Demographic Characteristics and Economic Burden of Clostridioides difficile Infection in Korea: A Nationwide Population-Based Study after Propensity Score Matching
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics of the Study Population
2.2. Comorbidity, Hospital, and Regional Distribution of CDI
2.3. Annual Occurrence Rate of CDI According to Sex and Age Groups
2.4. Length of Hospital Stay and Total Medical Cost of CDI
2.5. Length of Hospital Stay and Total Medical Cost of CDI with Regression Models
3. Discussion
4. Materials and Methods
4.1. Data Source
4.2. Study Population
4.3. Study Variables
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartlett, J.G. Clostridium difficile: History of Its Role as an Enteric Pathogen and the Current State of Knowledge about the Organism. Clin. Infect. Dis. 1994, 18, S265–S272. [Google Scholar] [CrossRef] [PubMed]
- Martín-Loeches, I.; Diaz, E.; Vallés, J. Risks for multidrug-resistant pathogens in the ICU. Curr. Opin. Crit. Care 2014, 20, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Pepin, J.; Valiquette, L.; Alary, M.E.; Villemure, P.; Pelletier, A.; Forget, K.; Pepin, K.; Chouinard, D. Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: A changing pattern of disease severity. CMAJ 2004, 171, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Loo, V.G.; Poirier, L.; Miller, M.A.; Oughton, M.; Libman, M.D.; Michaud, S.; Bourgault, A.; Nguyen, T.; Frenette, C.; Kelly, M.; et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile associated diarrhea with high morbidity and mortality. N. Engl. J. Med. 2005, 353, 2442–2449. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.Y.; Park, S.Y.; Kim, Y.A.; Yoon, T.Y.; Choi, J.M.; Choe, B.K.; Ahn, S.H.; Yoon, S.J.; Lee, Y.R.; Oh, I.H. The epidemiology and economic burden of Clostridium difficile infection in Korea. Biomed. Res. Int. 2015, 2015, 510386. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Myung, R.; Kim, B.; Kim, J.; Kim, T.; Lee, M.S.; Kim, U.J.; Park, D.W.; Kim, Y.S.; Lee, C.S.; et al. Incidence of Clostridioides difficile infections in Republic of Korea: A prospective study with active surveillance vs national data from Health Insurance Review & Assessment Service. J. Korean Med. Sci. 2024, 39, e118. [Google Scholar] [PubMed]
- Kim, Y.S.; Han, D.S.; Kim, Y.H.; Kim, W.H.; Kim, J.S.; Kim, H.S.; Park, Y.S.; Song, H.J.; Shin, S.J.; Yang, S.K.; et al. Incidence and clinical features of Clostridium difficile infection in Korea: A nationwide study. Epidemiol. Infect. 2013, 141, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Statistics Korea. 2024 Elderly Statistics. Statistics Korea. 2024. Available online: http://kostat.go.kr/portal/korea/kor_nw/1/1/index.board?bmode=read&aSeq=385322 (accessed on 29 May 2024).
