Essential Oil of Fractionated Oregano as Motility Inhibitor of Bacteria Associated with Urinary Tract Infections
Abstract
:1. Introduction
2. Results
2.1. Obtention of the Fractionated Oregano Essential Oil (OEO)
Gas Chromatography-Mass Spectrometry (GC-MS)
2.2. Susceptibility Characterization of Strains
2.3. Preliminary Antimicrobial Activity of Fractionated Oregano
2.4. Minimum Bactericidal Concentration (MBC)
2.5. Anti-Motility Effect of Fractionated Oregano
2.6. Principal Component Analysis
3. Discussion
4. Materials and Methods
4.1. Obtention and Physical Chemistry Characterization of the Fractionated Oregano Essential Oil (OEO)
4.2. Gas Chromatography-Mass Spectrometry (GC-MS)
4.3. Bacterial Strains and Culture Conditions
4.4. Preparation of Oil-Working Solutions
4.5. Characterization of Antibiotic Susceptibility of Strains
4.6. Preliminary Antimicrobial Activity of Fractionated Oregano
4.7. Minimum Bactericidal Concentration (MBC) and Subinhibitory Concentrations
4.8. Effect of Essential Oils on Motility
4.9. Principal Components Analysis
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mantravadi, P.K.; Kalesh, K.A.; Dobson, R.C.; Hudson, A.O.; Parthasarathy, A. The quest for novel antimicrobial compounds: Emerging trends in research, development, and technologies. Antibiotics 2019, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Shariati, A.; Noei, M.; Askarinia, M.; Khoshbayan, A.; Farahani, A.; Chegini, Z. Inhibitory effect of natural compounds on quorum sensing system in Pseudomonas aeruginosa: A helpful promise for managing biofilm community. Front. Pharmacol. 2024, 15, 1350391. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Garbajosa, P. Update on the management of SARS-CoV-2 infection COVID-19: Impact on prescribing and antimicrobial resistance. Off. J. Span. Soc. Chemother. 2021, 34, 63–68. [Google Scholar] [CrossRef]
- Tyagi, P.; Tyagi, S.; Stewart, L.; Glickman, S. SWOT and Root Cause Analyses of Antimicrobial Resistance to Oral Antimicrobial Treatment of Cystitis. Antibiotics 2024, 13, 328. [Google Scholar] [CrossRef] [PubMed]
- Pérez-López, M.; Flores-Cruz, M.; Martínez-Vázquez, M.; Soto-Hernández, M.; García-Contreras, R.; Padilla-Chacón, D.; Castillo-Juárez, I. Anti-virulence activities of some Tillandsia species (Bromeliaceae). Bot. Sci. 2020, 98, 117–127. [Google Scholar] [CrossRef]
- Pejčić, M.; Stojanović-Radić, Z.; Genčić, M.; Dimitrijević, M.; Radulović, N. Anti-virulence potential of basil and sage essential oils: Inhibition of biofilm formation, motility and pyocyanin production of Pseudomonas aeruginosa isolates. Food Chem. Toxicol. 2020, 141, 111431. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.N.; Zimmer, K.R.; Macedo, A.J.; Trentin, D.S. Plant natural products targeting bacterial virulence factors. Chem. Rev. 2016, 116, 9162–9236. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.C.; Liu, F.; Zhu, K.; Shen, J.Z. Natural Products That Target Virulence Factors in Antibiotic-Resistant Staphylococcus aureus [Review-article]. J. Agric. Food Chem. 2019, 67, 13195–13211. [Google Scholar] [CrossRef]
