Virulence and Antimicrobial Resistance Characterization of Glaesserella parasuis Isolates Recovered from Spanish Swine Farms
Abstract
:1. Introduction
2. Results
2.1. Characterization of Virulence and Pathotyping in Glaesserella parasuis Isolates
2.2. Antimicrobial Susceptibility Profiling of Glaesserella parasuis Isolates
2.3. Association between Pathotypes and Antimicrobial Susceptibility Profiling of Glaesserella parasuis Isolates
3. Discussion
4. Materials and Methods
4.1. Selection of Glaesserella parasuis Isolates Recovered from Spanish Pig Farms
4.2. Glaesserella parasuis Growth Conditions and DNA Extraction
4.3. Virulence Characterization of Glaesserella parasuis Isolates
4.4. Pathotype Characterization of Glaesserella parasuis Isolates
4.5. Antimicrobial Susceptibility Profiling of Glaesserella parasuis Isolates
4.6. Statistical Analysis and Figure Visualization
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, P.; Zhang, C.; Aragon, V.; Zhou, X.; Zou, M.; Wu, C.; Shen, Z. Investigation of Haemophilus parasuis from Healthy Pigs in China. Vet. Microbiol. 2019, 231, 40–44. [Google Scholar] [CrossRef]
- Aragon, V.; Cerdà-Cuéllar, M.; Fraile, L.; Mombarg, M.; Nofrarías, M.; Olvera, A.; Sibila, M.; Solanes, D.; Segalés, J. Correlation between Clinico-Pathological Outcome and Typing of Haemophilus parasuis Field Strains. Vet. Microbiol. 2010, 142, 387–393. [Google Scholar] [CrossRef]
- Costa-Hurtado, M.; Barba-Vidal, E.; Maldonado, J.; Aragon, V. Update on Glässer’s Disease: How to Control the Disease under Restrictive Use of Antimicrobials. Vet. Microbiol. 2020, 242, 108595. [Google Scholar] [CrossRef]
- Sun, Q.; Yu, X.; He, D.; Ku, X.; Hong, B.; Zeng, W.; Zhang, H.; He, Q. Investigation and Analysis of Etiology Associated with Porcine Respiratory Disease Complex in China from 2017 to 2021. Front. Vet. Sci. 2022, 9, 960033. [Google Scholar] [CrossRef] [PubMed]
- White, M. Glässers Disease. Available online: https://www.nadis.org.uk/disease-a-z/pigs/glaessers-disease/ (accessed on 1 August 2024).
- Tadjine, M.; Mittal, K.R.; Bourdon, S.; Gottschalk, M. Development of a New Serological Test for Serotyping Haemophilus parasuis Isolates and Determination of Their Prevalence in North America. J. Clin. Microbiol. 2004, 42, 839–840. [Google Scholar] [CrossRef]
- Mugabi, R.; Silva, A.P.S.P.; Hu, X.; Gottschalk, M.; Aragon, V.; Macedo, N.R.; Sahin, O.; Harms, P.; Main, R.; Tucker, A.W.; et al. Molecular Characterization of Glaesserella parasuis Strains Circulating in North American Swine Production Systems. BMC Vet. Res. 2023, 19, 135. [Google Scholar] [CrossRef] [PubMed]
- Jia, A.; Zhou, R.; Fan, H.; Yang, K.; Zhang, J.; Xu, Y.; Wang, G.; Liao, M. Development of Serotype-Specific PCR Assays for Typing of Haemophilus parasuis Isolates Circulating in Southern China. J. Clin. Microbiol. 2017, 55, 3249–3257. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, L.; Chu, Y.; Li, X.; Cui, Y.; Chen, S.; Zhou, J.; Li, C.; Lu, Z.; Liu, J.; et al. Characterization of Chinese Haemophilus parasuis Isolates by Traditional Serotyping and Molecular Serotyping Methods. PLoS ONE 2016, 11, e0168903. [Google Scholar] [CrossRef]
- Macedo, N.; Gottschalk, M.; Strutzberg-Minder, K.; Van, C.N.; Zhang, L.; Zou, G.; Zhou, R.; Marostica, T.; Clavijo, M.J.; Tucker, A.; et al. Molecular Characterization of Glaesserella parasuis Strains Isolated from North America, Europe and Asia by Serotyping PCR and LS-PCR. Vet. Res. 2021, 52, 68. [Google Scholar] [CrossRef]
