Ciprofloxacin Concentrations 100-Fold Lower than the MIC Can Select for Ciprofloxacin Resistance in Neisseria subflava: An In Vitro Study
Abstract
:1. Introduction
2. Results
2.1. Minimal Selective Concentration
2.1.1. N. subflava
2.1.2. Whole Genome Sequencing: Mutations in Fluoroquinolone Target Gene (gyrA)
2.2. Mutation Stability
3. Discussion
4. Materials and Methods
4.1. Bacterial Strain
4.2. MSCde novo Determination
4.3. Characterization of Colonies That Grew on Ciprofloxacin-Containing Plates
4.4. Mutation Stability Assessment
4.5. Whole Genome Sequencing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Unemo, M.; del Rio, C.; Shafer, W.M. Antimicrobial Resistance Expressed by Neisseria gonorrhoeae: A Major Global Public Health Problem in the 21st Century. Microbiol. Spectr. 2016, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Gullberg, E.; Cao, S.; Berg, O.G.; Ilbäck, C.; Sandegren, L.; Hughes, D.; Andersson, D.I. Selection of Resistant Bacteria at Very Low Antibiotic Concentrations. PLOS Pathog. 2011, 7, e1002158. [Google Scholar] [CrossRef] [PubMed]
- Gullberg, E.; Albrecht, L.M.; Karlsson, C.; Sandegren, L.; Andersson, D.I. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. mBio 2014, 5, e01918-14. [Google Scholar] [CrossRef] [PubMed]
- González, N.; Abdellati, S.; De Baetselier, I.; Laumen, J.G.E.; Van Dijck, C.; de Block, T.; Manoharan-Basil, S.S.; Kenyon, C. Ciprofloxacin Concentrations 1/1000th the MIC Can Select for Antimicrobial Resistance in N. gonorrhoeae—Important Implications for Maximum Residue Limits in Food. Antibiotics 2022, 11, 1430. [Google Scholar] [CrossRef] [PubMed]
- EMEA. Enrofloxacin (Extension to Sheep, Rabbits, and Lactating Cows); Summary Report; EMEA: Nottingham, UK, 1998; pp. 1–5. [Google Scholar]
- Huang, L.; Mo, Y.; Wu, Z.; Rad, S.; Song, X.; Zeng, H.; Bashir, S.; Kang, B.; Chen, Z. Occurrence, distribution, and health risk assessment of quinolone antibiotics in water, sediment, and fish species of Qingshitan reservoir, South China. Sci. Rep. 2020, 10, 155777. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Wang, J.; Han, R.; Xu, X.; Zhen, Y.; Qu, X.; Sun, P.; Li, S.; Yu, Z. Occurrence of several main antibiotic residues in raw milk in 10 provinces of China. Food Addit. Contam. Part B 2013, 6, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qiu, W.; Li, Y.; Liu, L. Antibiotic residues in poultry food in Fujian Province of China. Food Addit. Contam. Part B 2020, 13, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Duan, Y.-J.; Wang, S.-P.; Wang, L.-T.; Hou, Z.-L.; Cui, Y.-X.; Hou, J.; Das, R.; Mao, D.-Q.; Luo, Y. Occurrence and distribution of clinical and veterinary antibiotics in the faeces of a Chinese population. J. Hazard. Mater. 2020, 383, 121129. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.; Kho, Y.L.; Park, Y.; Choi, K. Influence of a five-day vegetarian diet on urinary levels of antibiotics and phthalate metabolites: A pilot study with “Temple Stay” participants. Environ. Res. 2010, 110, 375–382. [Google Scholar] [CrossRef]
- Kenyon, C. Positive Association between the Use of Quinolones in Food Animals and the Prevalence of Fluoroquinolone Resistance in E. coli and K. pneumoniae, A. baumannii and P. aeruginosa: A Global Ecological Analysis. Antibiotics 2021, 10, 1193. [Google Scholar] [CrossRef]
- Gonzalez, N.; Abdellati, S.; Manoharan-Basil, S.; Kenyon, C. Association between quinolone use in food animals and gonococcal resistance to ciprofloxacin: An ecological study. bioRxiv 2021. [Google Scholar] [CrossRef]
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef]
- Kenyon, C. Concentrations of Ciprofloxacin in the World’s Rivers Are Associated with the Prevalence of Fluoroquinolone Resistance in Escherichia coli: A Global Ecological Analysis. Antibiotics 2022, 11, 417. [Google Scholar] [CrossRef] [PubMed]
