Halicin: A New Horizon in Antibacterial Therapy against Veterinary Pathogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Antimicrobial Susceptibility Test
2.3. The Time-Kill Assays
2.4. Determination of the Post-Antibiotic Effect (PAE) and Post-Antibiotic Sub-MIC Effect (PA-SME)
2.5. The Minimum Preventable Concentration (MPC) and the Mutant Selection Window (MSW) Determination
2.6. Induction of Halicin-Resistant Mutant Strains
2.7. Acute Toxicity Test of Mice Treated with Halicin
2.8. In Vivo Toxicity Assessment
2.9. Mouse Pneumonia Infection Model
2.10. Statistical Analysis
3. Results and Discussion
3.1. Halicin Exhibited Potent Antibacterial Activity against Animal Pathogens
3.2. The Antibacterial Characteristics of Halicin
3.3. The Resistance Induction Profile of Halicin
3.4. Acute Toxicity Determination of Halicin in Mice
3.5. In Vivo Toxicity Assessment of Halicin
3.6. In Vivo Antimicrobial Activity Study of Halicin
3.7. Clinical Significance, Limitations, and Future Prospects of Halicin
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef]
- Mitscher, L.A. Coevolution: Mankind and microbes. J. Nat. Prod. 2008, 71, 497–509. [Google Scholar] [CrossRef]
- Kupferschmidt, K. Resistance fighters. Science 2016, 352, 758–761. [Google Scholar] [CrossRef]
- Serna, C.; Gonzalez-Zorn, B. Antimicrobial resistance and one health. Rev. Esp. Quimioter. 2022, 35 (Suppl. S3), 37–40. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, H.; Xu, J.; Wang, Y.; Zhang, Q.; Walsh, T.R.; Shao, B.; Wu, C.; Hu, Y.; Yang, L. Anthropogenic and environmental factors associated with high incidence of mcr-1 carriage in humans across China. Nat. Microbiol. 2018, 3, 1054–1062. [Google Scholar] [CrossRef]
- Archambault, M.; Harel, J.; Gouré, J.; Tremblay, Y.D.N.; Jacques, M. Antimicrobial susceptibilities and resistance genes of Canadian isolates of Actinobacillus pleuropneumoniae. Microb. Drug Resist. 2012, 18, 198–206. [Google Scholar] [CrossRef]
- Pereira, M.F.; Rossi, C.C.; Seide, L.E.; Martins Filho, S.; de Melo Dolinski, C.; Bazzolli, D.M.S. Antimicrobial resistance, biofilm formation and virulence reveal Actinobacillus pleuropneumoniae strains’ pathogenicity complexity. Res. Vet. Sci. 2018, 118, 498–501. [Google Scholar] [CrossRef]
- Burch, D.G.S.; Sperling, D. Amoxicillin-current use in swine medicine. J. Vet. Pharmacol. Ther. 2018, 41, 356–368. [Google Scholar] [CrossRef]
- Yoo, A.N.; Cha, S.B.; Shin, M.-K.; Won, H.K.; Kim, E.H.; Choi, H.W.; Yoo, H.S. Serotypes and antimicrobial resistance patterns of the recent Korean Actinobacillus pleuropneumoniae isolates. Vet. Rec. 2014, 174, 223. [Google Scholar] [CrossRef]
- Kahlmeter, G.; Brown, D.F.J.; Goldstein, F.W.; MacGowan, A.P.; Mouton, J.W.; Osterlund, A.; Rodloff, A.; Steinbakk, M.; Urbaskova, P.; Vatopoulos, A. European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. J. Antimicrob. Chemother. 2003, 52, 145–148. [Google Scholar] [CrossRef]
- Walker, A.S.; Pishchany, G.; Clardy, J. Parsing molecules for drug discovery. Biochemistry 2020, 59, 1645–1646. [Google Scholar] [CrossRef]
- Cha, Y.; Erez, T.; Reynolds, I.J.; Kumar, D.; Ross, J.; Koytiger, G.; Kusko, R.; Zeskind, B.; Risso, S.; Kagan, E.; et al. Drug repurposing from the perspective of pharmaceutical companies. Br. J. Pharmacol. 2018, 175, 168–180. [Google Scholar] [CrossRef]