- Ribeiro-Silva, G.F.; Zanolli-Moreno, L.; Cabrera-Matajira, C.E.; Santos-Silva, A.P.; Miyazaki-Araújo, K.; Moura-Gomes, V.T.; Funada-Barbosa, M.R.; Zanolli-Sato, M.I.; Micke-Moreno, A. Serotyping and Antimicrobial Susceptibility Profiling of Glaesserella parasuis Isolated from Diseased Swine in Brazil. Pathogens 2022, 11, 1443. [Google Scholar] [CrossRef]
- Schuwerk, L.; Hoeltig, D.; Waldmann, K.H.; Strutzberg-Minder, K.; Valentin-Weigand, P.; Rohde, J. Serotyping and Pathotyping of Glaesserella parasuis Isolated 2012–2019 in Germany Comparing Different PCR-Based Methods. Vet. Res. 2020, 51, 137. [Google Scholar] [CrossRef] [PubMed]
- Turni, C.; Blackall, P.J. Serovar Profiling of Haemophilus parasuis on Australian Farms by Sampling Live Pigs. Aust. Vet. J. 2010, 88, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, Q.; Wei, H.; Wen, X.; Cao, S.; Huang, X.; Wu, R.; Yan, Q.; Huang, Y.; Wen, Y. Prevalence and Seroepidemiology of Haemophilus parasuis in Sichuan Province, China. PeerJ 2017, 2017, e3379. [Google Scholar] [CrossRef] [PubMed]
- Fernández, A.G.; Martín, C.B.G.; Rilo, M.P.; Fernández, E.P.; Pérez, R.M.; Frandoloso, R.; Martínez, S.M. Phylogenetic Study and Comparison of Different TbpB Obtained from Glaesserella parasuis Present in Spanish Clinical Isolates. Res. Vet. Sci. 2023, 157, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Kielstein, P.; Rapp-Gabrielson, V.J. Designation of 15 Serovars of Haemophilus parasuis on the Basis of Immunodiffusion Using Heat-Stable Antigen Extracts. J. Clin. Microbiol. 1992, 30, 862–865. [Google Scholar] [CrossRef]
- Lin, W.H.; Shih, H.C.; Lin, C.F.; Yang, C.Y.; Lin, C.N.; Chiou, M.T. Genotypic Analyses and Virulence Characterization of Glaesserella parasuis Isolates from Taiwan. PeerJ 2019, 7, e6960. [Google Scholar] [CrossRef] [PubMed]
- Galofré-Milà, N.; Correa-Fiz, F.; Lacouture, S.; Gottschalk, M.; Strutzberg-Minder, K.; Bensaid, A.; Pina-Pedrero, S.; Aragon, V. A Robust PCR for the Differentiation of Potential Virulent Strains of Haemophilus parasuis. BMC Vet. Res. 2017, 13, 124. [Google Scholar] [CrossRef] [PubMed]
- Howell, K.J.; Weinert, L.A.; Peters, S.E.; Wang, J.; Hernandez-Garcia, J.; Chaudhuri, R.R.; Luan, S.L.; Angen, Ø.; Aragon, V.; Williamson, S.M.; et al. “Pathotyping” Multiplex PCR Assay for Haemophilus parasuis: A Tool for Prediction of Virulence. J. Clin. Microbiol. 2017, 55, 2617–2628. [Google Scholar] [CrossRef]
- Guizzo, J.A.; Chaudhuri, S.; Prigol, S.R.; Yu, R.H.; Dazzi, C.C.; Balbinott, N.; Frandoloso, G.P.; Kreutz, L.C.; Frandoloso, R.; Schryvers, A.B. The Amino Acid Selected for Generating Mutant TbpB Antigens Defective in Binding Transferrin Can Compromise the in Vivo Protective Capacity. Sci. Rep. 2018, 8, 7372. [Google Scholar] [CrossRef]
- Karriker, L.A.; Coetzee, J.F.; Friendship, R.M.; Apley, M.D. Drug Pharmacology, Therapy, and Prophylaxis. In Diseases of Swine; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 2019; pp. 158–170. [Google Scholar]
- Zhou, Y.; Jiang, D.; Yao, X.; Luo, Y.; Yang, Z.; Ren, M.; Zhang, G.; Yu, Y.; Lu, A.; Wang, Y. Pan-Genome Wide Association Study of Glaesserella parasuis Highlights Genes Associated with Virulence and Biofilm Formation. Front. Microbiol. 2023, 14, 1160433. [Google Scholar] [CrossRef]
- Aragón, V.; Segalés, J.; Oliveira, S. Glässer’s Disease. In Diseases of Swine; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 760–769. ISBN 978-0-8138-2267-9. [Google Scholar]
