Antibiotic Residues and Resistance in Three Wastewater Treatment Plants in Romania
Abstract
:1. Introduction
2. Results
2.1. Occurrence and Seasonal Variation of Antibiotics in Wastewaters
2.2. Antibiotic Removal Efficiency from Wastewater Treatment Plants
- CIWW—Influent antibiotic concentration
- CEWW—Effluent antibiotic concentration
2.3. Antibiotic Resistance Profiles of Isolated Bacteria
2.4. Gram Staining
3. Discussions
3.1. Comparison of Antibiotic Concentrations with Other Studies
3.2. Variability of Antibiotic Removal Efficiencies
3.3. Factors Influencing the Variation of Antibiotic Concentrations
3.3.1. The Influence of Air Temperature and Rainfall on Antibiotic Concentration Variability
3.3.2. Influence of pH and Physicochemical Characteristics on Antibiotic Removal
3.4. Impact of Antibiotic Residues in Effluents of WWTPs on the Aquatic Environment
3.5. Analytical Limitations and Implications
3.6. Seasonal Variations in Estimated Bacterial Loads
3.6.1. SEM Analysis
3.6.2. Analysis of Antibiotic Sensitivity Patterns
4. Materials and Methods
4.1. Location and Collection of Samples
4.2. Description of WWTP and Physicochemical Measurements
4.3. Air Temperature and Rainfall Data
4.4. Chemicals and Reagents
4.5. Analytical Procedures
4.6. Microbiology Assay
- n—Number of colonies in a Petri plate,
- d—The inverse of the dilution of the inoculated sample,
- N—The number of Petri plates considered,
- V—The volume of the sample used, in mL [71].
- Gram staining is a double staining that helps distinguish Gram-positive and Gram-negative bacteria from the samples. This method was used to distinguish coliforms, knowing that most of them are Gram-negative bacteria.
- Antibiogram assay—The diffusimetric method was used, on Mueller–Hinton agar medium [72] with antibiotic disks, which is considered a method with large applicability in practice to test the efficacy of antimicrobial substances. The bacterial strain suspensions were adjusted to 0.5 McFarland turbidity, and their susceptibility for the seven antibiotics (detected through the HPLC method) was tested. Incubation was performed at 37 °C for 18–24 h; thereafter, the diameter of the inhibition zone was measured. The interpretation of the results was carried out in accordance with the EUCAST guidelines [73]. The diameter of the inhibition area is correlated with the sensitivity of the bacterium to the tested antibiotics.
- Scanning electron microscopy (SEM) technique. The microscopic examination was performed to support the observations made by the microbiological procedures. The bacteria were taken from the plates with NA where CFU calculations were made. Then, the samples were fixed with 2.7% glutaraldehyde, washed with phosphate-buffered saline (PBS), dehydrated with 30 to 100% ethanol, and examined using a SEM Hitachi SU8230 (Hitachi, Tokyo, Japan) operated at 30 kV.
4.7. Calculations and Statistical Analyses
4.8. Environmental Risk Assessment (ERA)
Antibiotic | PNEC-ENV (µg/mL) | PNEC-MIC (µg/mL) | Lowest PNEC Value (µg/mL) |
---|---|---|---|
Amoxicillin | N/A | 0.016 | 0.016 |
Piperacillin | N/A | 0.0005 | 0.0005 |
Ciprofloxacin | 0.00045 | 0.00006 | 0.00006 |
Norfloxacin | 0.0012 | 0.0005 | 0.0005 |
Azithromycin | 0.00002 | 0.00025 | 0.00002 |
Clarithromycin | 0.00008 | 0.00025 | 0.00008 |
Doxycycline | N/A | 0.002 | 0.002 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A. Antimicrobial Resistance: A Growing Serious Threat for Global. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Uluseker, C.; Kaster, K.M.; Thorsen, K.; Basiry, D.; Shobana, S.; Jain, M.; Kumar, G.; Kommedal, R.; Pala-Ozkok, I. A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. Front. Microbiol. 2021, 12, 717809. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Ngasepam, J.; Dhangar, K.; Mahlknecht, J.; Manna, S. Critical review on negative emerging contaminant removal efficiency of wastewater treatment systems: Concept, consistency and consequences. Bioresour. Technol. 2022, 352, 127054. [Google Scholar] [CrossRef] [PubMed]
- Marutescu, L.G.; Popa, M.; Gheorghe-Barbu, I.; Barbu, I.C.; Rodríguez-Molina, D.; Berglund, F.; Blaak, H.; Flach, C.-F.; Kemper, M.A.; Spießberger, B.; et al. Wastewater treatment plants, an “escape gate” for ESCAPE pathogens. Front. Microbiol. 2023, 14, 1193907. [Google Scholar] [CrossRef] [PubMed]
- Felis, E.; Kalka, J.; Sochacki, A.; Kowalska, K.; Bajkacz, S.; Harnisz, M.; Korzeniewska, E. Antimicrobial pharmaceuticals in the aquatic environment—Occurrence and environmental implications. Eur. J. Pharmacol. 2020, 866, 172813. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.; Alygizakis, N.A.; Thomaidis, N.S.; Slobodnik, J. Wide-Scope Target and Suspect Screening of Antibiotics in Effluent Wastewater from Wastewater Treatment Plants in Europe. Antibiotics 2023, 12, 100. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Lor, E.; Castiglioni, S.; Bade, R.; Been, F.; Castrignanò, E.; Covaci, A.; González-Mariño, I.; Hapeshi, E.; Kasprzyk-Hordern, B.; Kinyua, J.; et al. Measuring biomarkers in wastewater as a new source of epidemiological information: Current state and future perspectives. Environ. Int. 2016, 99, 131–150. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-consumption-europe-2021 (accessed on 1 August 2024).