- Masoudi-Sobhanzadeh, Y.; Omidi, Y.; Amanlou, M.; Masoudi-Nejad, A. Drug databases and their contributions to drug repurposing. Genomics 2020, 112, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackermann, Z.; et al. A deep learning approach to antibiotic discovery. Cell 2020, 181, 475–483. [Google Scholar] [CrossRef]
- Wahab, N.F.A.C.; Kannan, T.P.; Mahmood, Z.; Rahman, I.A.b.; Ismail, H. Genotoxicity assessment of biphasic calcium phosphate of modified porosity on human dental pulp cells using Ames and Comet assays. Toxicol. Vitr. 2018, 47, 207–212. [Google Scholar] [CrossRef]
- Lee, C.-R.; Lee, J.H.; Park, M.; Park, K.S.; Bae, I.K.; Kim, Y.B.; Cha, C.-J.; Jeong, B.C.; Lee, S.H. Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front. Cell. Infect. Microbiol. 2017, 7, 55. [Google Scholar] [CrossRef]
- Higashihira, S.; Simpson, S.J.; Morita, A.; Suryavanshi, J.R.; Arnold, C.J.; Natoli, R.M.; Greenfield, E.M. Halicin remains active against Staphylococcus aureus in biofilms grown on orthopaedically relevant substrates. Bone Jt. Res. 2024, 13, 101–109. [Google Scholar] [CrossRef]
- Jang, S.; Javadov, S. Inhibition of JNK aggravates the recovery of rat hearts after global ischemia: The role of mitochondrial JNK. PLoS ONE 2014, 9, e113526. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Yu, L.-R.; Abdelmegeed, M.A.; Gao, Y.; Banerjee, A.; Song, B.-J. Critical role of c-Jun N-terminal protein kinase in promoting mitochondrial dysfunction and acute liver injury. Redox Biol. 2015, 6, 552–564. [Google Scholar] [CrossRef]
- Farha, M.A.; Brown, E.D. Unconventional screening approaches for antibiotic discovery. Ann. N. Y. Acad. Sci. 2015, 1354, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Huang, A.; Gu, Y.; Li, J.; Huang, L.; Wang, X.; Tao, Y.; Liu, Z.; Wu, C.; Yuan, Z.; et al. Rational use of danofloxacin for treatment of Mycoplasma gallisepticum in chickens based on the clinical breakpoint and lung microbiota shift. Antibiotics 2022, 11, 403. [Google Scholar] [CrossRef] [PubMed]
- Declercq, A. VET04. In Performance Standards for Antimicrobial Susceptibility Testing of Bacteria Isolated from Aquatic Animals; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; ISBN 978-1-68440-075-1. [Google Scholar]
- Xiao, X.; Sun, J.; Chen, Y.; Zou, M.; Zhao, D.-H.; Liu, Y.-H. Ex Vivo Pharmacokinetic and pharmacodynamic analysis of valnemulin against Mycoplasma gallisepticum S6 in Mycoplasma gallisepticum and Escherichia coli co-infected chickens. Vet. J. 2015, 204, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Yang, G.; Li, Y.; Mao, J.; Wang, S.; Zhang, N.; Liu, H.; Huang, X. Factorial design and post-antibiotic sub-MIC effects of linezolid combined with fosfomycin against vancomycin-resistant Enterococci. Ann. Transl. Med. 2022, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Saravolatz, L.D.; Pawlak, J.; Martin, H.; Saravolatz, S.; Johnson, L.; Wold, H.; Husbyn, M.; Olsen, W.M. Postantibiotic effect and postantibiotic sub-MIC effect of LTX-109 and mupirocin on Staphylococcus aureus blood isolates. Lett. Appl. Microbiol. 2017, 65, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Allen, G.P.; Deao, K.M.; Hill, S.A.; Schipelliti, S.M.; Tran, T. In vitro evaluation of antimicrobial resistance selection in Neisseria gonorrhoeae. Int. J. Antimicrob. Agents 2021, 58, 106417. [Google Scholar] [CrossRef] [PubMed]
