Synthesis of Second-Generation Analogs of Temporin-SHa Peptide Having Broad-Spectrum Antibacterial and Anticancer Effects
Abstract
:1. Introduction
2. Results
2.1. Amphiphilicity of Peptides
2.2. Secondary Structures Determination
2.3. NMR Spectroscopic Analysis
2.4. Antibacterial Activities of the Peptides
2.5. Antiproliferative Activity of the Peptides
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Peptide Synthesis
4.2.1. Synthesis of Temporin-SHa (1)
4.2.2. Synthesis of [G10a]-SHa Analog (2)
4.2.3. Synthesis of [G10f]-SHa Analog (3)
4.2.4. Synthesis of [G10K]-SHa Analog (4)
4.2.5. Synthesis of [G10n]-SHa Analog (5)
4.2.6. Synthesis of [G10y]-SHa Analog (6)
4.3. Peptide Purification
4.4. Circular Dichroism (CD) Analysis
4.5. NMR Analysis
4.6. Antimicrobial Assay
4.7. Antiproliferative and Cytotoxicity Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aamra, H.; Khan, F.-A.; Jahan, H.; Zafar, M.; Ali, H.; Shaheen, F. Synthesis of novel benzimidazole containing antimicrobial peptides (AMPs) with significant inhibitory effect on multidrug resistant strain of Salmonella typhimurium. Synth. Commun. 2021, 51, 3620–3628. [Google Scholar] [CrossRef]
- Romero, S.M.; Cardillo, A.B.; Martínez Ceron, M.C.; Camperi, S.A.; Giudicessi, S.L. Temporins: An approach of potential pharmaceutic candidates. Surg. Infect. 2020, 21, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.-A.; Yaqoob, S.; Qasim, M.W.; Ali, S.; Wang, Y.; Jiang, Z.-H. A Robust, Gram-Scale and High-Yield Synthesis of MDP Congeners for Activation of the NOD2 Receptor and Vaccine Adjuvantation. Synthesis 2024, 56, 539–548. [Google Scholar] [CrossRef]
- Khan, F.A.; Khanam, R.; Wasim Qasim, M.; Wang, Y.; Jiang, Z.H.J.E. Improved Synthesis of D-Isoglutamine: Rapid Access to Desmuramyl Analogues of Muramyl Dipeptide for the Activation of Intracellular NOD2 Receptor and Vaccine Adjuvant Applications. Eur. J. Org. Chem. 2021, 2021, 6688–6699. [Google Scholar] [CrossRef]
- Giuliani, A.; Pirri, G.; Nicoletto, S. Antimicrobial peptides: An overview of a promising class of therapeutics. Open Life Sci. 2007, 2, 1–33. [Google Scholar] [CrossRef]
- Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef]
- Ladram, A.; Nicolas, P. Antimicrobial peptides from frog skin: Biodiversity and therapeutic promises. Front. Biosci 2016, 21, 1341–1371. [Google Scholar] [CrossRef]
- Crépin, A.; Jégou, J.-F.; André, S.; Ecale, F.; Croitoru, A.; Cantereau, A.; Berjeaud, J.-M.; Ladram, A.; Verdon, J. In Vitro and intracellular activities of frog skin temporins against Legionella pneumophila and its eukaryotic hosts. Sci. Rep. 2020, 10, 3978. [Google Scholar] [CrossRef] [PubMed]
- Raja, Z.; André, S.; Abbassi, F.; Humblot, V.; Lequin, O.; Bouceba, T.; Correia, I.; Casale, S.; Foulon, T.; Sereno, D. Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent. PLoS ONE 2017, 12, e0174024. [Google Scholar] [CrossRef]
- Oger, P.-C.; Piesse, C.; Ladram, A.; Humblot, V.J.M. Engineering of antimicrobial surfaces by using temporin analogs to tune the biocidal/antiadhesive effect. Molecules 2019, 24, 814. [Google Scholar] [CrossRef]