- Surface Water Watch List—European Commission. Available online: https://environment.ec.europa.eu/topics/water/surface-water_en#ref-2022-proposal-to-revise-list-of-priority-substances-in-surface-water (accessed on 1 August 2024).
- Douziech, M.; Conesa, I.R.; Benítez-López, A.; Franco, A.; Huijbregts, M.; van Zelm, R. Quantifying variability in removal efficiencies of chemicals in activated sludge wastewater treatment plants—A meta-analytical approach. Environ. Sci. Process. Impacts 2018, 20, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Wang, Y.; Tong, L.; Li, Y.; Deng, Y.; Guo, W.; Gan, Y. Seasonal variation of antibiotics concentration in the aquatic environment: A case study at Jianghan Plain, central China. Sci. Total. Environ. 2015, 527–528, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Michael, I.; Rizzo, L.; McArdell, C.S.; Manaia, C.M.; Merlin, C.; Schwartz, T.; Dagot, C.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res. 2013, 47, 957–995. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sànchez-Melsió, A.; Borrego, C.M.; Barceló, D.; Balcázar, J.L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Samandari, M.; Attar, H.M.; Ebrahimpour, K.; Mohammadi, F. Monitoring of Amoxicillin and Cephalexin Antibiotics in Municipal WWTPs During COVID-19 Outbreak: A Case Study in Isfahan, Iran. Air Soil Water Res. 2022, 15, 11786221221103879. [Google Scholar] [CrossRef]
- Frascaroli, G.; Reid, D.; Hunter, C.; Roberts, J.; Helwig, K.; Spencer, J.; Escudero, A. Pharmaceuticals in wastewater treatment plants: A systematic review on the substances of greatest concern responsible for the development of antimicrobial resistance. Appl. Sci. 2021, 11, 6670. [Google Scholar] [CrossRef]
- Mirzaei, R.; Yunesian, M.; Nasseri, S.; Gholami, M.; Jalilzadeh, E.; Shoeibi, S.; Mesdaghinia, A. Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran. Sci. Total. Environ. 2018, 620, 446–459. [Google Scholar] [CrossRef]
- Chukwu, K.B.; Abafe, O.A.; Amoako, D.G.; Essack, S.Y.; Abia, A.L.K. Antibiotic, Heavy Metal, and Biocide Concentrations in a Wastewater Treatment Plant and Its Receiving Water Body Exceed PNEC Limits: Potential for Antimicrobial Resistance Selective Pressure. Antibiotics 2023, 12, 1166. [Google Scholar] [CrossRef]
- Faleye, A.; Adegoke, A.; Ramluckan, K.; Fick, J.; Bux, F.; Stenström, T. Concentration and reduction of antibiotic residues in selected wastewater treatment plants and receiving waterbodies in Durban, South Africa. Sci. Total. Environ. 2019, 678, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Madikizela, L.M.; Ncube, S.; Chimuka, L. Analysis, occurrence and removal of pharmaceuticals in African water resources: A current status. J. Environ. Manag. 2019, 253, 109741. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mozaz, S.; Vaz-Moreira, I.; Della Giustina, S.V.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T.U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Martinez, J.L.; et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int. 2020, 140, 105733. [Google Scholar] [CrossRef] [PubMed]
- Kotwani, A.; Joshi, J.; Kaloni, D. Pharmaceutical effluent: A critical link in the interconnected ecosystem promoting antimicrobial resistance. Environ. Sci. Pollut. Res. 2021, 28, 32111–32124. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Du, M.; Jiang, H.; Zhang, D.; Lin, L.; Ye, H.; Zhang, X. Occurrence, seasonal variation and removal efficiency of antibiotics and their metabolites in wastewater treatment plants, Jiulongjiang River Basin, South China. Environ. Sci. Process. Impacts 2015, 17, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Sinthuchai, D.; Boontanon, S.K.; Boontanon, N.; Polprasert, C. Evaluation of removal efficiency of human antibiotics in wastewater treatment plants in Bangkok, Thailand. Water Sci. Technol. 