- Díez-Aguilar, M.; Morosini, M.I.; Tedim, A.P.; Rodríguez, I.; Aktaş, Z.; Cantón, R. Antimicrobial activity of fosfomycin-tobramycin combination against Pseudomonas aeruginosa isolates assessed by time-kill assays and mutant prevention concentrations. Antimicrob. Agents Chemother. 2015, 59, 6039–6045. [Google Scholar] [CrossRef] [PubMed]
- Zinner, S.H.; Alieva, K.N.; Golikova, M.V.; Strukova, E.N.; Portnoy, Y.A.; Firsov, A.A. Anti-mutant efficacy of antibiotic combinations: In vitro model studies with linezolid and daptomycin. J. Antimicrob. Chemother. 2021, 76, 1832–1839. [Google Scholar] [CrossRef] [PubMed]
- Organization for Economic Co-Operation and Development. OECD Guideline for Testing of Chemicals; Tests No.471: Bacterial Reverse Mutation Test; OECD Publishing: Paris, France, 1997; Available online: https://www.oecd.org/chemicalsafety/risk-assessment/1948418.pdf (accessed on 7 February 2023).
- De Mello Silva Oliveira, N.; Reis Resende, M.; Alexandre Morales, D.; De Ragão Umbuzeiro, G.; Boriollo, M.F.G. In vitro mutagenicity assay (Ames test) and phytochemical characterization of seeds oil of Helianthus annuus Linné (sunflower). Toxicol. Rep. 2016, 3, 733–739. [Google Scholar] [CrossRef]
- Qin, G.; Gao, Y.; Wen, P.; Liang, G.; Zhao, P.; Dong, B.; Tang, S.; Shekh, K. Evaluation of the genotoxicity and teratogenicity of xylan using different model approaches. Drug Chem. Toxicol. 2022, 45, 340–346. [Google Scholar] [CrossRef]
- Wu, D.; Wu, J.; Cheng, X.; Qian, J.; Du, R.; Tang, S.; Lian, Y.; Qiao, Y. Safety assessment of marigold flavonoids from marigold inflorescence residue. J. Ethnopharmacol. 2022, 297, 115520. [Google Scholar] [CrossRef]
- Organization for Economic Co-Operation and Development. OECD Guideline for Testing of Chemicals; Test No. 473: In Vitro Mammalian Chromosomal Aberration Test; OECD Publishing: Paris, France, 2016. [Google Scholar] [CrossRef]
- Han, Z.; Guo, J.; Meng, F.; Liao, H.; Deng, Y.; Huang, Y.; Lei, X.; Liang, C.; Han, R.; Yang, W. Genetic toxicology and safety pharmacological evaluation of forsythin. Evid. Based Complement. Altern. Med. 2021, 2021, 6610793. [Google Scholar] [CrossRef] [PubMed]
- Bao, C.T.; Xiao, J.M.; Liu, B.J.; Liu, J.F.; Zhu, R.N.; Jiang, P.; Li, L.; Langford, P.R.; Lei, L.C. Establishment and comparison of Actinobacillus pleuropneumoniae experimental infection model in mice and piglets. Microb. Pathog. 2019, 128, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I.; Hughes, D. Selection and transmission of antibiotic-resistant bacteria. Microbiol. Spectr. 2017, 5, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.; Andersson, D.I. Evolutionary trajectories to antibiotic resistance. Annu. Rev. Microbiol. 2017, 71, 579–596. [Google Scholar] [CrossRef] [PubMed]
- Escolà-Vergé, L.; Los-Arcos, I.; Almirante, B. New antibiotics for the treatment of infections by multidrug-resistant microorganisms. Med. Clin. 2020, 154, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Luo, M.; Wu, P.; Wu, S.; Lee, T.-Y.; Bai, C. Application of computational biology and artificial intelligence in drug design. Int. J. Mol. Sci. 2022, 23, 13568. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.C.S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S. Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci. 2019, 40, 592–604. [Google Scholar] [CrossRef]