- Lee, K.-M.; Kim, W.-S.; Lim, J.; Nam, S.; Youn, M.; Nam, S.-W.; Kim, Y.; Kim, S.-H.; Park, W.; Park, S. Antipathogenic properties of green tea polyphenol epigallocatechin gallate at concentrations below the MIC against enterohemorrhagic Escherichia coli O157: H7. J. Food Prot. 2009, 72, 325–331. [Google Scholar] [CrossRef]
- Azevedo, A.S.; Almeida, C.; Melo, L.F.; Azevedo, N.F. Impact of polymicrobial biofilms in catheter-associated urinary tract infections. Crit. Rev. Microbiol. 2017, 43, 423–439. [Google Scholar] [CrossRef]
- Pérez, R.P.; Ortega, M.J.C.; Álvarez, J.A.; Baquero-Artigao, F.; Rico, J.C.S.; Zúñiga, R.V.; Campos, L.M.; Gallego, B.C.; Fernández, A.J.C.; Calvo, C.; et al. Recommendations on the diagnosis and treatment of urinary tract infection. An. Pediatría (Engl. Ed.) 2019, 90, 400-e1. [Google Scholar] [CrossRef]
- Linhares, I.; Raposo, T.; Rodrigues, A.; Almeida, A. Frequency and antimicrobial resistance patterns of bacteria implicated in community urinary tract infections: A ten-year surveillance study (2000–2009). BMC Infect. Dis. 2013, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Man, A.; Santacroce, L.; Jacob, R.; Mare, A.; Man, L. Antimicrobial Activity of Six Essential Oils Against a Group of Human Pathogens: A Comparative Study. Pathogens 2019, 8, 15, Erratum in: Pathogens 2019, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- Stock, I. Natural antibiotic susceptibility of Proteus spp., with special reference to P. mirabilis and P. penneri strains. J. Chemother. 2003, 15, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.M.; Shirtliff, M.E. Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence 2011, 2, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Obied, H.N.; Al-Zobaidy MA, H.; Hindi NK, K. An in vitro study of anti-bacterial, anti-adherence, anti-biofilm and anti-motility activities of the aqueous extracts of fresh and powdered onion (Allium cepa) and onion oil. J. Pharm. Sci. Res. 2018, 10, 1573–1578. [Google Scholar]
- Chassagne, F.; Samarakoon, T.; Porras, G.; Lyles, J.T.; Dettweiler, M.; Marquez, L.; Salam, A.M.; Shabih, S.; Farrokhi, D.R.; Quave, C.L. A systematic review of plants with antibacterial activities: A taxonomic and phylogenetic perspective. Front. Pharmacol. 2021, 11, 586548. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Nigam, P.S.; Ashraf, M.; Gilani, A.H. Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. J. Sci. Food Agric. 2010, 90, 1827–1836. [Google Scholar] [CrossRef]
- Mora-Zúñiga, A.E.; Treviño-Garza, M.Z.; Guerra CA, A.; Galindo, S.A.; Castillo, S.; Mart, E.; Juan, G.B. Parameters, and Antioxidant and Antibacterial Activity of. Plants 2022, 11, 1785. [Google Scholar] [CrossRef]
- Rostro-Alanis, M.d.J.; Báez-González, J.; Torres-Alvarez, C.; Parra-Saldívar, R.; Rodriguez-Rodriguez, J.; Castillo, S. Chemical Composition and Biological Activities of Oregano Essential Oil and Its Fractions Obtained by Vacuum Distillation. Molecules 2019, 24, 15. [Google Scholar] [CrossRef]