- Costa-Hurtado, M.; Ballester, M.; Galofré-Mil, N.; Darji, A.; Aragon, V. VtaA8 and VtaA9 from Haemophilus parasuis Delay Phagocytosis by Alveolar Macrophages. Vet. Res. 2012, 43, 57. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.F.; Hsu, C.Y.; Chou, C.C.; Wang, C.M.; Huang, S.W.; Kuo, H.C. Serotypes, Virulence Factors and Multilocus Sequence Typing of Glaesserella parasuis from Diseased Pigs in Taiwan. PeerJ 2023, 11, e15823. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, L.; Liu, Y.; Gao, P.; Li, Y.; Li, X.; Liu, Y. Multilocus Sequence Typing and Virulence Analysis of Haemophilus parasuis Strains Isolated in Five Provinces of China. Infect. Genet. Evol. 2016, 44, 228–233. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2022. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2022-trends-2010-2022-thirteenth-esvac-report_en.pdf (accessed on 3 July 2024).
- López-Serrano, S.; Mahmmod, Y.S.; Christensen, D.; Ebensen, T.; Guzmán, C.A.; Rodríguez, F.; Segalés, J.; Aragón, V. Immune Responses Following Neonatal Vaccination with Conserved F4 Fragment of VtaA Proteins from Virulent Glaesserella parasuis Adjuvanted with CAF®01 or CDA. Vaccine X 2023, 14, 100330. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Infographic Categorisation of Antibiotics for Use in Animals for Prudent and Responsible Use; European Medicines Agency: Amsterdam, The Netherlands, 2019.
- Wei-Hao, L.; Cheng-Yao, Y.; Chuen-Fu, L.; Chao-Nan, L.; Ming-Tang, C. Investigating the Relationship between Antimicrobial Susceptibility and Serovar of Glaesserella parasuis. Res. Sq. (Prepr.) 2023. [Google Scholar] [CrossRef]
- Van, C.N.; Zhang, L.; Thanh, T.V.T.; Son, H.P.H.; Ngoc, T.T.; Huang, Q.; Zhou, R. Association between the Phenotypes and Genotypes of Antimicrobial Resistance in Haemophilus parasuis Isolates from Swine in Quang Binh and Thua Thien Hue Provinces, Vietnam. Engineering 2020, 6, 40–48. [Google Scholar] [CrossRef]
- Dayao, D.A.E.; Kienzle, M.; Gibson, J.S.; Blackall, P.J.; Turni, C. Use of a Proposed Antimicrobial Susceptibility Testing Method for Haemophilus parasuis. Vet. Microbiol. 2014, 172, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.P.; Cai, X.W.; Wang, X.R.; Zhou, X.L.; Wu, D.F.; Xu, X.J.; Chen, H.C. Characterization of Plasmid-Mediated Lincosamide Resistance in a Field Isolate of Haemophilus parasuis. J. Antimicrob. Chemother. 2010, 65, 2256–2258. [Google Scholar] [CrossRef]
- Murray, L.M.; Hayes, A.; Snape, J.; Kasprzyk-Hordern, B.; Gaze, W.H.; Murray, A.K. Co-Selection for Antibiotic Resistance by Environmental Contaminants. Antimicrob. Resist. 2024, 2, 9. [Google Scholar] [CrossRef]
- Beceiro, A.; Tomás, M.; Bou, G. Antimicrobial Resistance and Virulence: A Successful or Deleterious Association in the Bacterial World? Clin. Microbiol. Rev. 2013, 26, 185–230. [Google Scholar] [CrossRef]
- Wan, X.; Li, X.; Osmundson, T.; Li, C.; Yan, H. Whole-Genome Sequence Analyses of Glaesserella parasuis Isolates Reveals Extensive Genomic Variation and Diverse Antibiotic Resistance Determinants. PeerJ 2020, 8, e9293. [Google Scholar] [CrossRef] [PubMed]
- Prüller, S.; Turni, C.; Blackall, P.J.; Beyerbach, M.; Klein, G.; Kreienbrock, L.; Strutzberg-Minder, K.; Kaspar, H.; Meemken, D.; Kehrenberg, C. Towards a Standardized Method for Broth Microdilution Susceptibility Testing of Haemophilus parasuis. J. Clin. Microbiol. 2017, 55, 264–273. [Google Scholar] [CrossRef] [PubMed]
- VET01S; Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. 7th ed. Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2024; ISBN 978-1-68440-211-3.