- Cerchia, C.; Lavecchia, A. New avenues in artificial-intelligence-assisted drug discovery. Drug Discov. Today 2023, 28, 103516. [Google Scholar] [CrossRef] [PubMed]
- Vatansever, S.; Schlessinger, A.; Wacker, D.; Kaniskan, H.Ü.; Jin, J.; Zhou, M.-M.; Zhang, B. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med. Res. Rev. 2021, 41, 1427–1473. [Google Scholar] [CrossRef]
- Mullowney, M.W.; Duncan, K.R.; Elsayed, S.S.; Garg, N.; van der Hooft, J.J.J.; Martin, N.I.; Meijer, D.; Terlouw, B.R.; Biermann, F.; Blin, K.; et al. Artificial intelligence for natural product drug discovery. Nat. Rev. Drug Discov. 2023, 22, 895–916. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, Y.; Jiang, C.; Chang, Q.; Zhang, S.; Luo, T.; Zhang, B.; Jia, X.; Hung, M.C.; Dong, C.; et al. JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression. Nat. Med. 2017, 23, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y. Postantibiotic effects and postantibiotic sub-MIC effects of amoxicillin on Streptococcus gordonii and Streptococcus sanguis. J. Chemother. 2000, 12, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Odenholt-Tornqvist, I.; Löwdin, E.; Cars, O. Postantibiotic sub-MIC effects of vancomycin, roxithromycin, sparfloxacin, and amikacin. Antimicrob. Agents Chemother. 1992, 36, 1852–1858. [Google Scholar] [CrossRef] [PubMed]
- den Hollander, J.G.; Fuursted, K.; Verbrugh, H.A.; Mouton, J.W. Duration and clinical relevance of postantibiotic effect in relation to the dosing interval. Antimicrob. Agents Chemother. 1998, 42, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Odenholt, I.; Löwdin, E.; Cars, O. In vitro studies of the pharmacodynamics of teicoplanin against Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecium. Clin. Microbiol. Infect. Dis. 2003, 9, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.R.; Bajaksouzian, S.; Appelbaum, P.C. Telithromycin post-antibiotic and post-antibiotic sub-MIC effects for 10 gram-positive cocci. J. Antimicrob. Chemother. 2003, 52, 809–812. [Google Scholar] [CrossRef] [PubMed]
- Levinson, M.R.; Blondeau, J.M.; Rosenkrantz, W.S.; Plowgian, C.B. The in vitro antibacterial activity of the anthelmintic drug oxyclozanide against common small animal bacterial pathogens. Vet. Dermatol. 2019, 30, 314-e87. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.-J.; Mei, Q.; Ye, Y.; Li, H.-R.; Liu, B.; Li, J.-B. Validation of the mutant selection window hypothesis with fosfomycin against Escherichia coli and Pseudomonas aeruginosa: An in vitro and in vivo comparative study. J. Antibiot. 2017, 70, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Dorey, L.; Pelligand, L.; Cheng, Z.; Lees, P. Pharmacokinetic/pharmacodynamic integration and modelling of oxytetracycline for the porcine pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida. J. Vet. Pharmacol. Ther. 2017, 40, 505–516. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Globally Harmonized System of Classification and Labelling of Chemicals (GHS). 2023. Available online: https://unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev04/English/ST-SG-AC10-30-Rev4e.pdf (accessed on 4 March 2023).
- Mona, H.E.; Mohammad, A.A. The possible ameliorative effects of nitazoxanide against Schistosoma mansoni -induced biochemical insults in mice. Pharmacologia 2018. Available online: https://www.researchgate.net/publication/325455619 (accessed on 17 April 2024).