2016, 73, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Serin, H.; Gamez-Jara, A.; De La Cruz-Noriega, M.; Rojas-Flores, S.; Rodriguez-Yupanqui, M.; Cardenas, M.G.; Cruz-Monzon, J. Literature Review: Evaluation of Drug Removal Techniques in Municipal and Hospital Wastewater. Int. J. Environ. Res. Public Health 2022, 19, 13105. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wen, X.; Zhang, B.; Qiu, Y. Selective effect and elimination of antibiotics in membrane bioreactor of urban wastewater treatment plant. Sci. Total. Environ. 2019, 646, 1293–1303. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ji, Y.; Gao, Y.; Lin, Z.; Lin, Y.; Lu, Y.; Zhang, L. Antibiotics and antimycotics in waste water treatment plants: Concentrations, removal efficiency, spatial and temporal variations, prediction, and ecological risk assessment. Environ. Res. 2022, 215, 114135. [Google Scholar] [CrossRef] [PubMed]
- Adelodun, B.; Anand, U.; Cabreros, C.; Kumar, P.; Suresh, S.; Dey, A.; Ballesteros, F.; Bontempi, E. Occurrence, transformation, bioaccumulation, risk and analysis of pharmaceutical and personal care products from wastewater: A review. Environ. Chem. Lett. 2022, 20, 3883–3904. [Google Scholar] [CrossRef]
- Bungau, S.; Tit, D.M.; Fodor, K.; Cioca, G.; Agop, M.; Iovan, C.; Cseppento, D.C.; Bumbu, A.; Bustea, C. Aspects Regarding the Pharmaceutical Waste Management in Romania. Sustainability 2018, 10, 2788. [Google Scholar] [CrossRef]
- Toma, A.; Crişan, O. Activities related to human medicines in Romania: Legal environmental protection issues. Environ. Sci. Policy 2020, 106, 22–28. [Google Scholar] [CrossRef]
- Harrower, J.; McNaughtan, M.; Hunter, C.; Hough, R.; Zhang, Z.; Helwig, K. Chemical Fate and Partitioning Behavior of Antibiotics in the Aquatic Environment—A Review. Environ. Toxicol. Chem. 2021, 40, 3275–3298. [Google Scholar] [CrossRef] [PubMed]
- Post, C.; Heyden, N.; Reinartz, A.; Foerderer, A.; Bruelisauer, S.; Linnemann, V.; Hug, W.; Amann, F. Possibilities of Real Time Monitoring of Micropollutants in Wastewater Using Laser-Induced Raman & Fluorescence Spectroscopy (LIRFS) and Artificial Intelligence (AI). Sensors 2022, 22, 4668. [Google Scholar] [CrossRef] [PubMed]
- Gevao, B.; Uddin, S.; Krishnan, D.; Rajagopalan, S.; Habibi, N. Antibiotics in Wastewater: Baseline of the Influent and Effluent Streams in Kuwait. Toxics 2022, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Awad, Y.M.; Kim, K.R.; Kim, S.-C.; Kim, K.; Lee, S.R.; Ok, Y.S. Monitoring antibiotic residues and corresponding antibiotic resistance genes in an agroecosystem. J. Chem. 2015, 2015, 974843. [Google Scholar] [CrossRef]
- Ahmad, F.; Zhu, D.; Sun, J. Environmental fate of tetracycline antibiotics: Degradation pathway mechanisms, challenges, and perspectives. Environ. Sci. Eur. 2021, 33, 64. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Kosma, C.; Lambropoulou, D. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Sci. Total. Environ. 2016, 543, 547–569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yu, Q.; Yan, G.; Zhu, H.; Xu, X.Y.; Zhu, L. Seasonal bacterial community succession in four typical wastewater treatment plants: Correlations between core microbes and process performance. Sci. Rep. 2018, 8, 4566. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, X. Effect of Seasonal Temperature on the Performance and on the Microbial Community of a Novel AWFR for Decentralized Domestic Wastewater Pretreatment. Appl. Sci. 2017, 7, 605. [Google Scholar] [CrossRef]
