Comparison of Different Methods for Assaying the In Vitro Activity of Cefiderocol against Carbapenem-Resistant Pseudomonas aeruginosa Strains: Influence of Bacterial Inoculum
Abstract
:1. Introduction
2. Results
2.1. Study of Cefiderocol in Relation to Other Antimicrobials
2.2. Analysis of the Different Techniques for Susceptibility to Cefiderocol
2.3. Investigation of Inoculum Influence
3. Discussion
4. Materials and Methods
- Microdilution in iron-depleted medium (UMIC® Bruker): The UMIC® Cefiderocol is suitable for determining MIC values in the range of 0.03 to 32 mg/L for Pseudomonas aeruginosa. UMIC are ready-to-use strips with 12 wells each, containing dried antibiotics and prepared according to the ISO 20776-1:2019 [40]. First, a 0.5 McFarland (1.5 × 108 CFU/mL) standard bacterial suspension is prepared in sodium chloride 0.9% solution; then, it is transferred to a 25 μL aliquot of cation-adjusted, iron-depleted Mueller Hinton broth. Next, UMIC cefiderocol was inoculated by transferring 100 μL to each well with the appropriate number of UMIC strips. The UMIC BOX was incubated for 18–24 h until we were able to visually read the MIC results.
- Diffusion gradient strips E-test Liofilchem® of cefiderocol: This technique was carried out according to the manufacturer’s instructions using three different bacterial inoculums. The reference or standard inoculum corresponded to 1.5 × 108 CFU/mL (0.5 McFarland), which is a lower inoculum than the standard which corresponded to 1.5 × 107 CFU/mL; finally, a higher inoculum than the standard corresponded to 3 × 108 CFU/mL (1 McFarland). All of them used plates with Mueller Hinton E Agar (Biomerieux).
- Thermo Scientific™ Oxoid™ cefiderocol antimicrobial susceptibility discs: This technique was carried out according to the manufacturer’s instructions using three different bacterial inoculums. The reference or standard inoculum corresponded to 1.5 × 108 CFU/mL (0.5 McFarland); a lower inoculum than standard corresponded to 1.5 × 107 CFU/mL; finally, a higher inoculum than standard corresponded to 3 × 108 CFU/mL (1 McFarland). All of them used plates with Mueller Hinton E Agar (Biomerieux).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferretti, C.; Poma, N.V.; Bernardo, M.; Rindi, L.; Cesta, N.; Tavanti, A.; Tascini, C.; Di Luca, M. Evaluation of antibiofilm activity of cefiderocol alone and in combination with imipenem against Pseudomonas aeruginosa. J. Glob. Antimicrob. Resist. 2024, 37, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Karruli, A.; Catalini, C.; D’amore, C.; Foglia, F.; Mari, F.; Harxhi, A.; Galdiero, M.; Durante-Mangoni, E. Evidence-Based Treatment of Pseudomonas aeruginosa Infections: A Critical Reappraisal. Antibiotics 2023, 12, 399. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Avakh, A.; Grant, G.D.; Cheesman, M.J.; Kalkundri, T.; Hall, S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics 2023, 12, 1304. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khanchandani, H.; Chaudhury, M.; Rao, M.S.; Ramakrishna, N.; Venkataramana, B.; Chaudhury, A. In vitro activity of the newly approved antimicrobial agent Cefiderocol against Carbapenem resistant Gram negative clinical isolates. Indian J. Med. Microbiol. 2024, 48, 100556. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Naas, T.; Pogue, J.M.; Rossolini, G.M. Cefiderocol, a Siderophore Cephalosporin, as a Treatment Option for Infections Caused by Carbapenem-Resistant Enterobacterales. Infect. Dis. Ther. 2023, 12, 777–806. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bianco, G.; Gaibani, P.; Comini, S.; Boattini, M.; Banche, G.; Costa, C.; Cavallo, R.; Nordmann, P. Synergistic Effect of Clinically Available Beta-Lactamase Inhibitors Combined with Cefiderocol against Carbapenemase-Producing Gram-Negative Organisms. Antibiotics 2022, 11, 1681. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tenover, F.C.; Nicolau, D.P.; Gill, C.M. Carbapenemase-producing Pseudomonas aeruginosa an emerging challenge. Emerg. Microbes Infect. 2022, 11, 811–814. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pintado, V.; Ruiz-Garbajosa, P.; Aguilera-Alonso, D.; Baquero-Artigao, F.; Bou, G.; Cantón, R.; Grau, S.; Gutiérrez-Gutiérrez, B.; Larrosa, N.; Machuca, I.; et al. Executive summary of the consensus document of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) on the diagnosis and anti-microbial treatment of infections due to carbapenem-resistant Gram-negative bacteria. Enferm. Infecc. Microbiol. Clin. (Engl. Ed.) 2023, 41, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Brakert, L.; Berneking, L.; Both, A.; Berinson, B.; Huang, J.; Aepfelbacher, M.; Wolschke, C.; Wichmann, D.; Rohde, H. Rapid development of cefiderocol resistance in a carbapenem-resistant Pseudomonas aeruginosa isolate associated with mutations in the pyoverdine biosynthesis pathway. J. Glob. Antimicrob. Resist. 