- Dutra, T.V.; Castro, J.C.; Menezes, J.L.; Ramos, T.R.; do Prado, I.N.; Machinski, M.; Mikcha, J.M.G.; de Abreu Filho, B.A. Bioactivity of oregano (Origanum vulgare) essential oil against Alicyclobacillus spp. Ind. Crops Prod. 2019, 129, 345–349. [Google Scholar] [CrossRef]
- Vital, A.C.P.; Guerrero, A.; Monteschio, J.D.O.; Valero, M.V.; Carvalho, C.B.; De Abreu Filho, B.A.; Madrona, G.S.; Do Prado, I.N. Effect of edible and active coating (with rosemary and oregano essential oils) on beef characteristics and consumer acceptability. PLoS ONE 2016, 11, e0160535. [Google Scholar] [CrossRef] [PubMed]
- Torres-Alvarez, C.; Núñez González, A.; Rodríguez, J.; Castillo, S.; Leos-Rivas, C.; Báez-González, J.G. Chemical composition, antimicrobial, and antioxidant activities of orange essential oil and its concentrated oils. CyTA-J. Food 2017, 15, 129–135. [Google Scholar] [CrossRef]
- Zhang, D.; Gan, R.; Zhang, J.; Farha, A.K.; Li, H.; Zhu, F.; Wang, X.; Corke, H. Antivirulence properties and related mechanisms of spice essential oils: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1018–1055. [Google Scholar] [CrossRef] [PubMed]
- Asensio, C.M.; Grosso, N.R.; Juliani, H.R. Quality characters, chemical composition and biological activities of oregano (Origanum spp.) Essential oils from Central and Southern Argentina. Ind. Crops Prod. 2015, 63, 203–213. [Google Scholar] [CrossRef]
- Bučková, M.; Puškárová, A.; Kalászová, V.; Kisová, Z.; Pangallo, D. Essential oils against multidrug resistant gram-negative bacteria. Biologia 2018, 73, 803–808. [Google Scholar] [CrossRef]
- Zapién-Chavarría, K.A.; Plascencia-Terrazas, A.; Venegas-Ortega, M.G.; Varillas-Torres, M.; Rivera-Chavira, B.E.; Adame-Gallegos, J.R.; González-Rangel, M.O.; Nevárez-Moorillón, G.V. Susceptibility of multidrug-resistant and biofilm-forming uropathogens to Mexican oregano essential oil. Antibiotics 2019, 8, 186. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Cui, P.; Shi, W.; Zhang, Y. Identification of essential oils with strong activity against stationary phase uropathogenic Escherichia coli. bioRxiv 2019. [Google Scholar] [CrossRef]
- Mustika, Y.R.; Effendi, M.H.; Puspitasari, Y.; Plumeriastuti, H.; Khairullah, A.R.; Kinasih, K.N. Identification of Escherichia coli Multidrug Resistance in Cattle in Abattoirs. J. Med. Vet. 2024, 7, 19–32. [Google Scholar] [CrossRef]
- Lu, M.; Dai, T.; Murray, C.K.; Wu, M.X. Bactericidal Property of Oregano Oil Against Multidrug-Resistant Clinical Isolates. Front. Microbiol. 2018, 9, 2329. [Google Scholar] [CrossRef]
- Bilal, S.; Anam, S.; Mahmood, T.; Abdullah, R.M.; Nisar, S.; Kalsoom, F.; Luqma, M.; Anjum, F.R. Antimicrobial profiling and molecular characterization of antibiotic resistant genes of Proteus vulgaris isolated from tertiary care hospital, Islamabad, Pakistan. Pak. J. Pharm. Sci. 2019, 32, 2887–2891. [Google Scholar] [PubMed]
