Phyllanthus niruri Linn.: Antibacterial Activity, Phytochemistry, and Enhanced Antibiotic Combinatorial Strategies
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Susceptibility Assays
2.2. Combination Assays—Fractional Inhibitory Concentration (FIC) Determinations
2.3. Identification of Compounds in the P. niruri Aqueous, Methanol, and Ethyl Acetate Extracts
2.4. Toxicity Quantification
3. Discussion
4. Materials and Methods
4.1. Source of Plant Samples
4.2. Preparation of Extracts
4.3. Antibiotics and Bacterial Strains
4.4. Antibacterial Susceptibility Screening
4.5. Minimum Inhibitory Concentration (MIC)
4.6. Fractional Inhibitory Concentration (FIC) Evaluation
4.7. Toxicity Assays
4.8. Non-Targeted Headspace LC-MS Workflow for Quantitative Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- World Bank Group. Drug-Resistant Infections: A Threat to Our Economic Future. Available online: https://www.worldbank.org/en/topic/health/publication/drug-resistant-infections-a-threat-to-our-economic-future (accessed on 6 June 2024).
- Ajulo, S.; Awosile, B. Global Antimicrobial Resistance and Use Surveillance System (GLASS 2022): Investigating the relationship between antimicrobial resistance and antimicrobial consumption data across the participating countries. PLoS ONE 2024, 19, e0297921. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.T.; Chen, E.Z.; Yang, L.; Peng, C.; Wang, Q.; Xu, Z.; Chen, D.Q. Emerging resistance mechanisms for 4 Types of common anti-MRSA antibiotics in Staphylococcus aureus: A comprehensive review. Microb. Pathog. 2021, 156, 104915. [Google Scholar] [CrossRef] [PubMed]
- Pakbin, B.; Amani, Z.; Allahyari, S.; Mousavi, S.; Mahmoudi, R.; Brück, W.M.; Peymani, A. genetic diversity and antibiotic resistance of Shigella spp. isolates from food products. Food. Sci. Nutr. 2021, 9, 6362–6371. [Google Scholar] [CrossRef]
- Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P.B.; Glaser, P.; Aigle, B.; Bode, H.B.; et al. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem. 2021, 5, 726–749. [Google Scholar] [CrossRef]
- World Health Organization. WHO Releases Report on State of Development of Antibacterials. 2024. Available online: https://www.who.int/news/item/14-06-2024-who-releases-report-on-state-of-development-of-antibacterials (accessed on 18 June 2024).
- Tiwana, G.; Cock, I.E.; Cheesman, M.J. A review of Ayurvedic principles and the use of Ayurvedic plants to control diarrhoea and gastrointestinal infections. Phcog. Commn. 2023, 13, 152–162. [Google Scholar] [CrossRef]
- Lee, N.Y.S.; Khoo, W.K.S.; Adnan, M.A.; Mahalingam, T.P.; Fernandez, A.R.; Jeevaratnam, K. The pharmacological potential of Phyllanthus niruri. J. Pharm. Pharmacol. 2016, 68. [Google Scholar] [CrossRef] [PubMed]
- Amin, Z.A.; Abdulla, M.A.; Ali, H.M.; Alshawsh, M.A.; Qadir, S.W. Assessment of in vitro antioxidant, antibacterial and immune activation potentials of aqueous and ethanol extracts of Phyllanthus niruri. J. Sci. Food Agric. 2012, 92, 1874–1877. [Google Scholar] [CrossRef]
- Ibrahim, D.; Hong, L.S.; Kuppan, N. Antimicrobial activity of crude methanolic extract from Phyllanthus niruri. Nat. Prod. Commun. 2013, 8, 1934578X1300800422. [Google Scholar] [CrossRef]
