Influence of CO2 and Dust on the Survival of Non-Resistant and Multi-Resistant Airborne E. coli Strains
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of CO2 on the Survival Rate
2.2. Effect of Dust on the Survival Rate
3. Material and Methods
3.1. Preparation of Bacterial Strains
3.2. Preparation of Bacterial Suspension
3.3. Chamber Operations
3.4. Determination of Survival Rates
- (1)
- Measurement of OD600nm of the suspended cells in 0.9% NaCl solution to assess the total bacterial concentration injected into the chamber. OD600nm is proportional to the bacteria concentration, thus the equation below was employed to determine the total bacterial concentration:
- (2)
- Preparation of appropriate serial dilutions of the bacterial suspension in 0.9% NaCl, followed by plating on LB culture medium-filled petri dishes (LB media plates for JM109 and LB media plates spiked with ampicillin for JM109-pEC958). After overnight incubation at 37 °C, CFUs were counted the next morning to estimate the viable fraction of the bacterial suspension in terms of CFU mL−1.
- (3)
- Calculation of the dead bacteria concentration by subtracting the viable bacterial concentration from step 2 from the total bacterial concentration obtained in step 1.
- (4)
- Determination of a correlation factor, Cf, using the following equation:
- (5)
- Determination of the total airborne bacteria concentration inside the ChAMBRe by the WIBS data analysis as # cm−3, considering data at 3 min after the injection’s conclusion to ensure proper mixing within the chamber volume.
- (6)
- Calculation of the airborne viable bacteria concentration (# cm−3) inside the chamber using the measured airborne bacterial concentrations from step 5 and the correlation factor from step 4:
- (1)
- Using the bacteria culturable fraction collected on the four petri dishes inside the chamber (see Section 3.3), determined by CFU visual counting and inserted into the following equation to determine the ratio of the fraction of surviving bacteria:
- (2)
- Calculation of the survival rate (%) of the bacterial cells under specific environmental conditions by comparing the ratios during those experiments to the ratios obtained during baseline experiments:
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, T.; Li, X.; Wang, M.; Chen, H.; Yang, Y.; Chen, Q.L.; Yao, M. Time-resolved spread of antibiotic resistance genes in highly polluted air. Environ. Int. 2019, 127, 333–339. [Google Scholar] [CrossRef]
- Ballantyne, E.N. On Certain Factors Influencing the Survival of Bacteria in Water and in Saline Solutions. J. Bacteriol. 1930, 19, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Carlucci, A.F.; Pramer, D. Factors Affecting the Survival of Bacteria in Sea Water. Appl. Microbiol. 1959, 7, 388–392. [Google Scholar] [CrossRef]
- Ruiz-Gil, T.; Acuña, J.J.; Fujiyoshi, S.; Tanaka, D.; Noda, J.; Maruyama, F.; Jorquera, M.A. Airborne bacterial communities of outdoor environments and their associated influencing factors. Environ. Int. 2020, 145, 106156. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.R. Microcolony and biofilm formation as a survival strategy for bacteria. J. Theor. Biol. 2008, 251, 24–34. [Google Scholar] [CrossRef]