- Cydzik-Kwiatkowska, A.; Zielińska, M. Bacterial communities in full-scale wastewater treatment systems. World J. Microbiol. Biotechnol. 2016, 32, 66. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Li, X.; Xu, G.; Yu, H. Overview of strategies for enhanced treatment of municipal/domestic wastewater at low temperature. Sci. Total. Environ. 2018, 643, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Thai, V.-A.; Dang, V.D.; Thuy, N.T.; Pandit, B.; Vo, T.-K.; Khedulkar, A.P. Fluoroquinolones: Fate, effects on the environment and selected removal methods. J. Clean. Prod. 2023, 418, 137762. [Google Scholar] [CrossRef]
- Li, B.; Zhang, T. pH significantly affects removal of trace antibiotics in chlorination of municipal wastewater. Water Res. 2012, 46, 3703–3713. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.M.; Ullman, J.L.; Teel, A.L.; Watts, R.J. pH and temperature effects on the hydrolysis of three β-lactam antibiotics: Ampicillin, cefalotin and cefoxitin. Sci. Total. Environ. 2014, 466–467, 547–555. [Google Scholar] [CrossRef] [PubMed]
- de Ilurdoz, M.S.; Sadhwani, J.J.; Reboso, J.V. Antibiotic removal processes from water & wastewater for the protection of the aquatic environment—A review. J. Water Process. Eng. 2022, 45, 102474. [Google Scholar] [CrossRef]
- Al-Wasify, R.S.; Alruwaili, M.M.; Aljohani, F.S.; Hamed, S.R.; Ragab, S. The Efficiency of Wastewater Treatment Plants for the Removal of Antibiotics. In Water Purification—Present and Future; IntechOpen: London, UK, 2023; pp. 1–25. [Google Scholar]
- Samrot, A.V.; Wilson, S.; Preeth, R.S.S.; Prakash, P.; Sathiyasree, M.; Saigeetha, S.; Shobana, N.; Pachiyappan, S.; Rajesh, V.V. Sources of Antibiotic Contamination in Wastewater and Approaches to Their Removal—An Overview. Sustainability 2023, 15, 12639. [Google Scholar] [CrossRef]
- Velásquez-Orta, S.B.; Yáñez-Noguez, I.; Ramírez, I.M.; Ledesma, M.T.O. Pilot-scale microalgae cultivation and wastewater treatment using high-rate ponds: A meta-analysis. Environ. Sci. Pollut. Res. 2024, 31, 46994–47021. [Google Scholar] [CrossRef] [PubMed]
- Woon, S.-A.; Fisher, D. Antimicrobial agents—Optimising the ecological balance. BMC Med. 2016, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Pal, D. Antibiotic resistance and wastewater: Correlation, impact and critical human health challenges. J. Environ. Chem. Eng. 2018, 6, 52–58. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Larsson, D.J. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int. 2016, 86, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Marín, E.; Rico, A.; Fabregat-Safont, D.; López, F.J.; Hernández, F.; Pitarch, E.; Bijlsma, L. Comprehensive study on the potential environmental risk of temporal antibiotic usage through wastewater discharges. Chemosphere 2024, 346, 140587. [Google Scholar] [CrossRef] [PubMed]
- López, A.; Rodríguez-Chueca, J.; Mosteo, R.; Gómez, J.; Rubio, E.; Goñi, P.; Ormad, M.P. How does urban wastewater treatment affect the microbial quality of treated wastewater? Process Saf. Environ. Prot. 2019, 130, 22–30. [Google Scholar] [CrossRef]
- Domańska, M.; Kuśnierz, M.; Mackiewicz, K. Seasonal prevalence of bacteria in the outflow of two full-scale municipal wastewater treatment plants. Sci. Rep. 2023, 13, 10608. [Google Scholar] [CrossRef]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the Natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef]
- Saini, S.; Tewari, S.; Dwivedi, J.; Sharma, V. Biofilm-mediated wastewater treatment: A comprehensive review. Mater. Adv. 2023, 4, 1415–1443. [Google Scholar] [CrossRef]
- WHO. WHO Updates List of Drug-Resistant Bacteria Most Threatening to Human Health. 2023. Available online: https://www.who.int/news/item/17-05-2024-who-updates-list-of-drug-resistant-bacteria-most-threatening-to-human-health (accessed on 14 June 2024).