- Bowler, L.D.; Zhang, Q.Y.; Riou, J.Y.; Spratt, B.G. Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: Natural events and laboratory simulation. J. Bacteriol. 1994, 176, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Manoharan-Basil, S.S.; Laumen, J.G.E.; Van Dijck, C.; De Block, T.; De Baetselier, I.; Kenyon, C. Evidence of Horizontal Gene Transfer of 50S Ribosomal Genes rplB, rplD, and rplY in Neisseria gonorrhoeae. Front Microbiol. 2021, 12, 683901. [Google Scholar] [CrossRef] [PubMed]
- Shafer, W.M. Mosaic Drug Efflux Gene Sequences from Commensal Neisseria Can Lead to Low-Level Azithromycin Resistance Expressed by Neisseria gonorrhoeae Clinical Isolates. mBio 2018, 9, e01747-18. [Google Scholar] [CrossRef] [PubMed]
- Wadsworth, C.B.; Arnold, B.J.; Sater, M.R.A.; Grad, Y.H. Azithromycin Resistance through Interspecific Acquisition of an Epistasis-Dependent Efflux Pump Component and Transcriptional Regulator in Neisseria gonorrhoeae. mBio 2018, 9, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.A.; Raisman, J.C.; Wong, N.H.; Hudson, A.O.; Wadsworth, C.B. Exploration of the Neisseria Resistome Reveals Resistance Mechanisms in Commensals That May Be Acquired by N. gonorrhoeae through Horizontal Gene Transfer. Antibiotics 2020, 9, 656. [Google Scholar] [CrossRef] [PubMed]
- Manoharan-Basil, S.S.; González, N.; Laumen, J.G.E.; Kenyon, C. Horizontal Gene Transfer of Fluoroquinolone Resistance-Conferring Genes from Commensal Neisseria to Neisseria gonorrhoeae: A Global Phylogenetic Analysis of 20,047 Isolates. Front. Microbiol. 2022, 13, 793612. [Google Scholar] [CrossRef] [PubMed]
- Răpuntean, S.; Fiț, N.; Chirilă, F.; Nadăș, G. Physical factors action on Neisseria spp. strains isolated from animals. CABI Digit. Libr. 2008, 2008, 275–280. [Google Scholar]
- Sneath, P.; Barrett, S. A new species of Neisseria from the dental plaque of the domestic cow, Neisseria dentiae sp. nov. Lett. Appl. Microbiol. 1996, 23, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Kayalvizhi, N.; Anthony, T.; Gunasekaran, P. Characterization of the predominant bacteria associated with sheep and goat skin. J. Am. Leather Chem. Assoc. 2008, 103, 182–187. [Google Scholar]
- Liu, G.; Tang, C.M.; Exley, R.M. Non-pathogenic Neisseria: Members of an abundant, multi-habitat, diverse genus. Microbiology 2015, 161, 1297–1312. [Google Scholar] [CrossRef] [PubMed]
- Vanbaelen, T.; Van Dijck, C.; Laumen, J.; Gonzalez, N.; De Baetselier, I.; Manoharan-Basil, S.S.; De Block, T.; Kenyon, C. Global epidemiology of antimicrobial resistance in commensal Neisseria species: A systematic review. Int. J. Med. Microbiol. 2022, 312, 151551. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, C.; Laumen, J.; Manoharan-Basil, S. Choosing New Therapies for Gonorrhoea: We Need to Consider the Impact on the Pan-Neisseria Genome. A Viewpoint. Antibiotics 2021, 10, 515. [Google Scholar] [CrossRef] [PubMed]
- Goytia, M.; Wadsworth, C.B. Canary in the Coal Mine: How Resistance Surveillance in Commensals Could Help Curb the Spread of AMR in Pathogenic Neisseria. mBio 2022, 13, e01991-22. [Google Scholar] [CrossRef]
- Zhao, P.; Xu, L.; Zhang, A.; Zhu, B.; Shao, Z. Evolutionary analysis of gyrA gene from Neisseria meningitidis bacterial strains of clonal complex 4821 collected in China between 1978 and 2016. BMC Microbiol. 2020, 20, 71. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson-Palme, J.; Larsson, D.J. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int. 2016, 86, 140–149. [Google Scholar] [CrossRef]
- Klümper, U.; Recker, M.; Zhang, L.; Yin, X.; Zhang, T.; Buckling, A.; Gaze, W.H. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J. 2019, 13, 2927–2937. [Google Scholar] [CrossRef]
- Seiler, C.; Berendonk, T.U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 2012, 3, 399. [Google Scholar] [CrossRef]