- Obiagwu, I.N.; Okechalu, O.B.; Njoku, M.O. Studies on antibacterial effect of the leaves of Phyllanthus niruri on some enteric pathogens. Niger. J. Biotechnol. 2011, 23, 22–27. [Google Scholar]
- Ekwenye, U.N.; Njoku, N.U. Antibacterial effect of Phyllanthus niruri (Chanca Piedra) on three Enteropathogens in man. Intl. J. Mol. Adv. Sci. 2006, 2, 184–189. [Google Scholar]
- Cajka, T.; Hricko, J.; Rudl Kulhava, L.; Paucova, M.; Novakova, M.; Kuda, O. Optimization of mobile phase modifiers for fast LC-MS based untargeted metabolomics and lipidomics. Int. J. Mol. Sci. 2023, 24, 1987. [Google Scholar] [CrossRef] [PubMed]
- Tiwana, G.; Cock, I.E.; White, A.; Cheesman, M.J. Use of specific combinations of the triphala plant component extracts to potentiate the inhibition of gastrointestinal bacterial growth. J. Ethnopharmacol. 2020, 260, 112937. [Google Scholar] [CrossRef]
- Zai, M.J.; Cheesman, M.J.; Cock, I.E. Terminalia petiolaris A.Cunn Ex Benth. extracts have antibacterial activity and potentiate conventional antibiotics against β-lactam-drug-resistant bacteria. Antibiotics 2023, 12, 1643. [Google Scholar] [CrossRef] [PubMed]
- Bonev, B.; Hooper, J.; Parisot, J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J. Antimicrob. Chemother. 2008, 61, 1295–1301. [Google Scholar] [CrossRef]
- Flanagan, J.N.; Steck, T.R. The relationship between agar thickness and antimicrobial susceptibility testing. Indian J. Microbiol. 2017, 57, 503–506. [Google Scholar] [CrossRef]
- Bhattacharjee, M.K. Better visualization and photodocumentation of zone of inhibition by staining cells and background agar differently. J. Antibiot. 2015, 68, 657–659. [Google Scholar] [CrossRef]
- Livermore, D.M. Antibiotic resistance in staphylococci. Int. J. Antimicrob. Agents 2000, 16, 3–10. [Google Scholar] [CrossRef]
- Kim, C.; Mwangi, M.; Chung, M.; Milheirco, C.; De Lencastre, H.; Tomasz, A. The mechanism of heterogeneous beta-lactam resistance in MRSA: Key role of the stringent stress response. PLoS ONE 2013, 8, e82814. [Google Scholar] [CrossRef]
- Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Paterson, D.L.; Bonomo, R.A. Extended spectrum beta-lactamases: A clinical update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Abreu, A.C.; Ferreira, C.; Saavedra, M.J.; Simões, L.C.; Simões, M. Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens. J. Food Sci. Technol. 2015, 52, 4737–4748. [Google Scholar] [CrossRef] [PubMed]
- Huttner, A.; Bielicki, J.; Clements, M.N.; Frimodt-Møller, N.; Muller, A.E.; Paccaud, J.P.; Mouton, J.W. Oral amoxicillin and amoxicillin-clavulanic acid: Properties, indications and usage. Clin. Microbiol. Infect. 2020, 26, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Oelschlaeger, P. β-Lactamases: Sequence, structure, function, and inhibition. Biomolecules 2021, 11, 986. [Google Scholar] [CrossRef] [PubMed]
- Khameneh, B.; Eskin, N.A.M.; Iranshahy, M.; Fazly Bazzaz, B.S. Phytochemicals: A promising weapon in the arsenal against antibiotic resistant bacteria. Antibiotics 2021, 10, 1044. [Google Scholar] [CrossRef] [PubMed]