- Bourouache, M.; Mimouni, R.; Alla, A.A.; Hamadi, F.; El Boulani, A.; Bihadassen, B. Bacteriological and physicochemical quality of treated wastewater of the Mzar treatment plant. Appl. Water Sci. 2019, 9, 86. [Google Scholar] [CrossRef]
- Tucker, K.; Stone, W.; Botes, M.; Feil, E.J.; Wolfaardt, G.M. Wastewater Treatment Works: A Last Line of Defense for Preventing Antibiotic Resistance Entry into the Environment. Front. Water 2022, 4, 883282. [Google Scholar] [CrossRef]
- Patneedi, C.B.; Prasadu, K.D. Impact of pharmaceutical waste on human life and environment. Rasayan J. 2015, 8, 2008–2011. [Google Scholar]
- Yao, S.; Ye, J.; Yang, Q.; Hu, Y.; Zhang, T.; Jiang, L.; Munezero, S.; Lin, K.; Cui, C. Occurrence and removal of antibiotics, antibiotic resistance genes, and bacterial communities in hospital wastewater. Environ. Sci. Pollut. Res. 2021, 28, 57321–57333. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Chen, Y.; Wang, N.; Wan, P.; Peng, Z.; Zhao, H.; Wang, W.; Xiong, L.; Zhang, S.; Liu, R. Seasonal variability of the correlation network of antibiotics, antibiotic resistance determinants, and bacteria in a wastewater treatment plant and receiving water. J. Environ. Manag. 2022, 317, 115362. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, A.A.; Faleye, A.C.; Singh, G.; Stenström, T.A. Antibiotic Resistant Superbugs: Assessment of the Interrelationship of Occurrence in Clinical Settings and Environmental Niches. Molecules 2016, 22, 29. [Google Scholar] [CrossRef] [PubMed]
- Matviichuk, O.; Mondamert, L.; Geffroy, C.; Gaschet, M.; Dagot, C.; Labanowski, J. River Biofilms Microbiome and Resistome Responses to Wastewater Treatment Plant Effluents Containing Antibiotics. Front. Microbiol. 2022, 13, 795206. [Google Scholar] [CrossRef]
- Sabri, N.A.; Schmitt, H.; Van Der Zaan, B.; Gerritsen, H.W.; Zuidema, T.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. J. Environ. Chem. Eng. 2020, 8, 102245. [Google Scholar] [CrossRef]
- Almeida, A.; De Mello-Sampayo, C.; Lopes, A.; da Silva, R.C.; Viana, P.; Meisel, L. Predicted Environmental Risk Assessment of Antimicrobials with Increased Consumption in Portugal during the COVID-19 Pandemic; The Groundwork for the Forthcoming Water Quality Survey. Antibiotics 2023, 12, 652. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Hu, Y.; Cheng, J.; Chen, Y. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment. Crit. Rev. Biotechnol. 2018, 38, 1195–1208. [Google Scholar] [CrossRef] [PubMed]
- Jendrzejewska, N.; Karwowska, E. The influence of antibiotics on wastewater treatment processes and the development of antibiotic-resistant bacteria. Water Sci. Technol. 2018, 77, 2320–2326. [Google Scholar] [CrossRef] [PubMed]
- Opriş, O.; Soran, M.-L.; Coman, V.; Copaciu, F.; Ristoiu, D. Determination of some frequently used antibiotics in waste waters using solid phase extraction followed by high performance liquid chromatography with diode array and mass spectrometry detection. Open Chem. 2013, 11, 1343–1351. [Google Scholar] [CrossRef]
- Opriş, O.; Soran, M.L.; Lung, I.; Truşcă, M.R.C.; Szoke-Nagy, T.; Coman, C. The optimization of the antibiotics extraction from wastewaters and manure using Box–Behnken experimental design. Int. J. Environ. Sci. Technol. 2016, 14, 473–480. [Google Scholar] [CrossRef]
- Carpa, R.; Dragan-Bularda, M.; Muntean, V. Microbiologie Generală-Lucrări Practice; Presa Univ. Clujeană: Cluj, Romania, 2014. [Google Scholar]