- Sader, H.S.; Rhomberg, P.R.; Chandrasekaran, S.; Trejo, M.; Fedler, K.A.; Boyken, L.D.; Diekema, D.J. Correlation between broth microdilution and disk diffusion results when testing ceftazidime-avibactam against a challenge collection of Enterobacterales isolates: Results from a multilaboratory study. J. Clin. Microbiol. 2020, 58, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Delgado, O.; Alvarado-Pineda, R.L.; Yacarini-Martínez, A.E. Actividad antibacteriana in vitro de extracto etanólico crudo de las hojas de Origanum vulgare,frente Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 27853 y Escherichia coli ATCC 25922. J. Selva Andin. Res. Soc. 2021, 12, 21–29. [Google Scholar] [CrossRef]
- Alkhafaji RT, H.; Jayashankar, M. Physicochemical properties and inhibitory effects of oregano oil against uropathogenic. Pharmacogn. Res. 2022, 14, 328–332. [Google Scholar] [CrossRef]
- Dias, N.; Dias, M.C.; Cavaleiro, C.; Sousa, M.C.; Lima, N.; Machado, M. Oxygenated monoterpenes-rich volatile oils as potential antifungal agents for dermatophytes. Nat. Prod. Res. 2017, 31, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Janani, K.; Ajitha, P.; Sandhya, R.; Teja, K.V. Chemical constituent, minimal inhibitory concentration, and antimicrobial efficiency of essential oil from Oreganum vulgare against Enterococcus faecalis: An: In vitro: Study. J. Conserv. Dent. Endod. 2019, 22, 538–543. [Google Scholar]
- Chelaru, I.A.; Sion, I.M.; Răducanu, D. Antimicrobial Effects of Some Essential Oils Against Uropathogenic Escherichia Coli Strains. Sci. Stud. Res. Ser. Biol./Stud. Si Cercet. Stiintifice Ser. Biol. 2023, 32, 42–48. [Google Scholar]
- Bai, A.J.; Vittal, R.R. Quorum Sensing Inhibitory and Anti-Biofilm Activity of Essential Oils and Their in vivo Efficacy in Food Systems. Food Biotechnol. 2014, 28, 269–292. [Google Scholar] [CrossRef]
- Swetha, B.M.; Saravanan, M.; Piruthivraj, P. Emerging trends in the inhibition of bacterial molecular communication: An overview. Microb. Pathog. 2023, 186, 106495. [Google Scholar] [CrossRef]
- Mirzaei, A.; Habibi, M.; Bouzari, S.; Asadi Karam, M.R. Characterization of antibiotic-susceptibility patterns, virulence factor profiles and clonal relatedness in Proteus mirabilis isolates from patients with urinary tract infection in Iran. Infect. Drug Resist. 2019, 12, 3967–3979. [Google Scholar] [CrossRef]
- García-Heredia, A.; García, S.; Merino-Mascorro, J.Á.; Feng, P.; Heredia, N. Natural plant products inhibits growth and alters the swarming motility, biofilm formation, and expression of virulence genes in enteroaggregative and enterohemorrhagic Escherichia coli. Food Microbiol. 2016, 59, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, Y.; Cerino, B.; Moreno, M.; Yañez, E.; Heredia, N.; Dávila-Aviña, J.; Quezada, T.; Calle, A.; García, S. Diarrheagenic Escherichia coli with multidrug resistance in cattle from Mexico. J. Food Prot. 2024, 87, 100257. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Liu, J.; Jiang, X.; Chen, F.; Lu, X.; Zhang, J. Analysis of the Clinical Effect of Combined Drug Susceptibility to Guide Medication for Carbapenem-Resistant Klebsiella pneumoniae Patients Based on the Kirby-Bauer Disk Diffusion Method. Infect Drug Resist. 2021, 14, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Carović-Stanko, K.; Orlić, S.; Politeo, O.; Strikić, F.; Kolak, I.; Milos, M.; Satovic, Z. Composition and antibacterial activities of essential oils of seven Ocimum taxa. Food Chem. 2010, 119, 196–201. [Google Scholar] [CrossRef]