- Lombana, A.; Raja, Z.; Casale, S.; Pradier, C.M.; Foulon, T.; Ladram, A.; Humblot, V. Temporin-SHa peptides grafted on gold surfaces display antibacterial activity. J. Pept. Sci. 2014, 20, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Dias, L.M.; Cilli, E.M.; Medeiros, K.S.; Brasil, M.C.O.d.A.; Marin, L.M.; Siqueira, W.L.; Pavarina, A.C. Antibiofilm Activity and Biocompatibility of Temporin-SHa: A Promising Antimicrobial Peptide for Control of Fluconazole-Resistant Candida albicans. Microorganisms 2024, 12, 99. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, F.; Nadeem-ul-Haque, M.; Ahmed, A.; Simjee, S.U.; Ganesan, A.; Jabeen, A.; Shah, Z.A.; Choudhary, M.I. Synthesis of breast cancer targeting conjugate of temporin-SHa analog and its effect on pro-and anti-apoptotic protein expression in MCF-7 cells. Peptides 2018, 106, 68–82. [Google Scholar] [CrossRef]
- Maharjan, R.; Khan, A.I.; Nadeem-ul-Haque, M.; Maresca, M.; Choudhary, M.I.; Shaheen, F.; Simjee, S.U.A. Serum stable and low hemolytic temporin-SHa peptide analogs disrupt cell membrane of methicillin-resistant Staphylococcus aureus (MRSA). Probiotics Antimicrob. 2022, 14, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Olleik, H.; Baydoun, E.; Perrier, J.; Hijazi, A.; Raymond, J.; Manzoni, M.; Dupuis, L.; Pauleau, G.; Goudard, Y.; de La Villéon, B.J.B.; et al. Temporin-SHa and its analogs as potential candidates for the treatment of helicobacter pylori. Biomolecules 2019, 9, 598. [Google Scholar] [CrossRef]
- Khan, A.I.; Nazir, S.; Ullah, A.; Haque, M.N.u.; Maharjan, R.; Simjee, S.U.; Olleik, H.; Dezord, E.C.; Maresca, M.; Shaheen, F. Design, synthesis and characterization of [G10a]-Temporin SHa dendrimers as dual inhibitors of cancer and pathogenic microbes. Biomolecules 2022, 12, 770. [Google Scholar] [CrossRef]
- Kempson, J.; Zhao, R.; Pawluczyk, J.; Wang, B.; Zhang, H.; Hou, X.; Allen, M.P.; Wu, D.-R.; Li, P.; Yip, S.; et al. Challenges with the Synthesis of a Macrocyclic Thioether Peptide: From Milligram to Multigram Using Solid Phase Peptide Synthesis (SPPS). J. Org. Chem. 2024, 89, 6639–6650. [Google Scholar] [CrossRef]
- Broman, S.r.L.; Rosenberg, M.; Wojcik, F.; Holm Hansen, A.; Egelund, P.H.G.; Malmstro̷m, J.; Sejer Pedersen, D. Green Solid-Phase Peptide Synthesis: Oxyma-Triggered Spectrophotometric Monitoring of Residual Piperidine. Org. Process Res. Dev. 2024, 28, 666–673. [Google Scholar] [CrossRef]
- Scioli, G.; Marinaccio, L.; Bauer, M.; Kamysz, W.; Parmar, A.; Newire, E.; Singh, I.; Stefanucci, A.; Mollica, A. New Teixobactin Analogues with a Total Lactam Ring. ACS Med. Chem. Lett. 2023, 14, 1827–1832. [Google Scholar] [CrossRef]
- Wunderlich, H.; Alvaro, R.A.C.; Wenschuh, H.; Schnatbaum, K. New method for peptide purification based on selective removal of truncation peptide impurities after SPPS with orthogonal capping. J. Pept. Sci. 2023, 29, e3496. [Google Scholar] [CrossRef]