- Ronald, M. Atlas, Handbook of Microbiological Media; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- EUCAST. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 14 June 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Keller, V.D.; Williams, R.J.; Lofthouse, C.; Johnson, A.C. Worldwide estimation of river concentrations of any chemical originating from sewage-treatment plants using dilution factors. Environ. Toxicol. Chem. 2014, 33, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Tell, J.; Caldwell, D.J.; Häner, A.; Hellstern, J.; Hoeger, B.; Journel, R.; Mastrocco, F.; Ryan, J.J.; Snape, J.; Straub, J.O.; et al. Science-based Targets for Antibiotics in Receiving Waters from Pharmaceutical Manufacturing Operations. Integr. Environ. Assess. Manag. 2019, 15, 312–319. [Google Scholar] [CrossRef] [PubMed]
Median | Difference (95% CI) | p-Value | ||
---|---|---|---|---|
Influent | Effluent | |||
AMX | 7.11 (<LOQ–16.61) | <LOQ (<LOQ–2.1) | 7.11 (2.84–19.98) | 0.093 |
AZT | 0.56 (<LOQ–1.12) | <LOQ (<LOQ–1.12) | 0.56 (NaN–NaN) | 1 |
CIP | <LOQ (<LOQ–0.26) | 0.41 (<LOQ–1.05) | −0.41 (−1.05–3.55) | 0.854 |
CLT | 1.27 (<LOQ–1.27) | 1.27 (<LOQ–1.27) | <LOQ (−1.27–1.28) | 0.584 |
DOX | 2.18 (<LOQ–2.47) | <LOQ (<LOQ–2.51) | 2.18 (−1.47–2.32) | 0.933 |
NOR | <LOQ (<LOQ–0.79) | 0.89 (0.43–1) | 0.89 (−1–6.02) | 0.824 |
PIP | 0.87 (0.2–1.87) | 0.24 (<LOQ–0.9) | 0.64 (−15.73–1.79) | 0.286 |
Mean | Difference (95% CI) | p-Value | ||
Influent | Effluent | |||
AMX | 9.5 (10.47) | 3.88 (9.12) | 5.62 (−0.28–11.53) | 0.06 |
AZT | 0.56 (0.58) | 0.47 (0.57) | 0.09 (−0.11–0.3) | 0.339 |
CIP | 0.94 (2.64) | 0.51 (0.53) | 0.44 (−1.13–2.01) | 0.553 |
CLT | 0.89 (0.74) | 0.84 (0.69) | 0.05 (−0.31–0.41) | 0.764 |
DOX | 1.5 (1.36) | 1.32 (1.73) | 0.18 (−0.61–0.97) | 0.622 |
NOR | 2.23 (5.09) | 1.05 (1.13) | 1.19 (−2.11–4.48) | 0.445 |
PIP | 1.21 (1.18) | 3.26 (10.02) | −2.05 (−8.53–4.43) | 0.501 |
Median | p-Value | ||||
---|---|---|---|---|---|
Q4 (n = 3) | Q1 (n = 3) | Q2 (n = 3) | Q3 (n = 3) | p {(1, 2)/(1, 3)/(1, 4)/(2, 3)/(2, 4)/(3, 4)} | |
AMX I | n.d. | n.d. | 14.65 (14.43–19.99) | 19.98 (17.74–22.16) | 0.005 {1/<0.001/<0.001/<0.001/<0.001/0.998} |
AMX E | n.d. | n.d. | 10.47 (6.79–20.82) | <LOQ (<LOQ–0.88) | 0.018 {1/<0.001/0.889/<0.001/0.889/<0.001} |
AZT I | 1.12 (1.12–1.12) | n.d. | 1.12 (1.12–1.12) | n.d. | 0.005 {<0.001/1/<0.001/<0.001/1/<0.001} |
AZT E | 1.12 (1.12–1.12) | n.d. | 1.12 (0.56–1.12) | n.d. | 0.044 {<0.001/0.827/<0.001/0.548/1/0.548} |
CIP I | n.d. | n.d. | 1.05 (1.05–5.13) | n.d. | 0.018 {1/<0.001/1/<0.001/1/<0.001} |
CIP E | 1.05 (0.93–1.05) | n.d. | 1.05 (1.05–1.05) | n.d. | 0.007 {<0.001/0.928/<0.001/<0.001/1/<0.001} |
CLT I | 1.27 (1.27–1.27) | 1.27 (0.9–1.54) | 1.27 (0.64–1.63) | n.d. | 0.108 {1/1/<0.001/1/<0.001/0.594} |
CLT E | 1.27 (1.27–1.27) | 0.52 (0.26–0.89) | 1.27 (1.27–1.6) | n.d. | 0.017 {0.629/0.886/<0.001/0.408/0.629/<0.001} |
DOX I | 2.2 (2.18–2.72) | 2.74 (2.56–2.89) | n.d. | <LOQ (<LOQ–1.13) | 0.025 {0.995/<0.001/0.916/<0.001/<0.001/0.895} |
DOX E | 3.9 (3.38–4.17) | 2.23 (1.11–2.31) | n.d. | n.d. | 0.004 {<0.001/<0.001/<0.001/0.629/0.629/1} |
NOR I | n.d. | n.d. | 8.19 (4.1–12.38) | 0.55 (0.28–1.02) | 0.107 {1/0.459/0.459/0.459/0.459/0.878} |
NOR E | 1 (0.89–1) | 1 (0.93–2.48) | 0.92 (0.75–1.7) | n.d. | 0.049 {0.984/1/<0.001/0.988/<0.001/<0.001} |
PIP I | 1.74 (1.29–2.62) | 1.69 (0.85–1.98) | 0.9 (0.58–1.82) | <LOQ (<LOQ–0.28) | 0.228 {0.983/0.983/<0.001/1/0.865/0.638} |
PIP E | 0.9 (0.9–17.98) | n.d. | <LOQ (<LOQ–0.45) | 0.45 (0.24–0.68) | 0.024 {<0.001/0.37/0.37/0.853/<0.001/0.951} |
Location | AMX | PIP | CIP | NOR | AZT | CLT | DOX |
---|---|---|---|---|---|---|---|
WWTP A Q4 | n/a | 74% | n/a | n/a | n/a | n/a | −30% |
WWTP B Q4 | n/a | −315% | n/a | n/a | n/a | n/a | −20% |
WWTP C Q4 | n/a | 48% | n/a | n/a | n/a | n/a | −105% |
WWTP A Q1 | n/a | 100% | n/a | n/a | n/a | 100% | 21% |