2023, 34, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Gomis-Font, M.A.; Sastre-Femenia, M.À.; Taltavull, B.; Cabot, G.; Oliver, A. In vitro dynamics and mechanisms of cefiderocol resistance development in wild-type, mutator and XDR Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2023, 78, 1785–1794. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.S.; Chen, P.Y.; Chou, P.C.; Wang, J.T. In Vitro Activities and Inoculum Effects of Cefiderocol and Aztreonam-Avibactam against Metallo-β-Lactamase-Producing Enterobacteriaceae. Microbiol. Spectr. 2023, 11, e0056923. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kalpana, S.; Lin, W.Y.; Wang, Y.C.; Fu, Y.; Lakshmi, A.; Wang, H.Y. Antibiotic Resistance Diagnosis in ESKAPE Pathogens A Review on Proteomic Perspective. Diagnostics 2023, 13, 1014. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lanckohr, C.; Bracht, H. Antimicrobial stewardship. Curr. Opin. Crit. Care 2022, 28, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, Y.; Bergl, P.A. Diagnostic Stewardship: Appropriate Testing and Judicious Treatments. Crit. Care Clin. 2022, 38, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Poku, E.; Cooper, K.; Cantrell, A.; Harnan, S.; Abu Sin, M.; Zanuzdana, A.; Hoffmann, A. Systematic review of time lag between antibiotic use and rise of resistant pathogens among hospitalized adults in Europe. JAC Antimicrob. Resist. 2023, 5, dlad001. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laffont-Lozes, P.; Larcher, R.; Salipante, F.; Leguelinel-Blache, G.; Dunyach-Remy, C.; Lavigne, J.-P.; Sotto, A.; Loubet, P. Usefulness of dynamic regression time series models for studying the relationship between antimicrobial consumption and bacterial antimicrobial resistance in hospitals: A systematic review. Antimicrob. Resist. Infect. Control 2023, 12, 100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vuillemin, X.; Da Silva, M.; Bour, M.; Landon, C.; Plésiat, P.; Jeannot, K. Cefiderocol activity is compromised by acquired extended-spectrum oxacillinases in Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2023, 62, 106917. [Google Scholar] [CrossRef]
- Yao, J.; Wang, J.; Chen, M.; Cai, Y. Cefiderocol: An Overview of Its in-vitro and in-vivo Activity and Underlying Resistant Mechanisms. Front. Med. 2021, 8, 741940. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karlowsky, J.A.; Walkty, A.J.; Baxter, M.R.; Adam, H.J.; Lagacé-Wiens, P.R.S.; Schweizer, F.; Bay, D.; Lynch, J.P.; Mulvey, M.R.; Zhanel, G.G. In Vitro Activity of Cefiderocol against Extensively Drug-Resistant Pseudomonas aeruginosa: CANWARD, 2007 to 2019. Microbiol. Spectr. 2022, 10, e0172422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, C.; Yang, D.; Wang, Y.; Ni, W. Cefiderocol for the Treatment of Multidrug-Resistant Gram-Negative Bacteria: A Systematic Review of Currently Available Evidence. Front. Pharmacol. 2022, 13, 896971, Erratum in Front. Pharmacol. 2022, 13, 976792. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karakonstantis, S.; Rousaki, M.; Vassilopoulou, L.; Kritsotakis, E.I. Global prevalence of cefiderocol non-susceptibility in Enterobacterales, Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2024, 30, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Domingues, S.; Lima, T.; Saavedra, M.J.; Da Silva, G.J. An Overview of Cefiderocol’s Therapeutic Potential and Underlying Resistance Mechanisms. Life 2023, 13, 1427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mancuso, G.; De Gaetano, S.; Midiri, A.; Zummo, S.; Biondo, C. The Challenge of Overcoming Antibiotic Resistance in Carbapenem-Resistant Gram-Negative Bacteria: “Attack on Titan”. Microorganisms 2023, 11, 1912. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wicky, P.-H.; Poiraud, J.; Alves, M.; Patrier, J.; D’humières, C.; Lê, M.; Kramer, L.; de Montmollin, É.; Massias, L.; Armand-Lefèvre, L.; et al. Cefiderocol Treatment for Severe Infections due to Difficult-to-Treat-Resistant Non-Fermentative Gram-Negative Bacilli in ICU Patients: A Case Series and Narrative Literature Review. Antibiotics 2023, 12, 991. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cosentino, F.; Viale, P.; Giannella, M. MDR/XDR/PDR or DTR? Which definition best fits the resistance profile of Pseudomonas aeruginosa? Curr. Opin. Infect. Dis. 2023, 36, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Dortet, L.; Niccolai, C.; Pfennigwerth, N.; Frisch, S.; Gonzalez, C.; Antonelli, A.; Giani, T.; Hoenings, R.; Gatermann, S.; Rossolini, G.M.; et al. Performance evaluation of the UMIC® Cefiderocol to determine MIC in Gram-negative bacteria. J. Antimicrob. Chemother. 2023, 78, 1672–1676. [Google Scholar] [CrossRef]
