim E-Y, Kim T-W, Awji EG, Lee E-B, Park S-C. Comparative Pharmacokinetics of Gentamicin C1, C1a and C2 in Healthy and Infected Piglets. Antibiotics. 2024; 13(4):372. https://doi.org/10.3390/antibiotics13040372
Chicago/Turabian StyleKim, Eun-Young, Tae-Won Kim, Elias Gebru Awji, Eon-Bee Lee, and Seung-Chun Park. 2024. "Comparative Pharmacokinetics of Gentamicin C1, C1a and C2 in Healthy and Infected Piglets" Antibiotics 13, no. 4: 372. https://doi.org/10.3390/antibiotics13040372
APA StyleKim, E. -Y., Kim, T. -W., Awji, E. G., Lee, E. -B., & Park, S. -C. (2024). Comparative Pharmacokinetics of Gentamicin C1, C1a and C2 in Healthy and Infected Piglets. Antibiotics, 13(4), 372. https://doi.org/10.3390/antibiotics13040372