- Abbassi, F.; Galanth, C.; Amiche, M.; Saito, K.; Piesse, C.; Zargarian, L.; Hani, K.; Nicolas, P.; Lequin, O.; Ladram, A. Solution structure and model membrane interactions of temporins-SH, antimicrobial peptides from amphibian skin. A NMR spectroscopy and differential scanning calorimetry study. Biochemistry 2008, 47, 10513–10525. [Google Scholar] [CrossRef] [PubMed]
- Olleik, H.; Yacoub, T.; Hoffer, L.; Gnansounou, S.M.; Benhaiem-Henry, K.; Nicoletti, C.; Mekhalfi, M.; Pique, V.; Perrier, J.; Hijazi, A.; et al. Synthesis and evaluation of the antibacterial activities of 13-substituted berberine derivatives. Antibiotics 2020, 9, 381. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Jabeen, A.; Maharjan, R.; Nadeem-ul-Haque, M.; Aamra, H.; Nazir, S.; Khan, S.; Olleik, H.; Maresca, M.; Shaheen, F. Furan-conjugated tripeptides as potent antitumor drugs. Biomolecules 2020, 10, 1684. [Google Scholar] [CrossRef] [PubMed]
Peptides | Sequence |
---|---|
Temporin-SHa (1) | H-Phe1-Leu2-Ser3-Gly4-IIe5-Val6-Gly7-Met8-Leu9-Gly10-Lys11-Leu12-Phe13-NH2 |
[G10a]-SHa (2) | H-Phe1-Leu2-Ser3-Gly4-IIe5-Val6-Gly7-Met8-Leu9-D-Ala10-Lys11-Leu12-Phe13-NH2 |
[G10f]-SHa (3) | H-Phe1-Leu2-Ser3-Gly4-IIe5-Val6-Gly7-Met8-Leu9-D-Phe10-Lys11-Leu12-Phe13-NH2 |
[G10K]-SHa (4) | H-Phe1-Leu2-Ser3-Gly4-IIe5-Val6-Gly7-Met8-Leu9-L-Lys10-Lys11-Leu12-Phe13-NH2 |
[G10n]-SHa (5) | H-Phe1-Leu2-Ser3-Gly4-IIe5-Val6-Gly7-Met8-Leu9-D-NAL10-Lys11-Leu12-Phe13-NH2 |
[G10y]-SHa (6) | H-Phe1-Leu2-Ser3-Gly4-IIe5-Val6-Gly7-Met8-Leu9-D-Tyr10-Lys11-Leu12-Phe13-NH2 |
Peptides | Observed Mass | Net Charge * | m/z Value | Retention Time ** | Overall Yield *** |
---|---|---|---|---|---|
Temporin-SHa (1) | 1380.76 | +2 | 1402.8 [M + Na]+ | 4.638 | 37.0% |
[G10a]-SHa (2) | 1393.82 | +2 | 1394.96 [M + H]+ | 3.489 | 81.2% |
[G10f]-SHa (3) | 1470.86 | +2 | 744.1 [M + H + NH4]+ | 4.749 | 76.7% |
[G10K]-SHa (4) | 1451.88 | +3 | 1453.1 [M + H]+ | 3.553 | 72.0% |
[G10n]-SHa (5) | 1520.92 | +2 | 1521.2 [M + H]+ | 3.806 | 24.0% |
[G10y]-SHa (6) | 1486.86 | +2 | 1088.2 [M + H]+ | 3.529 | 79.0% |
Compounds’ Names | Helix | Antiparallel | Parallel | Turn | Others |
---|---|---|---|---|---|
Temporin-SHa (1) | 49.50% | 0.00% | 0.00% | 0.70% | 49.80% |
[G10a]-SHa (2) | 82.40% | 17.60% | 0.00% | 0.00% | 0.00% |
[G10f]-SHa (3) | 84.60% | 15.40% | 0.00% | 0.00% | 0.00% |
[G10K]-SHa (4) | 88.70% | 11.30% | 0.00% | 0.00% | 0.00% |
[G10n]-SHa (5) | 4.70% | 34.10% | 1.10% | 12.90% | 47.20% |
[G10y]-SHa (6) | 53.80% | 15.10% | 31.10% | 0.00% | 0.00% |
Peptides | Gram-Negative * | |||||
---|---|---|---|---|---|---|
A. baumannii (DSM 30007) | E. cloacae (DSM 30054) | E. coli (ATCC 8739) | H. pylori (ATCC 43504) | K. pneumonia (DSM 26371) | P. aeruginosa (ATCC 9027) | |
Temporin-SHa (1) | 6.25 | 50 | 50 | 3.12 | 50 | 50 |
[G10a]-SHa (2) | 12.5 | >100 | 100 | 3.12 | 100 | >100 |
[G10f]-SHa (3) | 25 | >100 | >100 | 3.12 | >100 | >100 |
[G10K]-SHa (4) | 3.12 | 12.5 | 25 | 3.12 | 25 | 25 |
[G10n]-SHa (5) | >100 | >100 | >100 | 100 | >100 | >100 |