- Park, J.; Han, E.; Lee, S.O.; Kim, H.S. Antibiotic use in South Korea from 2007 to 2014: A health insurance database-generated time series analysis. PLoS ONE 2017, 12, e0177435. [Google Scholar] [CrossRef] [PubMed]
- Leal, J.R.; Conly, J.; Weaver, R.; Wick, J.; Henderson, E.A.; Manns, B.; Ronksley, P. Attributable costs and length of stay of hospital-acquired Clostridiodes difficile: A population-based matched cohort study in Alberta, Canada. Infect. Control Hosp. Epidemiol. 2019, 40, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.; Wong, S.H.; Doddangoudar, V.C.; Boost, M.; Tse, G.; Ip, M. Regional differences in temporal incidence of Clostridium difficile infection: A systematic review and meta-analysis. Am. J. Infect. Control 2020, 48, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Lessa, F.C.; Gould, C.V.; McDonald, L.C. Current status of Clostridium difficile infection epidemiology. Clin. Infect. Dis. 2012, 55, S65–S70. [Google Scholar] [CrossRef] [PubMed]
- Son, K.J.; Kim, Y.A.; Park, Y.S. Economic burden attributable to Clostridioides difficile infections in South Korea: A nationwide propensity score-matched study. J. Hosp. Infect. 2022, 120, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Yoon, S.; Kim, L.Y.; Kim, D.S. Towards actualizing the value potential of Korea Health Insurance Review and Assessment (HIRA) data as a resource for health research: Strengths, limitations, applications, and strategies for optimal use of HIRA data. J. Korean Med. Sci. 2017, 32, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.M.; Kim, H.S.; Kwak, M.S.; Park, S.; Park, G.; Kim, J.S.; Kim, J.H.; Kim, W.H. Features of postcolonoscopy colorectal cancer and survival times of patients in Korea. Clin. Gastroenterol. Hepatol. 2019, 17, 786–788. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.M.; Kwak, M.S.; Kim, H.S.; Kim, S.Y.; Park, S.; Park, G.U.; Lee, J.K.; Kim, S.J.; Lee, H.H.; Kim, J.S.; et al. Real-world national colonoscopy volume in Korea: A nationwide population-based study over 12 years. Gut Liver 2020, 14, 338–346. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | Before Propensity Score Matching | After Propensity Score Matching | ||||
---|---|---|---|---|---|---|
CDI | Control | SMD | CDI | Control | SMD | |
Total number of patients | 123,847 | 2,123,830 | 123,847 | 247,694 | ||
Sex (male), n (%) | 55,740 (45.0) | 885,136 (41.7) | 0.067 | 55,740 (45.0) | 111,480 (45.0) | <0.001 |
Age, mean (SD) | 71.8 (14.4) | 53.7 (19.6) | 1.050 | 71.8 (14.4) | 71.8 (14.4) | <0.001 |
Age group (years), n (%) | 1.051 | <0.001 | ||||
20–29 | 1961 (1.6) | 321,921 (15.2) | 1961 (1.6) | 3922 (1.6) | ||
30–39 | 2900 (2.3) | 275,762 (13.0) | 2900 (2.3) | 5800 (2.3) | ||
40–49 | 5531 (4.5) | 289,413 (13.6) | 5531 (4.5) | 11,062 (4.5) | ||
50–59 | 12,292 (9.9) | 376,467 (17.7) | 12,292 (9.9) | 24,584 (9.9) | ||
60–69 | 19,375 (15.6) | 306,482 (14.4) | 19,375 (15.6) | 38,750 (15.6) | ||
70–79 | 39,346 (31.8) | 322,361 (15.2) | 39,346 (31.8) | 78,692 (31.8) | ||