- Cheesman, M.; Ilanko, A.; Blonk, B.; Cock, I. Developing new antimicrobial therapies: Are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn. Rev. 2017, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Gupta, V.K.; Pathania, R. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J. Med. Res. 2019, 149, 129–145. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, S. Phytochemicals for bacterial resistance-strengths, weaknesses, and opportunities. Planta Med. 2008, 74, 594–602. [Google Scholar] [CrossRef]
- Zavascki, A.P.; Goldani, L.Z.; Li, J.; Nation, R.L. Polymyxin B for the treatment of multidrug resistant pathogens: A critical review. J. Antimicrob. Chemother. 2007, 60, 1206–1215. [Google Scholar] [CrossRef]
- Cai, X.; Javor, S.; Gan, B.H.; Köhler, T.; Reymond, J.L. The antibacterial activity of peptide dendrimers and polymyxin B increases sharply above PH 7.4. ChemComm 2021, 57, 5654–5657. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Kang, A.; Tian, Y.; Li, X.; Qin, S.; Yang, R.; Guo, Y. Plant flavonoids with antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). ACS Infect. Dis. 2024. [Google Scholar] [CrossRef] [PubMed]
- Alhadrami, H.A.; Hamed, A.A.; Hassan, H.M.; Belbahri, L.; Rateb, M.E.; Sayed, A.M. Flavonoids as potential anti-MRSA agents through modulation of PBP2a: A computational and experimental study. Antibiotics 2020, 9, 562. [Google Scholar] [CrossRef] [PubMed]
- Buchmann, D.; Schultze, N.; Borchardt, J.; Böttcher, I.; Schaufler, K.; Guenther, S. Synergistic antimicrobial activities of epigallocatechin gallate, myricetin, daidzein, gallic acid, epicatechin, 3-hydroxy-6-methoxyflavone and genistein combined with antibiotics against ESKAPE pathogens. J. Appl. Microbiol. 2022, 132, 949–963. [Google Scholar] [CrossRef] [PubMed]
- Lima, V.N.; Oliveira-Tintino, C.D.M.; Santos, E.S.; Morais, L.P.; Tintino, S.R.; Freitas, T.S.; Geraldo, Y.S.; Pereira, R.L.S.; Cruz, R.P.; Menezes, I.R.A.; et al. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microb. Pathog. 2016, 99, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Vitko, N.P.; Richardson, A.R. Laboratory maintenance of methicillin-resistant Staphylococcus aureus (MRSA). Curr. Protoc. Microbiol. 2013, 28, 9C-2. [Google Scholar] [CrossRef] [PubMed]
- Ilanko, A.; Cock, I.E. The interactive antimicrobial activity of conventional antibiotics and Petalostigma spp. extracts against bacterial triggers of some autoimmune inflammatory diseases. Pharmacogn. J. 2019, 11, 292–309. [Google Scholar] [CrossRef]
- Doern, C.D. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J. Clin. Microbiol. 2014, 52, 4124–4128. [Google Scholar] [CrossRef]
- Ruebhart, D.R.; Wickramasinghe, W.; Cock, I.E. Protective efficacy of the antioxidant’s vitamin E and Trolox against Microcystis aeruginosa and Microcystin-LR in Artemia franciscana Nauplii. J. Toxicol. Environ. Health A 2009, 72, 1567–1575. [Google Scholar] [CrossRef]
Extract Type or Antibiotic | Bacterial Species & MIC (µg/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
S. aureus | MRSA | E. coli | ESBL E. coli | K. pneumoniae | ESBL K. pneumoniae | S. typhimurium | S. sonnei | S. flexneri | B. cereus | |