- OSHA. Cayman Chemicals Amikacin Safety Data Sheet. 2023. Available online: https://cdn.caymanchem.com/cdn/msds/15405m.pdf (accessed on 5 October 2023).
- OSHA. Cayman Chemicals Ofloxacin Safety Data Sheet. 2023. Available online: https://cdn.caymanchem.com/cdn/msds/22891m.pdf (accessed on 5 October 2023).
- Dong, Z.; Tang, S.-S.; Ma, X.-L.; Li, C.-H.; Tang, Z.-S.; Yang, Z.-H.; Zeng, J.-G. Preclinical safety evaluation of macleaya cordata extract: A re-Assessment of general toxicity and genotoxicity properties in rodents. Front. Pharmacol. 2022, 13, 980918. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yang, X.; Wang, L.; Huang, X. The chromatographic fingerprinting study and genotoxicity evaluation of aqueous extract from Cyclocarya paliurus Leaves. Toxicol. Res. 2024, 13, tfae007. [Google Scholar] [CrossRef] [PubMed]
- Ames, B.N.; Mccann, J.; Yamasaki, E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat. Res. 1975, 31, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Kasamoto, S.; Masumori, S.; Hayashi, M. In vivo micronucleus assay in mouse bone marrow and peripheral blood. Methods Mol. Biol. 2013, 1044, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Tang, S.-S.; Ma, X.-L.; Tan, B.; Tang, Z.-S.; Li, C.-H.; Yang, Z.-H.; Zeng, J.-G. Acute, chronic, and genotoxic studies on the protopine total alkaloids of the Macleaya cordata (Willd.) R. Br. in Rodents. Front. Pharmacol. 2022, 13, 987800. [Google Scholar] [CrossRef] [PubMed]
- Cantelli-Forti, G.; Aicardi, G.; Guerra, M.C.; Barbaro, A.M.; Biagi, G.L. Mutagenicity of a series of 25 nitroimidazoles and two nitrothiazoles in Salmonella typhimurium. Teratog. Carcinog. Mutagen. 1983, 3, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Fei, C.; Zhang, J.; Lin, Y.; Wang, X.; Zhang, K.; Zhang, L.; Zheng, W.; Wang, M.; Li, T.; Xiao, S.; et al. Safety evaluation of a triazine compound nitromezuril by assessing bacterial reverse mutation, sperm abnormalities, micronucleus and chromosomal aberration. Regul. Toxicol. Pharmacol. 2015, 71, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; She, P.F.; Li, Y.M.; Liu, S.S.; Li, Z.H.; Yang, Y.F.; Li, L.H.; Zhou, L.Y.; Wu, Y. Study on antibacterial effect of halicin (SU3327) against Enterococcus faecalis and Enterococcus faecium. Pathog. Dis. 2022, 80, ftac037. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; He, K.; Li, T.; Cui, S.; Tang, M.; Kang, S.; Ma, W.; Song, L. Mechanism and antibacterial activity of vine tea extract and dihydromyricetin against Staphylococcus aureus. Sci. Rep. 2020, 10, 21416. [Google Scholar] [CrossRef]