80–89 | 36,368 (29.4) | 203,063 (9.6) | 36,368 (29.4) | 72,736 (29.4) | ||
90–99 | 6074 (4.9) | 28,361 (1.3) | 6074 (4.9) | 12,148 (4.9) | ||
Annual hospitalization, n (%) | 0.190 | <0.001 | ||||
2011 | 7438 (6.0) | 176,149 (8.3) | 7438 (6.0) | 14,876 (6.0) | ||
2012 | 8257 (6.7) | 183,266 (8.6) | 8257 (6.7) | 16,514 (6.7) | ||
2013 | 9268 (7.5) | 191,782 (9.0) | 9268 (7.5) | 18,536 (7.5) | ||
2014 | 11,079 (9.0) | 194,616 (9.2) | 11,079 (9.0) | 22,158 (9.0) | ||
2015 | 13,112 (10.6) | 204,352 (9.6) | 13,112 (10.6) | 26,224 (10.6) | ||
2016 | 15,648 (12.6) | 307,560 (14.5) | 15,648 (12.6) | 31,296 (12.6) | ||
2017 | 17,000 (13.7) | 293,745 (13.8) | 17,000 (13.7) | 33,997 (13.7) | ||
2018 | 20,283 (16.4) | 293,560 (13.8) | 20,283 (16.4) | 40,571 (16.4) | ||
2019 | 21,762 (17.6) | 278,800 (13.1) | 21,762 (17.6) | 43,522 (17.6) |
Baseline Characteristics | Before Propensity Score Matching | After Propensity Score Matching | ||||
---|---|---|---|---|---|---|
CDI | Control | p Value | CDI | Control | p Value | |
Total number of patients | 123,847 | 2,123,830 | 123,847 | 247,694 | ||
Charlson comorbidity index, n (%) | <0.001 | <0.001 | ||||
0 | 101,891 (82.3) | 2,118,162 (99.7) | 101,891 (82.3) | 247,078 (99.8) | ||
1 | 5101 (4.1) | 2082 (0.1) | 5101 (4.1) | 178 (0.1) | ||
2 | 5059 (4.1) | 1427 (0.1) | 5059 (4.1) | 168 (0.1) | ||
≥3 | 11,796 (9.5) | 2159 (0.1) | 11,796 (9.5) | 270 (0.1) | ||
Hospital distribution, n (%) | <0.001 | <0.001 | ||||
Tertiary hospital | 42,074 (34.0) | 223,676 (10.5) | 42,074 (34.0) | 24,637 (10.0) | ||
General hospital | 64,792 (52.3) | 1,255,998 (59.1) | 64,792 (52.3) | 143,041 (57.8) | ||
Hospital | 15,085 (12.2) | 618,574 (29.1) | 15,085 (12.2) | 72,894 (29.4) | ||
Convalescent hospital | 1896 (1.5) | 25,582 (1.2) | 1896 (1.5) | 7122 (2.9) | ||
Regional distribution | <0.001 | <0.001 | ||||
Seoul | 22,404 (18.1) | 288,846 (13.6) | 22,404 (18.1) | 30,289 (12.2) | ||
Busan | 8881 (7.2) | 163,223 (5.9) | 8881 (7.2) | 19,523 (7.9) | ||
Incheon | 4849 (3.9) | 126,248 (5.9) | 4849 (3.9) | 12,736 (5.1) | ||
Daegu | 9960 (8.0) | 96,903 (4.6) | 9960 (8.0) | 12,176 (4.9) | ||
Gwangju | 6535 (5.3) | 102,580 (4.8) | 6535 (5.3) | 10,636 (4.3) | ||
Daejeon | 6473 (5.2) | 52,219 (2.5) | 6473 (5.2) | 5994 (2.4) | ||
Ulsan | 1581 (1.3) | 48,308 (2.3) | 1581 (1.3) | 4777 (1.9) | ||
Gyeonggi-do | 18,849 (15.2) | 435,190 (20.5) | 18,849 (15.2) | 46,208 (18.7) | ||
Gangwon-do | 4100 (3.3) | 76,570 (3.6) | 4100 (3.3) | 10,787 (4.4) | ||
Chungcheongbuk-do | 3565 (2.9) | 57,013 (2.7) | 3565 (2.9) | 7767 (3.1) | ||
Chungcheongnam-do | 3439 (2.8) | 92,195 (4.3) | 3439 (2.8) | 12,061 (4.9) | ||
Jeollabuk-do | 9133 (7.4) | 108,057 (5.1) | 9133 (7.4) | 13,799 (5.6) | ||
Jeollanam-do | 5674 (4.6) | 133,918 (6.3) | 5674 (4.6) | 18,146 (7.3) | ||
Gyongsangbuk-do | 6631 (5.4) | 111,377 (5.2) | 6631 (5.4) | 15,332 (6.2) | ||
Gyongsangnam-do | 9333 (7.5) | 194,465 (9.2) | 9333 (7.5) | 23,101 (9.3) | ||
Jeju-do | 2424 (2.0) | 35,757 (1.7) | 2424 (2.0) | 4250 (1.7) | ||