- Gestels, Z.; Baranchyk, Y.; Van den Bossche, D.; Laumen, J.; Abdellati, S.; Britto Xavier, B.; Manoharan-Basil, S.S.; Kenyon, C. Could traces of fluoroquinolones in food induce ciprofloxacin resistance in Escherichia coli and Klebsiella pneumoniae? An in vivo study in Galleria mellonella with important implications for maximum residue limits in food. Microbiol. Spectr. 2024, 12, e0359523. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- White, A.; Hughes, J.M. Critical Importance of a One Health Approach to Antimicrobial Resistance. Ecohealth 2019, 16, 404–409. [Google Scholar] [CrossRef]
- Laumen, J.G.E.; Van Dijck, C.; Abdellati, S.; De Baetselier, I.; Serrano, G.; Manoharan-Basil, S.S.; Bottieau, E.; Martiny, D.; Kenyon, C. Antimicrobial susceptibility of commensal Neisseria in a general population and men who have sex with men in Belgium. Sci. Rep. 2022, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. Clinical Breakpoints—Breakpoints and Guidance; EUCAST: Basel, Switzerland, 2022; p. 15. [Google Scholar]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2015. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 16 April 2024).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Shovill. 2019. Available online: https://github.com/tseemann/shovill (accessed on 14 March 2022).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
Colony | Ciprofloxacin MIC (µg/mL) | MALDI-TOF-MS ID | MALDI-TOF Score | Whole Genome Sequencing |
---|---|---|---|---|
1/100-4.1 | 0.19 | N. flavescens subflava group | 2.16 | ✓ |
1/100-4.2 | 0.19 | N. flavescens subflava group | 2.17 | x |
1/100-4.3 | 0.19 | N. flavescens subflava group | 2.26 | x |
1/100-4.4 | 0.19 | N. flavescens subflava group | 2.17 | x |
1/100-4.5 | 0.25 | N. flavescens subflava group | 2.21 | x |
1/100-4.6 | 0.19 | N. flavescens subflava group | 2.06 | x |
1/100-4.7 | 0.25 | N. flavescens subflava group | 2.01 | ✓ |
1/100-4.8 | 0.19 | N. flavescens subflava group | 2.12 | x |
1/100-4.9 | 0.19 | N. flavescens subflava group | 2.27 | x |
1/100-4.10 | 0.19 | N. flavescens subflava group | 2.3 | x |
1/100-4.11 | 0.19 | N. flavescens subflava group | 2.28 | x |
1/100-4.12 | 0.19 | N. flavescens subflava group | 2.19 | x |
1/100-4.13 | 0.19 | N. flavescens subflava group | 2.27 | x |
1/100-4.14 | 0.19 | N. flavescens subflava group | 2.25 | ✓ |
1/100-4.15 | 0.25 | N. flavescens subflava group | 2.07 | x |
1/100-4.16 | 0.25 | N. flavescens subflava group | 2.05 | x |
1/100-4.17 | 0.25 | N. flavescens subflava group | 2.11 | x |
1/100-4.18 | 0.25 | N. flavescens subflava group | 2.28 | x |
1/100-4.19 | 0.19 | N. flavescens subflava group | 2.28 | x |
1/100-4.20 | 0.25 | N. flavescens subflava group | 2.32 | x |
1/100-4.21 | 0.19 | N. flavescens subflava group | 2.31 | ✓ |
1/100-4.22 | 0.19 | N. flavescens subflava group | 2.25 | x |
1/100-4.23 | 0.19 | N. flavescens subflava group | 2.13 | x |
1/100-4.24 | 0.25 | N. flavescens subflava group | 2.27 | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gestels, Z.; Abdellati, S.; Kenyon, C.; Manoharan-Basil, S.S. Ciprofloxacin Concentrations 100-Fold Lower than the MIC Can Select for Ciprofloxacin Resistance in Neisseria subflava: An In Vitro Study. Antibiotics 2024, 13, 560. https://doi.org/10.3390/antibiotics13060560
Gestels Z, Abdellati S, Kenyon C, Manoharan-Basil SS. Ciprofloxacin Concentrations 100-Fold Lower than the MIC Can Select for Ciprofloxacin Resistance in Neisseria subflava: An In Vitro Study. Antibiotics. 2024; 13(6):560. https://doi.org/10.3390/antibiotics13060560
Chicago/Turabian StyleGestels, Zina, Saïd Abdellati, Chris Kenyon, and Sheeba Santhini Manoharan-Basil. 2024. "Ciprofloxacin Concentrations 100-Fold Lower than the MIC Can Select for Ciprofloxacin Resistance in Neisseria subflava: An In Vitro Study" Antibiotics 13, no. 6: 560. https://doi.org/10.3390/antibiotics13060560
APA StyleGestels, Z., Abdellati, S., Kenyon, C., & Manoharan-Basil, S. S. (2024). Ciprofloxacin Concentrations 100-Fold Lower than the MIC Can Select for Ciprofloxacin Resistance in Neisseria subflava: An In Vitro Study. Antibiotics, 13(6), 560. https://doi.org/10.3390/antibiotics13060560