Ewingella americana Infections in Humans—A Narrative Review
Abstract
:1. Introduction
2. Results
2.1. Included Studies’ Characteristics
2.2. Epidemiology of E. americana Infections
2.3. Microbiology and Antimicrobial Resistance of E. americana Infections
2.4. Clinical Presentation of E. americana Infections
2.5. Treatment and Outcomes of E. americana Infections
2.6. Bacteremia Due to E. americana
2.7. Respiratory Tract Infection Due to E. americana
2.8. Peritonitis Due to E. americana
2.9. Conjunctivitis Due to E. americana
2.10. Other Infections Due to E. americana
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clarridge, J.E. Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases. Clin. Microbiol. Rev. 2004, 17, 840–862. [Google Scholar] [CrossRef]
- Woo, P.C.Y.; Lau, S.K.P.; Teng, J.L.L.; Tse, H.; Yuen, K.-Y. Then and Now: Use of 16S rDNA Gene Sequencing for Bacterial Identification and Discovery of Novel Bacteria in Clinical Microbiology Laboratories. Clin. Microbiol. Infect. 2008, 14, 908–934. [Google Scholar] [CrossRef]
- Chen, H.; Li, J.; Yan, S.; Sun, H.; Tan, C.; Liu, M.; Liu, K.; Zhang, H.; Zou, M.; Xiao, X. Identification of Pathogen(s) in Infectious Diseases Using Shotgun Metagenomic Sequencing and Conventional Culture: A Comparative Study. PeerJ 2021, 9, e11699. [Google Scholar] [CrossRef]
- Grimont, P.A.; Farmer, J.J.; Grimont, F.; Asbury, M.A.; Brenner, D.J.; Deval, C. Ewingella americana Gen. Nov., Sp. Nov., a New Enterobacteriaceae Isolated from Clinical Specimens. Ann. Microbiol. 1983, 134A, 39–52. [Google Scholar] [CrossRef]
- Adeolu, M.; Alnajar, S.; Naushad, S.; Gupta, R.S. Genome-Based Phylogeny and Taxonomy of the “Enterobacteriales”: Proposal for Enterobacterales Ord. Nov. Divided into the Families Enterobacteriaceae, Erwiniaceae Fam. Nov., Pectobacteriaceae Fam. Nov., Yersiniaceae Fam. Nov., Hafniaceae Fam. Nov., Morganellaceae Fam. Nov., and Budviciaceae Fam. Nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5575–5599. [Google Scholar] [CrossRef]
- Liu, Z.; Sheng, H.; Okorley, B.A.; Li, Y.; Sossah, F.L. Comparative Genomic Analysis Provides Insights into the Phylogeny, Resistome, Virulome, and Host Adaptation in the Genus Ewingella. Pathogens 2020, 9, 330. [Google Scholar] [CrossRef]
- Maraki, S. Acute Conjunctivitis Caused by Ewingella americana. J. Pediatr. Ophthalmol. Strabismus 2012, 49, e52–e54. [Google Scholar] [CrossRef]
- Wei, M.; Zhao, Z.B.; Liu, H.Y.; Fu, C.H.; Yu, L.J. First Report of Ewingella americana Causing Bacterial Shot Hole on Anoectochilus roxburghii in China. Plant Dis. 2020, 104, 1247. [Google Scholar] [CrossRef]
- Hamilton-Miller, J.M.; Shah, S. Identity and Antibiotic Susceptibility of Enterobacterial Flora of Salad Vegetables. Int. J. Antimicrob. Agents 2001, 18, 81–83. [Google Scholar] [CrossRef] [PubMed]
- Inglis, P.W.; Peberdy, J.F. Isolation of Ewingella americana from the Cultivated Mushroom, Agaricus bisporus. Curr. Microbiol. 1996, 33, 334–337. [Google Scholar] [CrossRef] [PubMed]
- Müller, H.E.; Fanning, G.R.; Brenner, D.J. Isolation of Ewingella americana from Mollusks. Curr. Microbiol. 1995, 31, 287–290. [Google Scholar] [CrossRef]
- Helps, C.R.; Harbour, D.A.; Corry, J.E. PCR-Based 16S Ribosomal DNA Detection Technique for Clostridium estertheticum Causing Spoilage in Vacuum-Packed Chill-Stored Beef. Int. J. Food Microbiol. 1999, 52, 57–65. [Google Scholar] [CrossRef]