Sejong | 16 (0.0) | 961 (0.1) | 16 (0.0) | 112 (0.1) |
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|---|---|---|---|---|
According to sex | |||||||||
National population | |||||||||
Total | 38,339,076 | 38,893,731 | 39,448,916 | 40,016,161 | 40,456,410 | 40,965,509 | 41,416,899 | 41,825,145 | 42,418,657 |
Male | 19,098,543 | 19,364,589 | 19,650,074 | 19,946,756 | 20,175,946 | 20,427,764 | 20,642,446 | 20,843,532 | 21,162,592 |
Female | 19,240,533 | 19,529,142 | 19,798,842 | 20,069,405 | 20,280,464 | 20,537,745 | 20,774,453 | 20,981,613 | 21,256,065 |
CDI/10,000 persons | |||||||||
Total | 1.94 | 2.12 | 2.35 | 2.77 | 3.24 | 3.82 | 4.10 | 4.85 | 5.13 |
Male | 1.78 | 1.93 | 2.13 | 2.45 | 2.93 | 3.38 | 3.67 | 4.42 | 4.71 |
Female | 2.10 | 2.32 | 2.57 | 3.09 | 3.55 | 4.26 | 4.54 | 5.28 | 5.55 |
According to age groups | |||||||||
National population | |||||||||
20–29 years | 6,772,641 | 6,688,951 | 6,664,531 | 6,729,202 | 6,781,715 | 6,845,235 | 6,892,655 | 6,905,433 | 6,936,797 |
30–39 years | 8,265,460 | 8,193,608 | 8,073,843 | 7,906,987 | 7,785,185 | 7,674,656 | 7,534,136 | 7,454,262 | 7,331,806 |
40–49 years | 8,613,554 | 8,639,087 | 8,752,108 | 8,796,952 | 8,732,931 | 8,696,072 | 8,628,547 | 8,441,160 | 8,407,610 |
50–59 years | 7,273,734 | 7,559,008 | 7,808,447 | 8,023,396 | 8,134,255 | 8,249,304 | 8,327,327 | 8,473,898 | 8,590,137 |
60–69 years | 4,014,948 | 4,141,409 | 4,294,057 | 4,532,829 | 4,879,788 | 5,185,042 | 5,471,136 | 5,763,020 | 6,136,528 |
70–79 years | 2,526,898 | 2,727,211 | 2,833,556 | 2,909,707 | 2,926,917 | 2,993,509 | 3,133,874 | 3,251,119 | 3,348,652 |
≥80 years | 871,841 | 944,457 | 1,022,374 | 1,117,088 | 1,215,619 | 1,321,691 | 1,429,224 | 1,536,253 | 1,667,127 |
CDI/10,000 persons | |||||||||
20–29 years | 0.22 | 0.19 | 0.20 | 0.23 | 0.32 | 0.36 | 0.35 | 0.46 | 0.54 |
30–39 years | 0.25 | 0.25 | 0.26 | 0.35 | 0.43 | 0.48 | 0.49 | 0.57 | 0.70 |
40–49 years | 0.46 | 0.45 | 0.49 | 0.57 | 0.68 | 0.83 | 0.84 | 0.97 | 1.12 |
50–59 years | 1.16 | 1.19 | 1.24 | 1.50 | 1.65 | 1.77 | 1.92 | 2.29 | 2.38 |
60–69 years | 3.56 | 3.35 | 3.31 | 3.88 | 4.14 | 4.66 | 4.69 | 5.31 | 5.40 |
70–79 years | 10.23 | 10.97 | 11.69 | 13.12 | 14.98 | 16.72 | 16.51 | 18.38 | 18.21 |
≥80 years | 21.01 | 23.84 | 27.31 | 30.19 | 34.71 | 41.14 | 44.24 | 50.34 | 50.86 |
Mean (SD) | p Value | Quantile (25%–75%) | ||
---|---|---|---|---|
Length of hospital stay (days) | ||||
Sex | Male | 33.1 (27.4) | <0.001 | 14.0–43.0 |
Female | 30.2 (25.9) | 13.0–39.0 | ||
Age groups (years) | 20–29 | 18.9 (21.9) | <0.001 | 6.0–25.0 |
30–39 | 23.3 (24.5) | 7.0–31.0 | ||
40–49 | 28.6 (26.2) | 10.0–37.0 | ||
50–59 | 30.3 (26.6) | 12.0–40.0 | ||
60–69 | 32.1 (27.4) | 13.0–42.0 | ||
70–79 | 32.6 (27.0) | 14.0–42.0 | ||
80–89 | 32.2 (26.1) | 14.0–41.0 | ||
90–99 | 31.0 (24.9) | 15.0–38.0 | ||
Charlson comorbidity index | 0 | 31.1 (26.0) | <0.001 | 13.0–40.0 |
1 | 29.4 (27.1) | 12.0–37.0 | ||
2 | 31.5 (28.2) | 13.0–41.0 | ||
≥3 | 36.9 (29.9) | 15.0–47.0 | ||