- Li, H.; Zhou, X.Y.; Yang, X.R.; Zhu, Y.G.; Hong, Y.W.; Su, J.Q. Spatial and seasonal variation of the airborne microbiome in a rapidly developing city of China. Sci. Total. Environ. 2019, 665, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Uetake, J.; Tobo, Y.; Uji, Y.; Hill, T.C.J.; DeMott, P.J.; Kreidenweis, S.M.; Misumi, R. Seasonal Changes of Airborne Bacterial Communities Over Tokyo and Influence of Local Meteorology. Front. Microbiol. 2019, 10, 1572. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.W. The effect of environmental parameters on the survival of airborne infectious agents. J. R. Soc. Interface 2009, 6 (Suppl. S6), S737–S746. [Google Scholar] [CrossRef]
- Theunissen, H.J.; Toom, N.A.L.-D.; Burggraaf, A.; Stolz, E.; Michel, M.F. Influence of Temperature and Relative Humidity on the Survival of Chlamydia pneumoniae in Aerosols. Appl. Environ. Microbiol. 1993, 59, 2589–2593. [Google Scholar] [CrossRef]
- Handley, B.A.; Webster, A.J.F. Some factors affecting the airborne survival of bacteria outdoors. J. Appl. Bacteriol. 1995, 79, 368–378. [Google Scholar] [CrossRef]
- Gayán, E.; Álvarez, I.; Condón, S. Inactivation of bacterial spores by UV-C light. Innov. Food Sci. Emerg. Technol. 2013, 19, 140–145. [Google Scholar] [CrossRef]
- Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D. UV Inactivation of Pathogenic and Indicator Microorganisms. Appl. Environ. Microbiol. 1985, 49, 1361–1365. [Google Scholar] [CrossRef]
- Fernandez, M.O.; Thomas, R.J.; Garton, N.J.; Hudson, A.; Haddrell, A.; Reid, J.P. Assessing the airborne survival of bacteria in populations of aerosol droplets with a novel technology. J. R. Soc. Interface 2019, 16, 20180779. [Google Scholar] [CrossRef]
- Fujiyoshi, S.; Tanaka, D.; Maruyama, F. Transmission of Airborne Bacteria across Built Environments and Its Measurement Standards: A Review. Front. Microbiol. 2017, 8, 291562. [Google Scholar] [CrossRef]
- Prussin, A.J., II; Marr, L.C.; Bibby, K.J. Challenges of studying viral aerosol metagenomics and communities in comparison with bacterial and fungal aerosols. FEMS Microbiol. Lett. 2014, 357, 1–9. [Google Scholar] [CrossRef]
- Ruan, Y.; Kuzyakov, Y.; Liu, X.; Zhang, X.; Xu, Q.; Guo, J.; Guo, S.; Shen, Q.; Yang, Y.; Ling, N. Elevated temperature and CO2 strongly affect the growth strategies of soil bacteria. Nat. Commun. 2023, 14, 391. [Google Scholar] [CrossRef]
- Du, B.; Tandoc, M.C.; Mack, M.L.; Siegel, J.A. Indoor CO2 concentrations and cognitive function: A critical review. Indoor Air 2020, 30, 1067–1082. [Google Scholar] [CrossRef] [PubMed]
- Michl, J.; Park, K.C.; Swietach, P. Evidence-based guidelines for controlling pH in mammalian live-cell culture systems. Commun. Biol. 2019, 2, 144. [Google Scholar] [CrossRef] [PubMed]
- Jansen, J.E.; Bremmelgaard, A. Effect of culture medium and carbon dioxide concentration on growth of anaerobic bacteria and medium pH. Acta Pathol. Microbiol. Scand. Ser. B Microbiol. 1986, 94B, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, A.; Markham, C.; Aykar, S.S.; Van Der Pol, B.; Dixon, P.; Wu, M.; Wong, S. PrintrLab incubator: A portable and low-cost CO2 incubator based on an open-source 3D printer architecture. PLoS ONE 2021, 16, e0251812. [Google Scholar] [CrossRef]