- Pien, F.D.; Farmer, J.J.; Weaver, R.E. Polymicrobial Bacteremia Caused by Ewingella americana (Family Enterobacteriaceae) and an Unusual Pseudomonas Species. J. Clin. Microbiol. 1983, 18, 727–729. [Google Scholar] [CrossRef]
- Pien, F.D. Nosocomial Ewingella americana Bacteremia in an Intensive Care Unit. Arch. Intern. Med. 1986, 146, 111. [Google Scholar] [CrossRef]
- Bear, N.; Klugman, K.P.; Tobiansky, L.; Koornhof, H.J. Wound Colonization by Ewingella americana. J. Clin. Microbiol. 1986, 23, 650–651. [Google Scholar] [CrossRef] [PubMed]
- McNeil, M.M.; Davis, B.J.; Solomon, S.L.; Anderson, R.L.; Shulman, S.T.; Gardner, S.; Kabat, K.; Martone, W.J. Ewingella americana: Recurrent Pseudobacteremia from a Persistent Environmental Reservoir. J. Clin. Microbiol. 1987, 25, 498–500. [Google Scholar] [CrossRef] [PubMed]
- Heizmann, W.R.; Michel, R. Isolation of Ewingella americana from a Patient with Conjunctivitis. Eur. J. Clin. Microbiol. Infect. Dis. 1991, 10, 957–959. [Google Scholar] [CrossRef] [PubMed]
- Devreese, K.; Claeys, G.; Verschraegen, G. Septicemia with Ewingella americana. J. Clin. Microbiol. 1992, 30, 2746–2747. [Google Scholar] [CrossRef]
- Kati, C.; Bibashi, E.; Kokolina, E.; Sofianou, D. Case of Peritonitis Caused by Ewingella americana in a Patient Undergoing Continuous Ambulatory Peritoneal Dialysis. J. Clin. Microbiol. 1999, 37, 3733–3734. [Google Scholar] [CrossRef]
- Maertens, J.; Delforge, M.; Vandenberghe, P.; Boogaerts, M.; Verhaegen, J. Catheter-Related Bacteremia Due to Ewingella americana. Clin. Microbiol. Infect. 2001, 7, 103–104. [Google Scholar] [CrossRef]
- Tsokos, M. Fatal Waterhouse-Friderichsen syndrome due to Ewingella americana infection. Am. J. Forensic Med. Pathol. 2003, 24, 41–44. [Google Scholar] [CrossRef]
- Ryoo, N.-H.; Ha, J.-S.; Jeon, D.-S.; Kim, J.-R.; Kim, H.-C. A Case of Pneumonia Caused by Ewingella americana in a Patient with Chronic Renal Failure. J. Korean Med. Sci. 2005, 20, 143. [Google Scholar] [CrossRef] [PubMed]
- Pound, M.W.; Tart, S.B.; Okoye, O. Multidrug-Resistant Ewingella Americana: A Case Report and Review of the Literature. Ann. Pharmacother. 2007, 41, 2066–2070. [Google Scholar] [CrossRef]
- Hassan, S.; Amer, S.; Mittal, C.; Sharma, R. Ewingella Americana: An Emerging True Pathogen. Case Rep. Infect. Dis. 2012, 2012, 730720. [Google Scholar] [CrossRef]
- Esposito, S.; Miconi, F.; Molinari, D.; Savarese, E.; Celi, F.; Marchese, L.; Valloscuro, S.; Miconi, G.; Principi, N. What Is the Role of Ewingella americana in Humans? A Case Report in a Healthy 4-Year-Old Girl. BMC Infect. Dis. 2019, 19, 386. [Google Scholar] [CrossRef]
- Khurana, S.; Chemmachel, C.; Saxena, R. Ewingella americana Peritonitis in a Patient on Peritoneal Dialysis: A Case Report and Review of the Literature. Case Rep. Nephrol. Dial. 2020, 10, 147–153. [Google Scholar] [CrossRef]
- Meisler, S.; Kamity, R.; Noor, A.; Krilov, L.; Tiozzo, C. First Case of Ewingella americana Meningitis in a Term Newborn: A Rare but Real Pathogen. Front. Pediatr. 2020, 8, 308. [Google Scholar] [CrossRef] [PubMed]
- Abrantes, C.; Freitas, J.; Silva, T.; Marques Da Silva, L.; Carvalho, M.J.; Rodrigues, A.; Cabrita, A. A Case of Peritoneal Dialysis-Related Peritonitis Caused by Ewingella americana. Case Rep. Infect. Dis. 2022, 2022, 5607080. [Google Scholar] [CrossRef] [PubMed]
- Hourizadeh, J.; Joy, J.; Berger, J.I.; Zainah, H. The First Known Documented Case of Ewingella Americana Urinary Tract Infection. Cureus 2023, 15, e35640. [Google Scholar] [CrossRef]