- M100; Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2024; ISBN 978-1-68440-221-2.
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Csárdi, G.; Nepusz, T.; Traag, V.; Horvát, S.; Zanini, F.; Noom, D.; Müller, K. Igraph: Network Analysis and Visualization 2024. Available online: https://CRAN.R-project.org/package=igraph (accessed on 10 June 2024).
- Pedersen, T. Ggraph: An Implementation of Grammar of Graphics for Graphs and Networks. 2024. Available online: https://ggraph.data-imaginist.com (accessed on 10 June 2024).
- Kolde, R. Pheatmap: Pretty Heatmaps 2019. Available online: https://cran.r-project.org/web/packages/pheatmap/pheatmap.pdf (accessed on 29 May 2024).
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. 1995, 57, 289–300. [Google Scholar] [CrossRef]
Antimicrobial | Number of Isolates with MIC (µg/mL) | MIC | Susceptible | Non-Susceptible | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | MIC50 | MIC90 | n | % | n | % | |
Penicillin | 31 | 19 | 8 | 2 | 0 | 0 | 0 | ≤0.12 | 0.5 | 50 | 83.3 | 10 | 16.6 | ||||||
Ampicillin | 45 | 10 | 3 | 1 | 0 | 0 | 0 | 1 | ≤0.25 | 0.5 | 55 | 91.7 | 5 | 8.3 | |||||
Ceftiofur | 57 | 0 | 0 | 1 | 0 | 1 | 1 | ≤0.25 | ≤0.25 | 58 | 96.7 | 2 | 3.3 | ||||||
Gentamicin | 17 | 30 | 10 | 1 | 1 | 1 | 2 | 4 | 47 | 78.3 | 13 | 21.6 | |||||||
Spectinomycin | 31 | 27 | 1 | 1 | ≤8 | 16 | 59 | 98.3 | 1 | 1.7 | |||||||||
Neomycin | 23 | 29 | 5 | 2 | 1 | 8 | 16 | 52 | 86.7 | 8 | 13.3 | ||||||||
Tulathromycin | 28 | 26 | 5 | 1 | 0 | 0 | 0 | 2 | 4 | 60 | 100 | 0 | 0 | ||||||
Tilmicosin | 57 | 3 | 0 | 0 | 0 | ≤4 | ≤ 4 | 60 | 100 | 0 | 0 | ||||||||
Tylosin | 3 | 1 | 2 | 9 | 16 | 17 | 11 | 1 | 8 | 32 | 4 | 6.7 | 56 | 93.3 | |||||
Chlortetracycline | 38 | 19 | 1 | 1 | 1 | ≤0.5 | 1 | 38 | 63.3 | 22 | 36.7 | ||||||||
Oxytetracycline | 54 | 4 | 0 | 0 | 1 | 1 | ≤0.5 | 1 | 54 | 90.0 | 6 | 10 | |||||||
Danofloxacin | 59 | 1 | 0 | 0 | ≤0.12 | ≤0.12 | 60 | 100 | 0 | 0 | |||||||||
Enrofloxacin | 55 | 0 | 1 | 3 | 1 | ≤0.12 | ≤0.12 | 55 | 91.7 | 5 | 8.3 | ||||||||
Clindamicin | 0 | 1 | 7 | 16 | 30 | 6 | 0 | 4 | 8 | 1 | 1.7 | 59 | 98.3 | ||||||
a SXT | 59 | 1 | ≤2/38 | ≤2/38 | 59 | 98.3 | 1 | 1.7 | |||||||||||
Sulfadimethoxine | 38 | 22 | ≤256 | >256 | 38 | 63.3 | 22 | 36.7 | |||||||||||
Tiamulin | 2 | 4 | 3 | 16 | 26 | 7 | 2 | 8 | 16 | 58 | 96.7 | 2 | 3.3 | ||||||
Florfenicol | 44 | 14 | 1 | 1 | 0 | 0 | ≤0.25 | 0.5 | 60 | 100 | 0 | 0 |
AMR Combinations | Number of Isolates (n) | Frequence (%) |
---|---|---|
Pansusceptible | 0 | 0 |
1 antimicrobial class | 4 | 6.7 |
2 antimicrobial classes | 18 | 30 |
3 antimicrobial classes | 11 | 18.3 |
4 antimicrobial classes | 18 | 30 |
5 antimicrobial classes | 5 | 8.3 |
6 antimicrobial classes | 3 | 5 |