- Wei, M.; Liu, H.; Chen, J.; Xu, C.; Li, J.; Xu, P.; Sun, Z. Effects of aerosol pollution on PM2.5-associated bacteria in typical inland and coastal cities of northern China during the winter heating season. Environ. Pollut. 2020, 262, 114188. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, H.; Grossi, C.M.; Brimblecombe, P. Low-technology dust monitoring for historic collections. J. Inst. Conserv. 2011, 34, 104–114. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, D.; Shi, Y.; Li, B.; Yang, J.; Yu, X.; Chen, N.; Kakikawa, M. Cell concentration, viability and culture composition of airborne bacteria during a dust event in Beijing. J. Environ. Sci. 2017, 55, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Noda, J.; Tomizawa, S.; Hoshino, B.; Munkhjargal, E.; Kawai, K.; Kai, K. Atmospheric dust as a possible survival factor for bioaerosols. E3S Web Conf. 2019, 99, 04007. [Google Scholar] [CrossRef]
- Hara, K.; Zhang, D. Bacterial abundance and viability in long-range transported dust. Atmos. Environ. 2012, 47, 20–25. [Google Scholar] [CrossRef]
- Bouillard, L.; Michel, O.; Dramaix, M.; Devleeschouwer, M. Bacterial contamination of indoor air, surfaces, and settled dust, and related dust endotoxin concentrations in healthy office buildings. Ann. Agric. Environ. Med. 2005, 12, 187–192. [Google Scholar]
- Monk, J.M.; Koza, A.; Campodonico, M.A.; Machado, D.; Seoane, J.M.; Palsson, B.O.; Herrgård, M.J.; Feist, A.M. Multi-omics Quantification of Species Variation of Escherichia coli Links Molecular Features with Strain Phenotypes. Cell Syst. 2016, 3, 238–251.e12. [Google Scholar] [CrossRef]
- Bauer, A.P.; Dieckmann, S.M.; Ludwig, W.; Schleifer, K.H. Rapid identification of Escherichia coli safety and laboratory strain lineages based on Multiplex-PCR. FEMS Microbiol. Lett. 2007, 269, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Govindasamy, B. Digesting 400 ppm for global mean CO2 concentration. Curr. Sci. 2013, 104, 1471–1472. [Google Scholar]
- Berg, I.A. Ecological Aspects of the Distribution of Different Autotrophic CO2 Fixation Pathways. Appl. Environ. Microbiol. 2011, 77, 1925–1936. [Google Scholar] [CrossRef]
- Sporre, E.; Karlsen, J.; Schriever, K.; Asplund-Samuelsson, J.; Janasch, M.; Strandberg, L.; Karlsson, A.; Kotol, D.; Zeckey, L.; Piazza, I.; et al. Metabolite interactions in the bacterial Calvin cycle and implications for flux regulation. Commun. Biol. 2023, 6, 1–15. [Google Scholar] [CrossRef]
- Kobayashi, H.; Saito, H.; Kakegawa, T. Bacterial strategies to inhabit acidic environments. J. Gen. Appl. Microbiol. 2000, 46, 235–243. [Google Scholar] [CrossRef]
- Das, N.R.; Chaudhary, A. Effect of elevated temperature and CO2 on quorum sensing mediated virulence in soft rot causing Pectobacterium carotovorum pv. carotovorum. Indian J. Hortic. 2014, 71, 227–231. [Google Scholar]
- Onyeaka, H.; Ekwebelem, O.C. A review of recent advances in engineering bacteria for enhanced CO2 capture and utilization. Int. J. Environ. Sci. Technol. 2023, 20, 4635–4648. [Google Scholar] [CrossRef] [PubMed]
- Knight, M.; Wolfe, R.S.; Elsden, S.R. The synthesis of amino acids by Methanobacterium omelianskii. Biochem. J. 1966, 99, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Repaske, R.; Clayton, M.A. Control of Escherichia coli growth by CO2. J. Bacteriol. 1978, 135, 1162–1164. [Google Scholar] [CrossRef]
- Krebs, H.A. Carbon Dioxide Assimilaton in Heterotrophic Organisms. Annu. Rev. Biochem. 1943, 12, 529–550. [Google Scholar] [CrossRef]
- Merlin, C.; Masters, M.; McAteer, S.; Coulson, A. Why is carbonic anhydrase essential to Escherichia coli? J. Bacteriol. 2003, 185, 6415–6424. [Google Scholar] [CrossRef] [PubMed]
- Dixon, N.M.; Kell, D.B. The inhibition by CO2 of the growth and metabolism of micro-organisms. J. Appl. Bacteriol. 1989, 67, 109–136. [Google Scholar] [CrossRef]