- Chemaly, R.F.; Simmons, S.; Dale, C.; Ghantoji, S.S.; Rodriguez, M.; Gubb, J.; Stachowiak, J.; Stibich, M. The Role of the Healthcare Environment in the Spread of Multidrug-Resistant Organisms: Update on Current Best Practices for Containment. Ther. Adv. Infect. Dis. 2014, 2, 79–90. [Google Scholar] [CrossRef]
- Otter, J.A.; French, G.L. Survival of Nosocomial Bacteria and Spores on Surfaces and Inactivation by Hydrogen Peroxide Vapor. J. Clin. Microbiol. 2009, 47, 205–207. [Google Scholar] [CrossRef]
- Kramer, A.; Schwebke, I.; Kampf, G. How Long Do Nosocomial Pathogens Persist on Inanimate Surfaces? A Systematic Review. BMC Infect. Dis. 2006, 6, 130. [Google Scholar] [CrossRef]
- Riggs, M.M.; Sethi, A.K.; Zabarsky, T.F.; Eckstein, E.C.; Jump, R.L.P.; Donskey, C.J. Asymptomatic Carriers Are a Potential Source for Transmission of Epidemic and Nonepidemic Clostridium difficile Strains among Long-Term Care Facility Residents. Clin. Infect. Dis. 2007, 45, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Boyce, J.M. Environmental Contamination Makes an Important Contribution to Hospital Infection. J. Hosp. Infect. 2007, 65 (Suppl. S2), 50–54. [Google Scholar] [CrossRef] [PubMed]
- Donskey, C.J. Does Improving Surface Cleaning and Disinfection Reduce Health Care-Associated Infections? Am. J. Infect. Control 2013, 41, S12–S19. [Google Scholar] [CrossRef]
- Blot, S.; Ruppé, E.; Harbarth, S.; Asehnoune, K.; Poulakou, G.; Luyt, C.-E.; Rello, J.; Klompas, M.; Depuydt, P.; Eckmann, C.; et al. Healthcare-Associated Infections in Adult Intensive Care Unit Patients: Changes in Epidemiology, Diagnosis, Prevention and Contributions of New Technologies. Intensive Crit. Care Nurs. 2022, 70, 103227. [Google Scholar] [CrossRef] [PubMed]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; et al. Multistate Point-Prevalence Survey of Health Care-Associated Infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef]
- Dropulic, L.K.; Lederman, H.M. Overview of Infections in the Immunocompromised Host. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef]
- Chinn, I.K.; Shearer, W.T. Severe Combined Immunodeficiency Disorders. Immunol. Allergy Clin. N. Am. 2015, 35, 671–694. [Google Scholar] [CrossRef]
- Marciano, B.E.; Spalding, C.; Fitzgerald, A.; Mann, D.; Brown, T.; Osgood, S.; Yockey, L.; Darnell, D.N.; Barnhart, L.; Daub, J.; et al. Common Severe Infections in Chronic Granulomatous Disease. Clin. Infect. Dis. 2015, 60, 1176–1183. [Google Scholar] [CrossRef]
- Dubinsky, M.C. Azathioprine, 6-Mercaptopurine in Inflammatory Bowel Disease: Pharmacology, Efficacy, and Safety. Clin. Gastroenterol. Hepatol. 2004, 2, 731–743. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, A.; Qasim, A.; O’Moráin, C.A. The Long-Term Risk of Continuous Immunosuppression Using Thioguanides in Inflammatory Bowel Disease. Ther. Adv. Chronic Dis. 2010, 1, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Kirchgesner, J.; Lemaitre, M.; Carrat, F.; Zureik, M.; Carbonnel, F.; Dray-Spira, R. Risk of Serious and Opportunistic Infections Associated with Treatment of Inflammatory Bowel Diseases. Gastroenterology 2018, 155, 337–346.e10. [Google Scholar] [CrossRef] [PubMed]
- Fishman, J.A. Infection in Organ Transplantation. Am. J. Transplant. 2017, 17, 856–879. [Google Scholar] [CrossRef] [PubMed]
- Courjon, J.; Neofytos, D.; van Delden, C. Bacterial Infections in Solid Organ Transplant Recipients. Curr. Opin. Organ Transplant. 2024, 29, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Nambiar, P.; Silibovsky, R.; Belden, K.A. Infection in Kidney Transplantation. In Contemporary Kidney Transplantation; Ramirez, C.G.B., McCauley, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 307–327. ISBN 978-3-319-19616-9. [Google Scholar]