7 antimicrobial classes | 0 | 0 |
8 antimicrobial classes | 1 | 1.7 |
Pairwise Association | Φ Coefficient | Φ Categorization | p-Value |
---|---|---|---|
Tetracyclines—HPS_22970 | 0.58 | Very strong | <0.0001 |
Tetracyclines—HPS_23300 | 0.52 | Very strong | <0.0001 |
Tetracyclines—HPS_21059 | 0.34 | Very strong | 0.008 |
Tetracyclines—HPS_23060 | 0.29 | Very strong | 0.016 |
Tetracyclines—HPS_21058 | 0.28 | Very strong | 0.029 |
Aminoglycosides—HPS_23505 | 0.25 | Strong | 0.034 |
Macrolides—HPS_23060 | 0.22 | Strong | 0.042 |
HPS_21058—HPS_23060 | 0.43 | Very strong | 0.0006 |
HPS_22970—HPS_23300 | 0.39 | Very strong | 0.002 |
HPS_21068—HPS_23887 | 0.35 | Very strong | 0.004 |
HPS_23060—HPS_22976 | 0.34 | Very strong | 0.005 |
HPS_23505—HPS_22976 | 0.33 | Very strong | 0.005 |
HPS_21058—HPS_21059 | 0.31 | Very strong | 0.012 |
HPS_23300—HPS_22976 | 0.29 | Very strong | 0.012 |
HPS_23505—HPS_23887 | 0.29 | Very strong | 0.019 |
HPS_21058—HPS_23300 | 0.27 | Very strong | 0.024 |
HPS_22970—HPS_22976 | 0.25 | Strong | 0.025 |
Tetracyclines—Sulfamides | 0.32 | Very strong | 0.011 |
Penicillins—Sulfamides | 0.31 | Very strong | 0.012 |
Aminoglycosides—Quinolones | 0.29 | Very strong | 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Fernández, A.; Mencía-Ares, O.; García-Iglesias, M.J.; Petrocchi-Rilo, M.; Miguélez-Pérez, R.; Gutiérrez-Martín, C.B.; Martínez-Martínez, S. Virulence and Antimicrobial Resistance Characterization of Glaesserella parasuis Isolates Recovered from Spanish Swine Farms. Antibiotics 2024, 13, 741. https://doi.org/10.3390/antibiotics13080741
González-Fernández A, Mencía-Ares O, García-Iglesias MJ, Petrocchi-Rilo M, Miguélez-Pérez R, Gutiérrez-Martín CB, Martínez-Martínez S. Virulence and Antimicrobial Resistance Characterization of Glaesserella parasuis Isolates Recovered from Spanish Swine Farms. Antibiotics. 2024; 13(8):741. https://doi.org/10.3390/antibiotics13080741
Chicago/Turabian StyleGonzález-Fernández, Alba, Oscar Mencía-Ares, María José García-Iglesias, Máximo Petrocchi-Rilo, Rubén Miguélez-Pérez, César Bernardo Gutiérrez-Martín, and Sonia Martínez-Martínez. 2024. "Virulence and Antimicrobial Resistance Characterization of Glaesserella parasuis Isolates Recovered from Spanish Swine Farms" Antibiotics 13, no. 8: 741. https://doi.org/10.3390/antibiotics13080741
APA StyleGonzález-Fernández, A., Mencía-Ares, O., García-Iglesias, M. J., Petrocchi-Rilo, M., Miguélez-Pérez, R., Gutiérrez-Martín, C. B., & Martínez-Martínez, S. (2024). Virulence and Antimicrobial Resistance Characterization of Glaesserella parasuis Isolates Recovered from Spanish Swine Farms. Antibiotics, 13(8), 741. https://doi.org/10.3390/antibiotics13080741