[G10y]-SHa (6) | 12.5 | >100 | >100 | 6.25 | >100 | >100 |
Peptides | Gram-Positive * | |||
---|---|---|---|---|
B. subtilis (ATCC 6633) | E. faecalis (DSM 2570) | E. faecium (DSM 20477) | S. aureus (ATCC 6538) | |
Temporin-SHa (1) | 1.56 | 12.5 | 6.25 | 3.12 |
[G10a]-SHa (2) | 3.12 | 25 | >100 | 3.12 |
[G10f]-SHa (3) | 3.12 | 3.12 | 3.12 | 3.12 |
[G10K]-SHa (4) | 3.12 | 6.25 | 6.25 | 3.12 |
[G10n]-SHa (5) | 50 | >100 | >100 | 50 |
[G10y]-SHa (6) | 6.25 | 12.5 | 12.5 | 6.25 |
Peptides | Breast Cancer (MCF-7) | Liver Cancer (HepG-2) | Ovarian Cancer (A2780) | Pancreatic Cancer (MiaPaCa-2) | Prostate Cancer (PC-3) | Skin Cancer (MNT-1) | Lung Cancer (A549) |
---|---|---|---|---|---|---|---|
Temporin-SHa (1) | 26.9 ± 8.2 | >100 | >100 | >100 | >100 | >100 | >100 |
[G10a]-SHa (2) | 18.3 ± 8.0 | 37.2 ± 5.0 | 13.4 ± 0.7 | 23.1 ± 4.3 | 13.1 ± 2.4 | 14.0 ± 0.8 | 12.1 ± 0.4 |
[G10f]-SHa (3) | 4.4 ± 1.3 | 19.8 ± 1.7 | 6.6 ± 0.5 | 6.8 ± 0.4 | 4.9 ± 0.3 | 5.5 ± 0.4 | 3.6 ± 0.7 |
[G10K]-SHa (4) | 37.4 ± 11.8 | 64.3 ± 3.5 | 21.8 ± 3.2 | 61.4 ± 4.1 | 11.7 ± 1.2 | 21.7 ± 6.9 | 32.6 ± 2.4 |
[G10n]-SHa (5) | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
[G10y]-SHa (6) | 13.1 ± 3.6 | 40.3 ± 7.2 | 23.2 ± 3.1 | 23.9 ± 3.9 | 19.3 ± 1.2 | 44.1 ± 8.1 | 22.0 ± 2.1 |
Peptides | Normal Lung Fibroblast (IMR-90) | Normal Lung Epithelium (BEAS-2B) |
---|---|---|
Temporin-SHa (1) | >100 | >100 |
[G10a]-SHa (2) | 33.0 ± 3.1 | 22.6 ± 0.7 |
[G10f]-SHa (3) | 14.2 ± 0.6 | 7.8 ± 0.3 |
[G10K]-SHa (4) | >100 | 74.8 ± 7.4 |
[G10n]-SHa (5) | >100 | >100 |
[G10y]-SHa (6) | 38.2 ± 1.5 | 32.0 ± 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.I.; Nazir, S.; Haque, M.N.u.; Maharjan, R.; Khan, F.-A.; Olleik, H.; Courvoisier-Dezord, E.; Maresca, M.; Shaheen, F. Synthesis of Second-Generation Analogs of Temporin-SHa Peptide Having Broad-Spectrum Antibacterial and Anticancer Effects. Antibiotics 2024, 13, 758. https://doi.org/10.3390/antibiotics13080758
Khan AI, Nazir S, Haque MNu, Maharjan R, Khan F-A, Olleik H, Courvoisier-Dezord E, Maresca M, Shaheen F. Synthesis of Second-Generation Analogs of Temporin-SHa Peptide Having Broad-Spectrum Antibacterial and Anticancer Effects. Antibiotics. 2024; 13(8):758. https://doi.org/10.3390/antibiotics13080758
Chicago/Turabian StyleKhan, Arif Iftikhar, Shahzad Nazir, Muhammad Nadeem ul Haque, Rukesh Maharjan, Farooq-Ahmad Khan, Hamza Olleik, Elise Courvoisier-Dezord, Marc Maresca, and Farzana Shaheen. 2024. "Synthesis of Second-Generation Analogs of Temporin-SHa Peptide Having Broad-Spectrum Antibacterial and Anticancer Effects" Antibiotics 13, no. 8: 758. https://doi.org/10.3390/antibiotics13080758
APA StyleKhan, A. I., Nazir, S., Haque, M. N. u., Maharjan, R., Khan, F. -A., Olleik, H., Courvoisier-Dezord, E., Maresca, M., & Shaheen, F. (2024). Synthesis of Second-Generation Analogs of Temporin-SHa Peptide Having Broad-Spectrum Antibacterial and Anticancer Effects. Antibiotics, 13(8), 758. https://doi.org/10.3390/antibiotics13080758