- Kennedy, C.C.; Razonable, R.R. Fungal Infections after Lung Transplantation. Clin. Chest Med. 2017, 38, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Eichenberger, E.M.; Ruffin, F.; Dagher, M.; Lerebours, R.; Jung, S.-H.; Sharma-Kuinkel, B.; Macintyre, A.N.; Thaden, J.T.; Sinclair, M.; Hale, L.; et al. Bacteremia in Solid Organ Transplant Recipients as Compared to Immunocompetent Patients: Acute Phase Cytokines and Outcomes in a Prospective, Matched Cohort Study. Am. J. Transplant. 2021, 21, 2113–2122. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Syed, A.; Rupp, M.E.; Chambers, H.; Vargas, L.; Maskin, A.; Miles, C.D.; Langnas, A.; Florescu, D.F. Is Bacteremic Sepsis Associated with Higher Mortality in Transplant Recipients than in Nontransplant Patients? A Matched Case-Control Propensity-Adjusted Study. Clin. Infect. Dis. 2015, 60, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Young, J.-A.H.; Logan, B.R.; Wu, J.; Wingard, J.R.; Weisdorf, D.J.; Mudrick, C.; Knust, K.; Horowitz, M.M.; Confer, D.L.; Dubberke, E.R.; et al. Infections after Transplantation of Bone Marrow or Peripheral Blood Stem Cells from Unrelated Donors. Biol. Blood Marrow Transplant. 2016, 22, 359–370. [Google Scholar] [CrossRef]
- Chen, X.-F.; Hou, X.; Xiao, M.; Zhang, L.; Cheng, J.-W.; Zhou, M.-L.; Huang, J.-J.; Zhang, J.-J.; Xu, Y.-C.; Hsueh, P.-R. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) Analysis for the Identification of Pathogenic Microorganisms: A Review. Microorganisms 2021, 9, 1536. [Google Scholar] [CrossRef]
- Dzidic, S.; Bedeković, V. Horizontal Gene Transfer-Emerging Multidrug Resistance in Hospital Bacteria. Acta Pharmacol. Sin. 2003, 24, 519–526. [Google Scholar] [PubMed]
- Reygaert, W.C. An Overview of the Antimicrobial Resistance Mechanisms of Bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Sultan, I.; Rahman, S.; Jan, A.T.; Siddiqui, M.T.; Mondal, A.H.; Haq, Q.M.R. Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front. Microbiol. 2018, 9, 2066. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Number of Patients | Gender | Age (Years) | Type of Infection | Treatment (%) | Mortality (%) |
---|---|---|---|---|---|---|
Pien et al., 1983 [13] | 1 | Male | 41 | Bacteremia | Aminoglycoside Trimethoprim and sulfamethoxazole | 0 (0) |
Pien et al., 1986 [14] | 4 | 2 males 2 females | 54, 55, 57, 58 | 4 patients with bacteremia | Aminoglycoside 4 (100) Trimethoprim and sulfamethoxazole 2 (50) Cephalosporin 1 (25) Aminopenicillin 1 (25) Carbenicillin 1 (25) Mezlocillin 2 (50) Tetracycline 1 (25) | 0 (0) |
Heizmann et al., 1991 [17] | 1 | Female | 30 | Conjunctivitis | Trimethoprim and sulfamethoxazole Colistin locally Aminoglycoside locally Aminopenicillin and beta-lactamase inhibitor | 0 (0) |
Devreese et al., 1992 [18] | 1 | Male | 75 | Bacteremia | Temocillin | 0 (0) |
Kati et al., 1999 [19] | 1 | Female | 70 | Peritoneal dialysis peritonitis | Aminoglycoside | 0 (0) |
Maertens et al., 2001 [20] | 1 | Female | 57 | Bacteremia | No antibiotics | 0 (0) |
Tsokos et al., 2003 [21] | 1 | Female | 74 | Bacteremia | No antibiotics | 1 (100) |
Ryoo et al., 2005 [22] | 1 | Male | 35 | Lower respiratory tract infection | Aminoglycoside Cephalosporin | 0 (0) |
Pound et al., 2007 [23] | 1 | Female | 77 | Lower respiratory tract infection | Trimethoprim and sulfamethoxazole | 0 (0) |