- Devoos, L.; Biguenet, A.; Rousselot, J.; Bour, M.; Plésiat, P.; Fournier, D.; Jeannot, K. Performance of discs, sensititre EUMDROXF microplates and MTS gradient strips for the determination of the susceptibility of multidrug-resistant Pseudomonas aeruginosa to cefiderocol. Clin. Microbiol. Infect. 2023, 29, 652.e1–652.e8. [Google Scholar] [CrossRef] [PubMed]
- Matuschek, E.; Longshaw, C.; Takemura, M.; Yamano, Y.; Kahlmeter, G. Cefiderocol: EUCAST criteria for disc diffusion and broth microdilution for antimicrobial susceptibility testing. J. Antimicrob. Chemother. 2022, 77, 1662–1669. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bianco, G.; Boattini, M.; Comini, S.; Banche, G.; Cavallo, R.; Costa, C. Disc Diffusion and ComASP® Cefiderocol Microdilution Panel to Overcome the Challenge of Cefiderocol Susceptibility Testing in Clinical Laboratory Routine. Antibiotics 2023, 12, 604. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raro, O.H.F.; Bouvier, M.; Kerbol, A.; Poirel, L.; Nordmann, P. MultiRapid ATB NP test for detecting concomitant susceptibility and resistance of last-resort novel antibiotics available to treat multidrug-resistant Enterobacterales infections. Int. J. Antimicrob. Agents 2024, 64, 107206. [Google Scholar] [CrossRef] [PubMed]
- Danjean, M.; Hobson, C.A.; Gits-Muselli, M.; Courroux, C.; Monjault, A.; Bonacorsi, S.; Birgy, A. Evaluation of the inoculum effect of new antibiotics against carbapenem-resistant enterobacterales. Clin. Microbiol. Infect. 2022, 28, 1503.e1–1503.e3. [Google Scholar] [CrossRef] [PubMed]
- Hobson, C.A.; Cointe, A.; Jacquier, H.; Choudhury, A.; Magnan, M.; Courroux, C.; Tenaillon, O.; Bonacorsi, S.; Birgy, A. Cross-resistance to cefiderocol and ceftazidime-avibactam in KPC β-lactamase mutants and the inoculum effect. Clin. Microbiol. Infect. 2021, 27, 1172.e7–1172.e10. [Google Scholar] [CrossRef] [PubMed]
- Mimoz, O.; Elhelali, N.; Léotard, S.; Jacolot, A.; Laurent, F.; Samii, K.; Petitjean, O.; Nordmann, P. Treatment of experimental pneumonia in rats caused by a PER-1 extended-spectrum beta-lactamase-producing strain of Pseudomonas aeruginosa. J. Antimicrob. Chemother. 1999, 44, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Rousaki, M.; Kritsotakis, E.I. Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics 2022, 11, 723. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fendian, Á.M.; Albanell-Fernández, M.; Tuset, M.; Pitart, C.; Castro, P.; Soy, D.; Bodro, M.; Soriano, A.; del Río, A.; Martínez, J.A. Real-Life Data on the Effectiveness and Safety of Cefiderocol in Severely Infected Patients: A Case Series. Infect. Dis. Ther. 2023, 12, 1205–1216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, H.; Yang, L.; Chen, Q.; Song, H.; Bo, X.; Guo, J.; Li, P.; Ni, M. Time Series Genomics of Pseudomonas aeruginosa Reveals the Emergence of a Hypermutator Phenotype and Within-Host Evolution in Clinical Inpatients. Microbiol. Spectr. 2022, 10, e0005722. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Witzany, C.; Regoes, R.R.; Igler, C. Assessing the relative importance of bacterial resistance, persistence and hyper-mutation for antibiotic treatment failure. Proc. Biol. Sci. 2022, 289, 20221300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shields, R.K.; Kline, E.G.; Squires, K.M.; Van Tyne, D.; Doi, Y. In vitro activity of cefiderocol against Pseudomonas aeruginosa demonstrating evolved resistance to novel β-lactam/β-lactamase inhibitors. JAC Antimicrob. Resist. 2023, 5, dlad107. [Google Scholar] [CrossRef] [PubMed]
- Jean, S.S.; Gould, I.M.; Lee, W.S.; Hsueh, P.R.; International Society of Antimicrobial Chemotherapy (ISAC). New Drugs for Multidrug-Resistant Gram-Negative Organisms: Time for Stewardship. Drugs 2019, 79, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Bianco, G.; Boattini, M.; Comini, S.; Gaibani, P.; Cavallo, R.; Costa, C. Performance evaluation of Bruker UMIC® microdilution panel and disc diffusion to determine cefiderocol susceptibility in Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Achromobacter xylosoxidans and Burkolderia species. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 559–566. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 14.0. 2024. Available online: http://www.eucast.org (accessed on 20 May 2024).