Aqueous | 669 | 669 | Inactive | Inactive | 1338 | Inactive | Inactive | 2675 | 2675 | 669 |
Methanol | 738 | 738 | Inactive | 2950 | 738 | Inactive | Inactive | 2950 | 2950 | 184 |
Ethyl acetate | Inactive | Inactive | Inactive | Inactive | Inactive | Inactive | Inactive | Inactive | Inactive | Inactive |
PEN G | 1.25 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | 0.625 |
ERY | 0.31 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | 0.08 |
TET | 0.16 | 0.04 | 0.31 | >2.5 | 0.625 | >2.5 | 0.625 | 0.31 | 0.625 | 0.08 |
CHL | >2.5 | >2.5 | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | 2.5 | 1.25 | 1.25 |
CIP | 0.16 | 0.625 | 0.02 | >2.5 | 0.02 | 0.16 | 0.02 | 0.02 | 0.02 | 0.08 |
POLB | >2.5 | >2.5 | 0.02 | 0.02 | 0.02 | 0.04 | 0.31 | 0.31 | 0.31 | >2.5 |
OXA | 0.16 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | 1.25 |
AMX | 0.625 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | 0.625 |
GEN | >2.5 | >2.5 | 0.625 | >2.5 | 0.625 | >2.5 | 0.625 | 2.5 | 0.625 | 0.16 |
VAN | 1.25 | 1.25 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | 0.625 |
Bacteria | Extracts | PEN G | ERY | TET | CHL | CIP | POLB | OXA | AMX | GEN | VAN |
---|---|---|---|---|---|---|---|---|---|---|---|
B. cereus | PN-Aq | 1.00 | 2.25 | 2.25 | 3.00 | 1.13 | - | 0.62 | 1.00 | 9.81 | 2.00 |
PN-Me | 0.63 | 3.00 | 3.00 | 4.51 | 1.50 | - | 2.13 | 0.63 | 2.00 | 2.50 | |
S. aureus | PN-Aq | 0.73 | 1.48 | 1.24 | - | 2.41 | - | 2.50 | 0.97 | - | 1.50 |
PN-Me | 0.75 | 0.77 | 1.25 | - | 2.44 | - | 1.50 | 0.51 | - | 1.50 | |
MRSA | PN-Aq | - | - | 1.06 | - | 2.00 | - | - | - | - | 1.50 |
PN-Me | - | - | 1.06 | - | 1.00 | - | - | - | - | 0.75 | |
ESBL E. coli | PN-Aq | - | - | - | - | - | - | - | - | - | - |
PN-Me | - | - | - | - | - | 63.00 | - | - | - | - | |
K. pneumoniae | PN-Aq | - | - | 1.50 | 1.50 | 2.25 | 63.50 | - | - | >4 | - |
PN-Me | - | - | 1.00 | 1.25 | 2.50 | 32.25 | - | - | 2.00 | - | |
S. sonnei | PN-Aq | - | - | 1.12 | 1.00 | 2.06 | 63.00 | - | - | 1.00 | - |
PN-Me | - | - | 4.53 | >4 | 2.06 | >4 | - | - | 1.00 | - | |
S. flexneri | PN-Aq | - | - | 0.62 | 0.75 | 2.06 | 15.62 | - | - | 1.25 | - |
PN-Me | - | - | 0.63 | 0.75 | 2.06 | 15.63 | - | - | 1.25 | - |
Retention Time [min] | Molecular Mass | Empirical Formula | Putative Compounds | Relative Abundance (% of Total Area) | ||
---|---|---|---|---|---|---|
Aq | MeOH | EtOAc | ||||
Isomers | ||||||
1.416 | 192.02659 | C6 H8 O7 | Isocitric acid | 1.56% | 1.07% | - |
1.482 | 116.01078 | C4 H4 O4 | Maleic acid | 0.32% | 0.43% | - |
1.669 | 116.01081 | C4 H4 O4 | Fumaric acid | - | 0.10% | - |
1.727 | 131.09453 | C6 H13 N O2 | Isoleucine | 0.14% | 0.27% | - |
Organic Compounds | ||||||
1.794 | 126.03153 | C6 H6 O3 | Pyrogallol | 5.39% | 0.92% | - |
2.06 | 166.0629 | C9 H10 O3 | Apocynin | - | 0.04% | - |
2.126 | 170.02141 | C7 H6 O5 | Gallic acid | 11.29% | 0.18% | - |
2.552 | 110.03666 | C6 H6 O2 | Catechol | - | 0.05% | - |
2.688 | 154.02651 | C7 H6 O4 | Protocatechuic acid | 1.00% | - | - |
2.803 | 164.0473 | C9 H8 O3 | 4-Coumaric acid | 0.30% | 1.41% | - |
9.019 | 290.07884 | C15 H14 O6 | Epicatechin | 0.35% | 0.59% | - |