- Ding, H.; Bai, Y.; Luo, W.; Li, H.; Zhu, C.; Zhao, X.; Sun, H.; Wen, Y.; Zhang, W.; Zhang, S.; et al. Rhein kills Actinobacillus pleuropneumoniae, reduces biofilm formation, and effectively treats bacterial lung infections in mice. J. Med. Microbiol. 2024, 73, 001826. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Zhu, C.; Xia, X.; Qin, W.; Li, M.; Wang, T.; Chen, S.; Xu, Y.; Hang, B.; et al. Thymol kills bacteria, reduces biofilm formation, and protects mice against a fatal infection of Actinobacillus pleuropneumoniae strain L20. Vet. Microbiol. 2017, 203, 202–210. [Google Scholar] [CrossRef]
- Turner, P.V.; Brabb, T.; Pekow, C.; Vasbinder, M.A. Administration of substances to laboratory animals: Routes of administration and factors to consider. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 600–613. [Google Scholar] [PubMed]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic resistance: One health one world outlook. Front. Cell. Infect. Microbiol. 2021, 11, 771510. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Xiao, T.; Yang, H.; Chen, M.; Gao, Q.; Brummel, B.R.; Ding, Y.; Huigens, R.W. Design, synthesis and evaluation of halogenated phenazine antibacterial prodrugs targeting nitroreductase enzymes for activation. RSC Med. Chem. 2023, 14, 1472–1481. [Google Scholar] [CrossRef] [PubMed]
- Dattani, A.; Drammeh, I.; Mahmood, A.; Rahman, M.; Szular, J.; Wilkinson, S.R. Unraveling the antitrypanosomal mechanism of benznidazole and related 2-nitroimidazoles: From prodrug activation to DNA damage. Mol. Microbiol. 2021, 116, 674–689. [Google Scholar] [CrossRef]
- Pardeshi, K.A.; Kumar, T.A.; Ravikumar, G.; Shukla, M.; Kaul, G.; Chopra, S.; Chakrapani, H. Targeted antibacterial activity guided by bacteria-specific nitroreductase catalytic activation to produce ciprofloxacin. Bioconjug. Chem. 2019, 30, 751–759. [Google Scholar] [CrossRef]
Pathogenic Bacteria | MIC90 (µg/mL) | MBC90 (µg/mL) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HAL | CEF | GEN | TET | CIP | FLO | SMZ-TMP | HAL | CEF | GEN | TET | CIP | FLO | SMZ-TMP | |
Escherichia coli | 16 | ≤1 | 16 | >128 | 16 | 128 | >121.6:6.4 | 32 | 2 | 64 | >128 | 32 | >128 | >121.6:6.4 |
Salmonella | 16 | >256 | 64 | >256 | 32 | >256 | >243.2:12.8 | 64 | >256 | 256 | 256 | 64 | >256 | 243.2:12.8 |
Klebsiella penumoniae | 16 | 32 | 32 | 16 | 16 | 16 | 32 | 64 | 64 | 128 | 64 | 64 | 128 | 60.8:3.2 |
Staphylococcus spp. | 16 | 8 | 32 | 16 | 8 | 8 | 30.4:1.6 | 64 | 16 | 64 | 64 | 32 | 32 | 60.8:3.2 |
Streptococcus spp. | 16 | ≤1 | >128 | 32 | ≤1 | 2 | >121.6:6.4 | 128 | ≤1 | >128 | >128 | >4 | >8 | >121.6:6.4 |
Streptococcus suis | 16 | 4 | >128 | >128 | 32 | 128 | >121.6:6.4 | 32 | 64 | >128 | >128 | 64 | >128 | >121.6:6.4 |
Pasteurella multocida | 8 | >32 | 1 | >32 | 0.25 | >32 | >30.4:1.6 | 8 | >32 | 4 | >32 | >1 | >32 | >30.4:1.6 |
Actinobacillus pleuropneumoniae | 2 | 8 | 4 | >32 | 4 | >32 | >30.4:1.6 | 4 | 8 | 4 | >32 | >32 | >32 | >30.4:1.6 |
Haemophilus parasuis | 16 | ≤0.5 | ≤0.5 | 8 | 1 | ≤0.5 | 60.8:3.2 | 128 | ≤0.5 | 1 | 16 | >2 | 2 | >60.8:3.2 |
Clostridium perfringens | 0.25 | ≤0.125 | >16 | >16 | >16 | 2 | >15.2:0.8 | 0.5 | 1 | >16 | >16 | >16 | >8 | >15.2:0.8 |