Comparison of % Susceptibility to Cefiderocol vs. Other Antibiotics | |
---|---|
Other Antibiotics | S Cefiderocol |
S: Imipenem/relebactam (n = 9) | 100% |
R: Imipenem/relebactam (n = 100) | 98% |
S: Ceftolozane/tazobactam (n = 56) | 100% |
R: Ceftolozane/tazobactam (n = 53) | 96.20% |
S: Colistin (n = 108) | 98.20% |
R: Colistin (n = 1) | 100% |
S: Amikacin (n = 57) | 100% |
R: Amikacin (n = 52) | 96.15% |
S: Piperacillin/Tazobactam (n = 27) | 100% |
R: Piperacillin/Tazobactam (n = 82) | 97.50% |
S: Ceftazidime (n = 38) | 100% |
R: Ceftazidime (n = 71) | 97.18% |
S: Cefepime (n = 42) | 100% |
R: Cefepime (n = 67) | 97.02% |
TOTAL (n = 109) | 98.20% |
Metallo-β-lactamases producers (n = 54) | 96.30% |
Non- metallo-β-lactamases producers (n = 55) | 100% |
ANTIBIOTICS | MIC50 | MIC90 |
---|---|---|
Cefiderocol | 0.11 | 0.38 |
Imipenem/relebactam | >64 | >64 |
Ceftolozane/tazobactam | 3 | >256 |
Colistin | 0.125 | 4 |
Amikacin | 16 | >256 |
Piperacillin/tazobactam | 48 | 64 |
Ceftazidime | 16 | >32 |
Cefepime | 16 | >16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Rivera, C.; Sánchez-Bautista, A.; Parra-Grande, M.; Ricart-Silvestre, A.; Ventero, M.P.; Tyshkovska, I.; Merino, E.; Rodríguez Díaz, J.C. Comparison of Different Methods for Assaying the In Vitro Activity of Cefiderocol against Carbapenem-Resistant Pseudomonas aeruginosa Strains: Influence of Bacterial Inoculum. Antibiotics 2024, 13, 663. https://doi.org/10.3390/antibiotics13070663
García-Rivera C, Sánchez-Bautista A, Parra-Grande M, Ricart-Silvestre A, Ventero MP, Tyshkovska I, Merino E, Rodríguez Díaz JC. Comparison of Different Methods for Assaying the In Vitro Activity of Cefiderocol against Carbapenem-Resistant Pseudomonas aeruginosa Strains: Influence of Bacterial Inoculum. Antibiotics. 2024; 13(7):663. https://doi.org/10.3390/antibiotics13070663
Chicago/Turabian StyleGarcía-Rivera, Celia, Antonia Sánchez-Bautista, Mónica Parra-Grande, Andrea Ricart-Silvestre, María Paz Ventero, Iryna Tyshkovska, Esperanza Merino, and Juan Carlos Rodríguez Díaz. 2024. "Comparison of Different Methods for Assaying the In Vitro Activity of Cefiderocol against Carbapenem-Resistant Pseudomonas aeruginosa Strains: Influence of Bacterial Inoculum" Antibiotics 13, no. 7: 663. https://doi.org/10.3390/antibiotics13070663
APA StyleGarcía-Rivera, C., Sánchez-Bautista, A., Parra-Grande, M., Ricart-Silvestre, A., Ventero, M. P., Tyshkovska, I., Merino, E., & Rodríguez Díaz, J. C. (2024). Comparison of Different Methods for Assaying the In Vitro Activity of Cefiderocol against Carbapenem-Resistant Pseudomonas aeruginosa Strains: Influence of Bacterial Inoculum. Antibiotics, 13(7), 663. https://doi.org/10.3390/antibiotics13070663