WWTP B Q1 | n/a | 100% | n/a | n/a | n/a | 71% | 100% |
WWTP C Q1 | n/a | n/a | n/a | n/a | n/a | n/a | 19% |
WWTP A Q2 | 26% | −237% | n/a | n/a | n/a | 3% | n/a |
WWTP B Q2 | 78% | 100% | 89% | 97% | n/a | n/a | n/a |
WWTP C Q2 | −23% | n/a | n/a | 70% | n/a | n/a | n/a |
WWTP A Q3 | 100% | n/a | n/a | n/a | n/a | n/a | 100% |
WWTP B Q3 | 100% | 96% | n/a | 100% | n/a | n/a | n/a |
WWTP C Q3 | 93% | n/a | n/a | 100% | n/a | n/a | n/a |
Antibiotics | Mean (SD)/Median (IQR) |
---|---|
AMX | 85.74 (39.45–98.19) |
AZT | 0 (0–0) |
CLT | 0 (0–20.34) |
DOX | 18.69 (−25.38–60.72) |
NOR | 98.27 (89.87–100) |
PIP | 95.54 (48.11–100) |
WWTP A | WWTP B | WWTP C | ||||
---|---|---|---|---|---|---|
Influent | Effluent | Influent | Effluent | Influent | Effluent | |
Autumn Q4 | 6.903 | 6.322 | 6.114 | 6.301 | 6.041 | 6.041 |
Winter Q1 | - | 6 | 6.477 | - | 7.491 | - |
Spring Q2 | 8.857 | 6.699 | 9.230 | - | 8.146 | 7.681 |
Summer Q3 | 7.633 | - | 8.447 | - | 6 | - |
WWTP A | WWTP B | WWTP C | ||||
---|---|---|---|---|---|---|
Influent | Effluent | Influent | Effluent | Influent | Effluent | |
Autumn Q4 | - | - | - | - | - | - |
Winter Q1 | - | - | - | - | - | - |
Spring Q2 | G+ | G− | G− | - | G− | G− |
Summer Q3 | - | - | G− | - | - | - |
Variables | B Unadjusted | (95% CI) | p | R2 | B Adjusted | (95% CI) | p |
---|---|---|---|---|---|---|---|
Intercept | 1.66 | (–7.65–10.96) | 0.707 | ||||
Treated | –5.62 | (−13.94–2.69) | 0.175 | 0.08 | −4.5 | (–14.27–5.28) | 0.338 |
Mean monthly temperature (°C) | 0.79 | (0.2–1.37) | 0.012 | 0.37 | 0.79 | (0.19–1.38) | 0.003 |
Variables | B Unadjusted | (95% CI) | p | R2 | B Adjusted | (95% CI) | p |
---|---|---|---|---|---|---|---|
Intercept | 2.11 | −5.07 | 0.574 | ||||
Treated | −5.62 | (−3.48–2.23) | 0.175 | 0.08 | −4.5 | (−4.58–5.59) | 0.398 |
Mean monthly rainfall (L/m2) | 0.15 | (0.06–0.24) | 0.006 | 0.2 | 0.15 | (0.07–0.23) | 0.003 |
Variables | B Unadjusted | (95% CI) | p-Value | R2 | B Adjusted | (95% CI) | p |
---|---|---|---|---|---|---|---|
Intercept | 2.99 | (1.98–4) | <0.001 | ||||
Treated | −0.18 | (−1.5–1.14) | 0.777 | 0.004 | −0.06 | (−1.12–1.01) | 0.907 |
Mean monthly temperature (°C) | −0.14 | (−0.2–−0.08) | <0.001 | 0.62 | −0.14 | (−0.2–−0.07) | <0.001 |
Variables | B Unadjusted | (95% CI) | p | R2 | B Adjusted | (95% CI) | p |
---|---|---|---|---|---|---|---|
Intercept | 3.11 | (1.7–4.51) | <0.001 | ||||
Treated | −0.18 | (−1.5–1.14) | 0.777 | 0.004 | −0.06 | (−1.35–1.24) | 0.924 |
Mean monthly rainfall (L/m2) | −0.03 | (−0.05–−0.01) | 0.006 | 0.43 | −0.03 | (−0.05–−0.01) | 0.008 |
Effluent | AMX | PIP | CIP | NOR | AZT | CLT | DOX | |
---|---|---|---|---|---|---|---|---|
WWTP A | Q1 | 0 | 0 | 0 | 111.1 | 0 | 0 | 16.74 |
Q2 | 9.17 | 0 | 0 | 216.03 | 0 | 337.14 | 0 | |
Q3 | 0 | 12.68 | 0 | 0 | 0 | 0 | 0 | |
Q4 | 0 | 0 | 0 | 0 | 0 | 0 | 20.1 | |
WWTP B | Q1 | 0 | 0 | 0 | 0 | 0 | 91.08 | 0 |
Q2 | 2.73 | 0 | 0 | 16.07 | 0 | 0 | 0 | |
Q3 | 0 | 0.7 | 0 | 0 | 0 | 0 | 0 | |
Q4 | 0 | 98.32 | 0 | 0 | 0 | 0 | 27.35 | |
WWTP C | Q1 | 0 | 0 | 0 | 23.97 | 0 | 0 | 0.02 |
Q2 | 27.33 | 0 | 0 | 69.29 | 0 | 0 | 0 | |
Q3 | 1.54 | 0 | 0 | 0 | 0 | 0 | 0 | |
Q4 | 0 | 0 | 190.2 | 22.13 | 0 | 0 | 27.35 |
Location | AMX | PIP | CIP | NOR | CLT | AZT | DOX |
---|---|---|---|---|---|---|---|
Q4 EWWTP C | IR | S | S | S | S | S | S |
Q4 EWWTP A | S | S | S | S | S | S | S |
Q2 EWWTP A | R | S | S | S | R | R | S |
Q2 IWWTP A | S | S | R | R | S | S | IR |
Q2 IWWTP C | R | R | S | S | S | S | S |
Q2 EWWTP C | R | IR | IR | IR | R | IR | IR |
Q2 IWWTP B | S | S | S | S | R | S | S |
Q3 IWWTP B | R | S | S | S | R | S | S |
WWTP | Mechanical Pre-Treatment | Biological Treatment | Sludge Treatment | Tertiary Treatment |