Mycoplasma | 1 | >128 | 4 | 4 | 2 | 4 | 3.8:0.2 | 1 | >128 | 8 | 8 | 8 | 16 | 7.6:0.4 |
Pseudomonas aeruginosa | >128 | 32 | 32 | 64 | 32 | 32 | 30.4:1.6 | >128 | 128 | 128 | 64 | 64 | 32 | 60.8:3.2 |
Acinetobacter baumannii | 16 | 8 | 16 | 8 | 8 | 8 | 30.4:1.6 | 64 | 32 | 32 | 32 | 32 | 32 | 60.8:3.2 |
Strain | Antibacteri-al Drugs | MIC (μg/mL) | MBC (μg/mL) | PAE (h) | PASME (h) | ||
---|---|---|---|---|---|---|---|
0.1 MIC | 0.2 MIC | 0.3 MIC | |||||
E. coli 25922 | Halicin | 8 | 16 | 1.52 | 2.03 | 2.43 | 3.05 |
Ceftiofur | 1 | 4 | 0.89 | 1.23 | 1.56 | 1.78 | |
S. aureus 29213 | Halicin | 8 | 16 | 1.45 | 1.89 | 2.56 | 3.24 |
Ciprofloxacin | 1 | 2 | 1.23 | 1.45 | 1.75 | 1.98 | |
APP S6 | Halicin | 1 | 2 | 1.03 | 0.85 | 1.08 | 1.63 |
Ceftiofur | 2 | 8 | 0.68 | 0.45 | 0.87 | 1.25 |
Strains | Antibacterial Drugs | MIC (μg/mL) | MPC (μg/mL) | MSW (μg/mL) |
---|---|---|---|---|
E. coli 25922 | Halicin | 8 | 12.8 | 8–12.8 |
Ceftiofur | 2 | 12.8 | 2–12.8 | |
S. aureus 29213 | Halicin | 8 | 12.8 | 8–12.8 |
Ciprofloxacin | 4 | 25.6 | 4–25.6 | |
APP S6 | Halicin | 0.5 | 1.6 | 0.5–1.6 |
Ceftiofur | 1 | 6.4 | 1–6.4 |
Experiments | Results |
---|---|
Oral acute toxicity test | LD50 was 1274.90 mg/kg b.w. |
Intraperitoneal injection acute toxicity test | LD50 was 36.84 mg/kg b.w. |
Ames test | No significant difference in the average number of the four Salmonella typhimurium test strains compared to the negative control group |
Mouse sperm abnormality test | No significant difference between the dose group and the negative control group (p > 0.05) |
Chromosomal aberration test in bone marrow cells | No significant difference between the dose group and the negative control group (p > 0.05) |
Bone marrow micronucleus test | No significant difference between the dose group and the negative control group (p > 0.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhao, K.; Chen, Z.; Liu, D.; Tang, S.; Sun, C.; Chen, H.; Wang, Y.; Wu, C. Halicin: A New Horizon in Antibacterial Therapy against Veterinary Pathogens. Antibiotics 2024, 13, 492. https://doi.org/10.3390/antibiotics13060492
Wang S, Zhao K, Chen Z, Liu D, Tang S, Sun C, Chen H, Wang Y, Wu C. Halicin: A New Horizon in Antibacterial Therapy against Veterinary Pathogens. Antibiotics. 2024; 13(6):492. https://doi.org/10.3390/antibiotics13060492
Chicago/Turabian StyleWang, Shuge, Ke Zhao, Ziqi Chen, Dejun Liu, Shusheng Tang, Chengtao Sun, Hongliang Chen, Yang Wang, and Congming Wu. 2024. "Halicin: A New Horizon in Antibacterial Therapy against Veterinary Pathogens" Antibiotics 13, no. 6: 492. https://doi.org/10.3390/antibiotics13060492
APA StyleWang, S., Zhao, K., Chen, Z., Liu, D., Tang, S., Sun, C., Chen, H., Wang, Y., & Wu, C. (2024). Halicin: A New Horizon in Antibacterial Therapy against Veterinary Pathogens. Antibiotics, 13(6), 492. https://doi.org/10.3390/antibiotics13060492