- Cronk, J.D.; O’Neill, J.W.; Cronk, M.R.; Endrizzi, J.A.; Zhang, K.Y.J. Cloning, crystallization and preliminary characterization of a β-carbonic anhydrase from Escherichia coli. Acta Crystallogr. D Biol. Crystallogr. 2000, 56, 1176–1179. [Google Scholar] [CrossRef]
- Wang, Y.; Chakrabarti, A.; Sorensen, C.M. A light-scattering study of the scattering matrix elements of Arizona Road Dust. J. Quant. Spectrosc. Radiat. Transf. 2015, 163, 72–79. [Google Scholar] [CrossRef]
- Hu, W.; Murata, K.; Fan, C.; Huang, S.; Matsusaki, H.; Fu, P.; Zhang, D. Abundance and viability of particle-attached and free-floating bacteria in dusty and nondusty air. Biogeosciences 2020, 17, 4477–4487. [Google Scholar] [CrossRef]
- Li, H.; Chen, Q.; Wang, C.; Wang, R.; Sha, T.; Yang, X.; Ainur, D. Pollution characteristics of environmental persistent free radicals (EPFRs) and their contribution to oxidation potential in road dust in a large city in northwest China. J. Hazard. Mater. 2023, 442, 130087. [Google Scholar] [CrossRef] [PubMed]
- Suraju, M.O.; Lalinde-Barnes, S.; Sanamvenkata, S.; Esmaeili, M.; Shishodia, S.; Rosenzweig, J.A. The effects of indoor and outdoor dust exposure on the growth, sensitivity to oxidative-stress, and biofilm production of three opportunistic bacterial pathogens. Sci. Total Environ. 2015, 538, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Maki, T.; Lee, K.C.; Kawai, K.; Onishi, K.; Hong, C.S.; Kurosaki, Y.; Shinoda, M.; Kai, K.; Iwasaka, Y.; Archer, S.D.J.; et al. Aeolian Dispersal of Bacteria Associated With Desert Dust and Anthropogenic Particles Over Continental and Oceanic Surfaces. J. Geophys. Res. Atmos. 2019, 124, 5579–5588. [Google Scholar] [CrossRef]
- Hung, H.-F.; Wang, C.-S. Experimental determination of reactive oxygen species in Taipei aerosols. J. Aerosol Sci. 2001, 32, 1201–1211. [Google Scholar] [CrossRef]
- Gunawardana, C.; Goonetilleke, A.; Egodawatta, P.; Dawes, L.; Kokot, S. Source characterisation of road dust based on chemical and mineralogical composition. Chemosphere 2012, 87, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Cabiscol Catalā, E.; Tamarit Sumalla, J.; Ros Salvador, J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Internatl. Microbiol. 2000, 3, 3–8. [Google Scholar]
- Gondwal, T.K.; Mandal, P. Characterization of organic contaminants associated with road dust of Delhi NCR, India. Environ. Sci. Pollut. Res. 2023, 30, 51906–51919. [Google Scholar] [CrossRef]
- Martinez, J.L.; Sánchez, M.B.; Martínez-Solano, L.; Hernandez, A.; Garmendia, L.; Fajardo, A.; Alvarez-Ortega, C. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol. Rev. 2009, 33, 430–449. [Google Scholar] [CrossRef]
- Phan, M.D.; Forde, B.M.; Peters, K.M.; Sarkar, S.; Hancock, S.; Stanton-Cook, M.; Ben Zakour, N.L.; Upton, M.; Beatson, S.A.; Schembri, M.A. Molecular Characterization of a Multidrug Resistance IncF Plasmid from the Globally Disseminated Escherichia coli ST131 Clone. PLoS ONE 2015, 10, e0122369. [Google Scholar] [CrossRef] [PubMed]
- Arioli, S.; Guglielmetti, S.; Amalfitano, S.; Viti, C.; Marchi, E.; Decorosi, F.; Mora, D. Characterization of tetA-like gene encoding for a major facilitator superfamily efflux pump in Streptococcus thermophilus. FEMS Microbiol. Lett. 2014, 355, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Headd, B.; Bradford, S.A. Physicochemical Factors That Favor Conjugation of an Antibiotic Resistant Plasmid in Non-growing Bacterial Cultures in the Absence and Presence of Antibiotics. Front. Microbiol. 2018, 9, 396093. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.G.; Acar, H.; Nandipati, A.; Barlow, M. Growth Rates Made Easy. Mol. Biol. Evol. 2014, 31, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Mytilinaios, I.; Salih, M.; Schofield, H.K.; Lambert, R.J.W. Growth curve prediction from optical density data. Int. J. Food Microbiol. 2012, 154, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Massabò, D.; Danelli, S.G.; Brotto, P.; Comite, A.; Costa, C.; Di Cesare, A.; Doussin, J.F.; Ferraro, F.; Formenti, P.; Gatta, E.; et al. ChAMBRe: A new atmospheric simulation chamber for aerosol modelling and bio-aerosol research. Atmos. Meas. Tech. 2018, 11, 5885–5900. [Google Scholar] [CrossRef]
- Danelli, S.G.; Brunoldi, M.; Massabò, D.; Parodi, F.; Vernocchi, V.; Prati, P. Comparative characterization of the performance of bio-aerosol nebulizers in connection with atmospheric simulation chambers. Atmos. Meas. Tech. 2021, 14, 4461–4470. [Google Scholar] [CrossRef]
- Vernocchi, V.; Brunoldi, M.; Danelli, S.G.; Parodi, F.; Prati, P.; Massabò, D. Characterization of soot produced by the mini inverted soot generator with an atmospheric simulation chamber. Atmos. Meas. Tech. 2022, 15, 2159–2175. [Google Scholar] [CrossRef]
- Vernocchi, V.; El, E.A.; Brunoldi, M.; Danelli, S.G.; Gatta, E.; Isolabella, T.; Mazzei, F.; Parodi, F.; Prati, P.; Massabò, D. Airborne bacteria viability and air quality: A protocol to quantitatively investigate the possible correlation by an atmospheric simulation chamber. Atmos. Meas. Tech. 2023, 16, 5479–5493. [Google Scholar] [CrossRef]
- ISO 12103-1; Road Vehicles—Test Contaminants for Filter Evaluation—Part 1: Arizona Test Dust. International Organization for Standardization: Geneva, Switzerland, 2024.
- Stacey, P.; Lee, T.; Thorpe, A.; Roberts, P.; Frost, G.; Harper, M. Collection Efficiencies of High Flow Rate Personal Respirable Samplers When Measuring Arizona Road Dust and Analysis of Quartz by X-ray Diffraction. Ann. Occup. Hyg. 2014, 58, 512–523. [Google Scholar]
- Agilent Genomics: Tools—Bio Calculators. Available online: https://www.agilent.com/store/biocalculators/calcODBacterial.jsp?_requestid=2905502 (accessed on 3 March 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, V.; Abd El, E.; Danelli, S.G.; Gatta, E.; Massabò, D.; Mazzei, F.; Meier, B.; Prati, P.; Vernocchi, V.; Wang, J. Influence of CO2 and Dust on the Survival of Non-Resistant and Multi-Resistant Airborne E. coli Strains. Antibiotics 2024, 13, 558. https://doi.org/10.3390/antibiotics13060558
Agarwal V, Abd El E, Danelli SG, Gatta E, Massabò D, Mazzei F, Meier B, Prati P, Vernocchi V, Wang J. Influence of CO2 and Dust on the Survival of Non-Resistant and Multi-Resistant Airborne E. coli Strains. Antibiotics. 2024; 13(6):558. https://doi.org/10.3390/antibiotics13060558
Chicago/Turabian StyleAgarwal, Viktoria, Elena Abd El, Silvia Giulia Danelli, Elena Gatta, Dario Massabò, Federico Mazzei, Benedikt Meier, Paolo Prati, Virginia Vernocchi, and Jing Wang. 2024. "Influence of CO2 and Dust on the Survival of Non-Resistant and Multi-Resistant Airborne E. coli Strains" Antibiotics 13, no. 6: 558. https://doi.org/10.3390/antibiotics13060558
APA StyleAgarwal, V., Abd El, E., Danelli, S. G., Gatta, E., Massabò, D., Mazzei, F., Meier, B., Prati, P., Vernocchi, V., & Wang, J. (2024). Influence of CO2 and Dust on the Survival of Non-Resistant and Multi-Resistant Airborne E. coli Strains. Antibiotics, 13(6), 558. https://doi.org/10.3390/antibiotics13060558