- Lazou, T.P.; Chaintoutis, S.C. Comparison of disk diffusion and broth microdilution methods for antimicrobial susceptibility testing of Campylobacter isolates of meat origin. J. Microbiol. Methods 2023, 204, 106649. [Google Scholar] [CrossRef] [PubMed]
- Ríos-López, A.L.; Heredia, N.; García, S.; Merino-Mascorro, J.Á.; Solís-Soto, L.Y.; Dávila-Aviña, J.E. Effect of phenolic compounds and cold shock on survival and virulence of Escherichia coli pathotypes. J. Food Saf. 2022, 42, e12966. [Google Scholar] [CrossRef]
- Caiazza, N.C.; Merritt, J.H.; Brothers, K.M.; O’Toole, G.A. Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J. Bacteriol. 2007, 189, 3603–3612. [Google Scholar] [CrossRef]
Oil | Code | Color | Odor | Specific Gravity 20 °C g/mL |
---|---|---|---|---|
Fraction 1 | F1 | colorless | soft | 0.842 |
Fraction 2 | F2 | intermediate yellow | intermediate | 0.845 |
Fraction 3 | F3 | light yellow | intermediate | 0.859 |
Fraction 4 | F4 | light brown | strong | 0.884 |
Residual | R | strong brown | strong | 0.512 |
Pure essential oil | P-OEO | light brown | intermediate | 0.778 |
COMPOSITION | Code | Relative Area 1 % | |||||
---|---|---|---|---|---|---|---|
FI | F2 | F3 | F4 | Residual | P-OEO | ||
o-Cymene [20] | MH1 | 41.95 | 41.88 | 24.34 | ND | ND | 21.51 |
α-Phellandrene [20,25] | MH2 | 2.19 | ND | ND | ND | ND | ND |
α-Pinene [20,25] | MH3 | 1.45 | ND | ND | ND | ND | ND |
Camphene [25] | MH4 | 1.47 | ND | ND | ND | ND | ND |
α-Myrcene [6] | MH5 | 7.52 | 6.48 | 1.95 | ND | ND | 2.27 |
α-Phellandrene [6,25] | MH6 | 1.40 | ND | ND | ND | ND | ND |
Terpinolene [6] | MH7 | 5.52 | 5.32 | 2.35 | ND | ND | ND |
D-Limonene [20,25] | MH8 | 1.66 | 1.60 | 0.80 | ND | ND | ND |
Eucalyptol [20,25] | OM1 | 2.74 | 3.84 | 6.54 | 1.13 | ND | 4.57 |
γ-Terpinene [6,20,25] | MH9 | 26.77 | 27.32 | 19.35 | ND | ND | 12.75 |
Terpinen-4-ol [6,25] | OM2 | ND | ND | 1.28 | 1.55 | ND | ND |
Thymol [6,20] | OM3 | 1.59 | 1.92 | 9.86 | 21.17 | 10.42 | 13.53 |
Carvacrol [6,20,25] | OM4 | 3.48 | 4.36 | 22.37 | 60.23 | 48.54 | 34.09 |
α-Thujene [6,20,25] | MH10 | 2.19 | 1.30 | ND | ND | ND | ND |
Thymyl methyl ether | OM5 | ND | ND | 1.48 | 0.69 | ND | ND |
Caryophyllene [20,25] | SeH1 | ND | ND | 4.74 | 8.33 | 2.82 | 6.31 |
Humulene [20,25] | SeH2 | ND | ND | 1.78 | 4.70 | 3.84 | 2.90 |
p-Cymene-2,5-diol | OM6 | ND | ND | ND | ND | 1.61 | ND |
Phenol, 3-(1,1-dimethylethyl)-4-methoxy | OM7 | ND | ND | ND | ND | 9.58 | ND |
Caryophyllene oxide [25] | SeH3 | ND | ND | ND | ND | 11.07 | ND |
Humulene Epoxide II [6] | SeH4 | ND | ND | ND | ND | 4.39 | ND |
α-Terpinene [20] | MH11 | ND | ND | ND | ND | ND | 2.08 |
Monoterpene hydrocarbons | MH | 92.12 | 83.91 | 48.79 | 0.00 | 0.00 | 38.60 |
Oxygenated monoterpenes | OM | 7.81 | 10.12 | 41.53 | 84.77 | 70.14 | 52.19 |