9.545 | 288.06304 | C15 H12 O6 | (-)-Fustin | - | 0.13% | - |
9.882 | 302.00597 | C14 H6 O8 | Ellagic acid | - | 0.05% | - |
10.575 | 164.04732 | C9 H8 O3 | 2-Hydroxycinnamic acid | 0.59% | 1.61% | - |
10.639 | 448.1004 | C21 H20 O11 | Orientin | - | 0.12% | - |
10.645 | 564.14774 | C26 H28 O14 | Corymboside | - | 0.06% | - |
10.726 | 302.04228 | C15 H10 O7 | 2-(2,6-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one | - | 0.38% | - |
10.726 | 610.15282 | C27 H30 O16 | Quercetin 3-O-rhamnoside-7-O-glucoside | - | 0.17% | - |
10.968 | 596.13747 | C26 H28 O16 | 2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-3-yl 6-O-β-D-xylopyranosyl-β-D-glucopyranoside | 0.04% | - | - |
10.972 | 464.09493 | C21 H20 O12 | Quercetin-3β-D-glucoside | - | 0.08% | - |
11.134 | 464.09502 | C21 H20 O12 | Hyperoside | - | 1.69% | 0.70% |
11.134 | 448.10015 | C21 H20 O11 | 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4H-chromen-4-one | - | 0.23% | - |
11.217 | 432.1052 | C21 H20 O10 | Vitexin | 0.07% | 0.32% | - |
11.231 | 478.0744 | C21 H18 O13 | Miquelianin | 1.46% | 5.62% | - |
11.299 | 464.09519 | C21 H20 O12 | Myricitrin | - | 0.69% | 0.31% |
11.367 | 286.04738 | C15 H10 O6 | Fisetin | - | 0.20% | - |
11.5 | 610.15333 | C27 H30 O16 | Rutin | - | 12.00% | 5.85% |
11.588 | 448.10018 | C21 H20 O11 | Trifolin | - | 0.73% | 0.98% |
11.766 | 286.04747 | C15 H10 O6 | Kaempferol | 0.11% | 2.43% | 2.00% |
11.783 | 448.10041 | C21 H20 O11 | Astragalin | - | 0.09% | - |
12.198 | 152.12004 | C10 H16 O | Citral | - | 0.04% | - |
12.491 | 302.04225 | C15 H10 O7 | 2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one | - | - | 0.24% |
12.579 | 244.13104 | C12 H20 O5 | 3,8,9-trihydroxy-10-propyl-3,4,5,8,9,10-hexahydro-2H-oxecin-2-one (herbarumin II) | 0.35% | 0.18% | 0.65% |
13.219 | 302.04249 | C15 H10 O7 | Quercetin | 0.42% | 7.68% | 2.37% |
13.222 | 264.13583 | C15 H20 O4 | Ambrosic acid | - | 0.05% | 0.44% |
14.194 | 270.05268 | C15 H10 O5 | Apigenin | - | 0.05% | - |
17.007 | 252.17238 | C15 H24 O3 | Ageratriol | 0.26% | - | 0.37% |
17.685 | 268.07334 | C16 H12 O4 | 7-hydroxy-3-(4-methoxyphenyl)-4H-chromen-4-one | - | - | 0.58% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwana, G.; Cock, I.E.; Cheesman, M.J. Phyllanthus niruri Linn.: Antibacterial Activity, Phytochemistry, and Enhanced Antibiotic Combinatorial Strategies. Antibiotics 2024, 13, 654. https://doi.org/10.3390/antibiotics13070654
Tiwana G, Cock IE, Cheesman MJ. Phyllanthus niruri Linn.: Antibacterial Activity, Phytochemistry, and Enhanced Antibiotic Combinatorial Strategies. Antibiotics. 2024; 13(7):654. https://doi.org/10.3390/antibiotics13070654
Chicago/Turabian StyleTiwana, Gagan, Ian E. Cock, and Matthew J. Cheesman. 2024. "Phyllanthus niruri Linn.: Antibacterial Activity, Phytochemistry, and Enhanced Antibiotic Combinatorial Strategies" Antibiotics 13, no. 7: 654. https://doi.org/10.3390/antibiotics13070654
APA StyleTiwana, G., Cock, I. E., & Cheesman, M. J. (2024). Phyllanthus niruri Linn.: Antibacterial Activity, Phytochemistry, and Enhanced Antibiotic Combinatorial Strategies. Antibiotics, 13(7), 654. https://doi.org/10.3390/antibiotics13070654