Hassan et al., 2012 [24] | 1 | Male | 50 | Bone and joint infection | Cephalosporin | 0 (0) |
Maraki et al., 2012 [7] | 1 | Male | 3 | Conjunctivitis | Aminopenicillin and beta-lactamase inhibitor | 0 (0) |
Esposito et al., 2019 [25] | 1 | Female | 4 | Lower respiratory tract infection and bacteremia | Macrolide Aminopenicillin and beta-lactamase inhibitor | 0 (0) |
Khurana et al., 2020 [26] | 1 | Female | 68 | Peritoneal dialysis peritonitis | Aminoglycoside | 0 (0) |
Meisler et al., 2020 [27] | 1 | Male | 0 | CNS infection | Cephalosporin | 0 (0) |
Abrantes et al., 2022 [28] | 1 | Female | 45 | Peritoneal dialysis peritonitis | Cephalosporin | 0 (0) |
Hourizadeh et al., 2023 [29] | 1 | Male | 73 | Urinary tract infection | Carbapenem | 0 (0) |
Characteristic * | All Patients (n = 19) | Bacteremia ** (n = 9) | Respiratory Tract Infection ** (n = 3) | PD-Associated Peritonitis (n = 3) | Conjunctivitis (n = 2) | Urinary Tract Infection (n = 1) | Bone and Joint Infection (n = 1) | Central Nervous System Infection (n = 1) |
---|---|---|---|---|---|---|---|---|
Age, median in years (IQR) | 55 (35–70) | 57 (47.5–66) | 35 (4–77) | 68 (45–70) | 16.5 (3–30) | 73 | 50 | 0 |
Male, n (%) | 9 (47.4) | 4 (44.4) | 1 (33.3) | 0 (0) | 1 (50) | 1 (100) | 1 (100) | 1 (100) |
Post-surgery (within 3 months), n (%) | 6 (31.6) | 6 (66.7) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Post-cardiac surgery (within 3 months), n (%) | 3 (15.8) | 3 (33.3) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Previous antimicrobial therapy, n (%) | 5 (26.3) | 5 (55.6) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
IVDU, n (%) | 1 (5.3) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (100) | 0 (0) |
Immunosuppression, n (%) | 3 (15.8) | 1 (11.1) | 2 (66.7) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
ESRD on PD, n (%) | 3 (15.8) | 0 (0) | 0 (0) | 3 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
ESRD on HD, n (%) | 1 (5.3) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (100) | 0 (0) | 0 (0) |
Polymicrobial infection, n (%) | 2 (10.5) | 1 (11.1) | 0 (0) | 0 (0) | 0 (0) | 1 (100) | 0 (0) | 0 (0) |
Community-acquired, n (%) | 6 (31.6) | 2 (22.2) | 2 (66.7) | 0 (0) | 2 (100) | 0 (0) | 1 (100) | 0 (0) |
Clinical characteristics | ||||||||
Fever, n (%) | 11 (57.9) | 8 (88.9) | 2 (66.7) | 0 (0) | 0 (0) | 1 (100) | 0 (0) | 1 (100) |
Sepsis, n (%) | 8/15 (53.3) | 5/5 (100) | 2 (66.7) | 0 (0) | 0 (0) | 1 (100) | 0 (0) | 1 (100) |
Outcomes | ||||||||
Overall mortality, n (%) | 1 (5.3) | 1 (11.1) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Infection-related mortality, n (%) | 1 (5.3) | 1 (11.1) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannou, P.; Baliou, S.; Kofteridis, D. Ewingella americana Infections in Humans—A Narrative Review. Antibiotics 2024, 13, 559. https://doi.org/10.3390/antibiotics13060559
Ioannou P, Baliou S, Kofteridis D. Ewingella americana Infections in Humans—A Narrative Review. Antibiotics. 2024; 13(6):559. https://doi.org/10.3390/antibiotics13060559
Chicago/Turabian StyleIoannou, Petros, Stella Baliou, and Diamantis Kofteridis. 2024. "Ewingella americana Infections in Humans—A Narrative Review" Antibiotics 13, no. 6: 559. https://doi.org/10.3390/antibiotics13060559
APA StyleIoannou, P., Baliou, S., & Kofteridis, D. (2024). Ewingella americana Infections in Humans—A Narrative Review. Antibiotics, 13(6), 559. https://doi.org/10.3390/antibiotics13060559