Type of hospital | Tertiary hospital | 29.4 (24.7) | <0.001 | 12.0–38.0 |
General hospital | 32.5 (27.1) | 14.0–42.0 | ||
Hospital | 32.7 (27.8) | 14.0–42.0 | ||
Convalescent hospital | 35.1 (35.4) | 12.0–45.0 | ||
Total medical cost (KRW ×103) | ||||
Sex | Male | 10,615.1 (10,199.7) | <0.001 | 3535.0–14,010.0 |
Female | 8578.6 (8883.9) | 2721.0–10,949.0 | ||
Age groups (years) | 20–29 | 6841.8 (10,172.4) | <0.001 | 1232.0–7159.0 |
30–39 | 8053.2 (10,132.3) | 1565.0–10,463.0 | ||
40–49 | 10,139.7 (11,111.3) | 2369.0–13,620.0 | ||
50–59 | 10,343.9 (10,708.8) | 2786.0–13,798.0 | ||
60–69 | 10,691.5 (10,635.1) | 3160.0–14,302.0 | ||
70–79 | 9810.5 (9552.5) | 3287.0–12,854.0 | ||
80–89 | 8729.6 (8320.8) | 3230.0–11,165.0 | ||
90–99 | 7461.0 (7027.5) | 2978.0–9524.0 | ||
Charlson comorbidity index | 0 | 9525.3 (9571.3) | <0.001 | 3035.0–12,378.0 |
1 | 7509.2 (8272.3) | 2289.0–9447.0 | ||
2 | 8632.0 (9049.7) | 2684.0–11,116.0 | ||
≥3 | 10,463.7 (9954.3) | 3668.0–13,622.0 | ||
Type of hospital | Tertiary hospital | 11,741.6 (10,959.7) | <0.001 | 3926.0–15,759.0 |
General hospital | 9142.0 (8981.5) | 3063.0–11,852.0 | ||
Hospital | 5331.0 (5439.2) | 3601.0–54,485.0 | ||
Convalescent hospital | 4842.1 (5223.4) | 1559.0–55,191.0 |
Length of Hospital Stay (Days) | CDI | Control | p Value | |
---|---|---|---|---|
Comorbidity index | 0 | 31.1 (26.0) | 9.6 (10.2) | <0.001 |
1 | 29.4 (27.1) | 13.0 (12.0) | <0.001 | |
2 | 31.5 (28.2) | 12.4 (12.0) | <0.001 | |
≥3 | 36.9 (29.9) | 16.7 (13.7) | <0.001 | |
Total medical cost (KRW ×103) | ||||
Comorbidity index | 0 | 9525.3 (9571.3) | 1891.2 (2193.9) | <0.001 |
1 | 7509.2 (8272.3) | 1400.7 (1430.9) | <0.001 | |
2 | 8632.0 (9049.7) | 1597.6 (1892.5) | <0.001 | |
3 | 10,463.7 (9954.3) | 2567.3 (2584.5) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, J.M.; Yoon, J.Y.; Kwak, M.S.; Lee, M.; Cho, Y.-S. Demographic Characteristics and Economic Burden of Clostridioides difficile Infection in Korea: A Nationwide Population-Based Study after Propensity Score Matching. Antibiotics 2024, 13, 542. https://doi.org/10.3390/antibiotics13060542
Cha JM, Yoon JY, Kwak MS, Lee M, Cho Y-S. Demographic Characteristics and Economic Burden of Clostridioides difficile Infection in Korea: A Nationwide Population-Based Study after Propensity Score Matching. Antibiotics. 2024; 13(6):542. https://doi.org/10.3390/antibiotics13060542
Chicago/Turabian StyleCha, Jae Myung, Jin Young Yoon, Min Seob Kwak, Moonhyung Lee, and Young-Seok Cho. 2024. "Demographic Characteristics and Economic Burden of Clostridioides difficile Infection in Korea: A Nationwide Population-Based Study after Propensity Score Matching" Antibiotics 13, no. 6: 542. https://doi.org/10.3390/antibiotics13060542
APA StyleCha, J. M., Yoon, J. Y., Kwak, M. S., Lee, M., & Cho, Y. -S. (2024). Demographic Characteristics and Economic Burden of Clostridioides difficile Infection in Korea: A Nationwide Population-Based Study after Propensity Score Matching. Antibiotics, 13(6), 542. https://doi.org/10.3390/antibiotics13060542