---|---|---|---|---|
WWTP A | Screening, sand and grease removal, primary sedimentation | Activated sludge process, biological reactors | Anaerobic digesters, sludge thickening, dewatering | Tertiary filtration, disinfection |
WWTP B | Coarse screening, fine screening, grit chamber, primary sedimentation | Aeration tanks | Sludge thickening, dewatering, stabilization | Chemical phosphorus removal, disinfection |
WWTP C | Mechanical bar screen, grit chamber, primary sedimentation | Aeration tanks | Sludge thickening, anaerobic digestion, dewatering | Tertiary filtration, UV disinfection |
Season | WWTP A | WWTP B | WWTP C | |||
---|---|---|---|---|---|---|
Influent | Effluent | Influent | Effluent | Influent | Effluent | |
Q1 | 7.34 | 7.09 | 6.97 | 6.73 | 7.47 | 7.37 |
Q2 | 6.76 | 7.05 | 7.11 | 6.93 | 6.86 | 7.59 |
Q3 | 6.88 | 7.08 | 6.58 | 6.52 | 6.45 | 5.86 |
Q4 | 7.29 | 7.18 | 6.2 | 6.36 | 6.96 | 7.26 |
Season | Recording Month | Rainfall (R24) * | Air Temperature (°C) * | |
---|---|---|---|---|
WWTP A | Q4 | November | 23 | 4.2 |
Q1 | February | 11.4 | 1.8 | |
Q2 | May | 97.4 | 15.4 | |
Q3 | August | 87.8 | 21.3 | |
WWTP C | Q4 | November | 51.4 | 3.6 |
Q1 | February | 13.8 | 0.8 | |
Q2 | May | 52.6 | 15.5 | |
Q3 | August | 77.6 | 21.6 |
Chemical Group | Antibiotic | Use | Chemical Formula | Molecular Weight (g mol−1) |
---|---|---|---|---|
β-lactams | Amoxicillin | Human and Veterinary | C16H19N3O5S | 365.4 |
Piperacillin | Human | C23H27N5O7S | 516.54 | |
Fluoroquinolones | Ciprofloxacin | Human and Veterinary | C₁₇H₁₈FN₃O₃ | 331.34 |
Norfloxacin | Human | C16H18FN3O3 | 319.33 | |
Macrolides | Azithromycin | Human | C38H72N2O12 | 748.99 |
Clarithromycin | Human | C38H69NO13 | 747.95 | |
Tetracyclines | Doxycycline | Human and Veterinary | C22H24N2O8·H2O | 444.4 |
Compound | Linearity (R2) | LOD µg/mL | LOQ µg/mL | Retention Time (min) | Molecular Ion (m/z) |
---|---|---|---|---|---|
Amoxicillin | 0.9989 | 3.139 | 4.240 | 5.5 | 366 [M + H]+ |
Piperacillin | 0.9993 | 0.908 | 1.804 | 13.75 | 518 [M + H]+ |
Ciprofloxacin | 0.999 | 1.060 | 2.104 | 10.8 | 332 [M + H]+ |
Norfloxacin | 0.9991 | 1.008 | 2.001 | 11.3 | 320 [M + H]+ |
Azithromycin | 0.9989 | 1.125 | 2.232 | 12.5 | 749 [M + H]+ 375 [M + 2H]+ |
Clarithromycin | 0.9986 | 1.282 | 2.540 | 15.5 | 748 [M + H]+ |
Doxycycline | 0.9987 | 4.230 | 5.445 | 13 | 445 [M + H]+ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polianciuc, S.I.; Ciorîță, A.; Soran, M.L.; Lung, I.; Kiss, B.; Ștefan, M.G.; Leucuța, D.C.; Gurzău, A.E.; Carpa, R.; Colobațiu, L.M.; et al. Antibiotic Residues and Resistance in Three Wastewater Treatment Plants in Romania. Antibiotics 2024, 13, 780. https://doi.org/10.3390/antibiotics13080780
Polianciuc SI, Ciorîță A, Soran ML, Lung I, Kiss B, Ștefan MG, Leucuța DC, Gurzău AE, Carpa R, Colobațiu LM, et al. Antibiotic Residues and Resistance in Three Wastewater Treatment Plants in Romania. Antibiotics. 2024; 13(8):780. https://doi.org/10.3390/antibiotics13080780
Chicago/Turabian StylePolianciuc, Svetlana Iuliana, Alexandra Ciorîță, Maria Loredana Soran, Ildiko Lung, Béla Kiss, Maria Georgia Ștefan, Daniel Corneliu Leucuța, Anca Elena Gurzău, Rahela Carpa, Liora Mihaela Colobațiu, and et al. 2024. "Antibiotic Residues and Resistance in Three Wastewater Treatment Plants in Romania" Antibiotics 13, no. 8: 780. https://doi.org/10.3390/antibiotics13080780
APA StylePolianciuc, S. I., Ciorîță, A., Soran, M. L., Lung, I., Kiss, B., Ștefan, M. G., Leucuța, D. C., Gurzău, A. E., Carpa, R., Colobațiu, L. M., & Loghin, F. (2024). Antibiotic Residues and Resistance in Three Wastewater Treatment Plants in Romania. Antibiotics, 13(8), 780. https://doi.org/10.3390/antibiotics13080780