Sesquiterpene hydrocarbons | SeH | 0.00 | 0.00 | 6.52 | 13.03 | 22.13 | 9.21 |
Total components identified | 99.92 | 94.03 | 96.85 | 97.79 | 92.27 | 97.79 |
Antibiotic | Microorganisms | ||
---|---|---|---|
P. aeruginosa | E. coli | P. vulgaris | |
Amikacin (AK) | S * | S | S |
Ampicillin (AM) | R | R | S |
Cephalothin (CF) | R | R | S |
Cefotaxime (CFX) | R | S | R |
Ceftriaxone (CTX) | S | S | S |
Chloramphenicol (CL) | S | S | R |
Dicloxacillin (DC) | R | R | S |
Gentamicin (GE) | S | S | S |
Netilmicin (NET) | R | S | S |
Nitrofurantoin (NF) | R | S | R |
Penicillin (PE) | R | R | S |
Sulfamethoxazole Trimethoprim (SXT) | R | S | R |
Bacteria | Inhibition Zones (cm) | ||||||
---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | R | P-OEO | GE | |
P. aeruginosa | 0.7 * ± 0.0 g | NI | 1.2 ± 0.2 ef | 1.4 ± 0.1 e | 1.0 ± 0.1 f | 0.7 ± 0.0 g | 1.7 ± 0.07 d |
E. coli | 1.6 ± 0.3 de | 2.0 ± 0.3 cd | 2.9 ± 0.4 b | 3.8 ± 0.3 a | 2.6 ± 0.2 b | 3.3 ± 0.2 ab | 1.8 ± 0.1 d |
P. vulgaris | 1.1 ± 0.1 f | 1.2 ± 0.2 ef | 2.3 ± 0.2 c | 2.4 ± 0.4 bc | 1.7 ± 0.3 d | 2.3 ± 0.4 c | 2.2 ± 0.2 c |
Bacteria | MBC mg/mL | ||||||
---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | P-OEO | Residual | GE | |
P. aeruginosa | NI | NI | 21.2 ± 2.5 a | 23.7 ± 2.5 a | 21.2 ± 2.5 a | 23.0 ± 2.5 a | 0.004 ± 0 |
E. coli | 22.5 * ± 2.8 a | 2.1 ± 0.5 b | 0.1 ± 0.02 d | 0.002 ± 0.0 e | 0.002 ± 0.0 e | <0.002 | 0.004 ± 0 |
P. vulgaris | 1.1 ± 0.1 c | 1.0 ± 0.1 c | 0.1 ± 0.05 d | 0.002 ± 0.0 e | 0.2 ± 0.05 d | 0.2 ± 0.05 d | 0.002 ± 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez García, E.; Torres-Alvarez, C.; Morales Sosa, E.G.; Pimentel-González, M.; Villarreal Treviño, L.; Amaya Guerra, C.A.; Castillo, S.; Rodríguez Rodríguez, J. Essential Oil of Fractionated Oregano as Motility Inhibitor of Bacteria Associated with Urinary Tract Infections. Antibiotics 2024, 13, 665. https://doi.org/10.3390/antibiotics13070665
Sánchez García E, Torres-Alvarez C, Morales Sosa EG, Pimentel-González M, Villarreal Treviño L, Amaya Guerra CA, Castillo S, Rodríguez Rodríguez J. Essential Oil of Fractionated Oregano as Motility Inhibitor of Bacteria Associated with Urinary Tract Infections. Antibiotics. 2024; 13(7):665. https://doi.org/10.3390/antibiotics13070665
Chicago/Turabian StyleSánchez García, Eduardo, Cynthia Torres-Alvarez, Elías G. Morales Sosa, Mariana Pimentel-González, Licet Villarreal Treviño, Carlos Abel Amaya Guerra, Sandra Castillo, and José Rodríguez Rodríguez. 2024. "Essential Oil of Fractionated Oregano as Motility Inhibitor of Bacteria Associated with Urinary Tract Infections" Antibiotics 13, no. 7: 665. https://doi.org/10.3390/antibiotics13070665
APA StyleSánchez García, E., Torres-Alvarez, C., Morales Sosa, E. G., Pimentel-González, M., Villarreal Treviño, L., Amaya Guerra, C. A., Castillo, S., & Rodríguez Rodríguez, J. (2024). Essential Oil of Fractionated Oregano as Motility Inhibitor of Bacteria Associated with Urinary Tract Infections. Antibiotics, 13(7), 665. https://doi.org/10.3390/antibiotics13070665