Global Variation in Escherichia coli mcr-1 Genes and Plasmids from Animal and Human Genomes Following Colistin Usage Restrictions in Livestock
Abstract
:1. Introduction
2. Results
2.1. mcr-1-Positive E. coli Are Globally Distributed in Humans and Livestock
2.2. IncI2 and IncX4 Are Specialized for mcr-1 While IncHI2 Is a MDR
2.3. Mcr-1 Promoter Variants Are Associated with Specific Plasmids and Insertion Elements
2.4. IncI2 and IncX4 Plasmids Predominate in Asia and Europe, Respectively
2.5. Different Genome Adaptations Occur Following Withdrawal of Colistin in Europe and Asia
3. Discussion
4. Materials and Methods
4.1. Isolate Genomes
4.2. Multilocus Sequence Typing and AMR Genes General Detection
4.3. Genomic Context of mcr-1 Gene
4.4. Data Analysis and Visualization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Dhariwal, A.K.; Tullu, M.S. Colistin: Re-Emergence of the “forgotten” Antimicrobial Agent. J. Postgrad. Med. 2013, 59, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Bialvaei, A.Z.; Samadi Kafil, H. Colistin, Mechanisms and Prevalence of Resistance. Curr. Med. Res. Opin. 2015, 31, 707–721. [Google Scholar] [CrossRef] [PubMed]
- Spapen, H.; Jacobs, R.; Van Gorp, V.; Troubleyn, J.; Honoré, P.M. Renal and Neurological Side Effects of Colistin in Critically Ill Patients. Ann. Intensive Care 2011, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, S.; Utsunomiya, C.; Ishikawa, S.; Sekiguchi, J. A New Antibiotic “colistin” Produced by Spore-Forming Soil Bacteria. J. Antibiot. 1950, 3, 457–458. [Google Scholar]
- Koch-Weser, J.; Sidel, V.W.; Federman, E.B.; Kanarek, P.; Finer, D.C.; Eaton, A.E. Adverse Effects of Sodium Colistimethate. Manifestations and Specific Reaction Rates during 317 Courses of Therapy. Ann. Intern. Med. 1970, 72, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Catry, B.; Cavaleri, M.; Baptiste, K.; Grave, K.; Grein, K.; Holm, A.; Jukes, H.; Liebana, E.; Navas, A.L.; Mackay, D.; et al. Use of Colistin-Containing Products within the European Union and European Economic Area (EU/EEA): Development of Resistance in Animals and Possible Impact on Human and Animal Health. Int. J. Antimicrob. Agents 2015, 46, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Ko, K.S. Mutations and Expression of PmrAB and PhoPQ Related with Colistin Resistance in Pseudomonas Aeruginosa Clinical Isolates. Diagn. Microbiol. Infect. Dis. 2014, 78, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of Plasmid-Mediated Colistin Resistance Mechanism mcr-1 in Animals and Human Beings in China: A Microbiological and Molecular Biological Study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, Y.; Tian, Y.; Shen, Y.; Wang, S.; Zhang, Y. Clinical Impact of Colistin Banning in Food Animal on mcr-1-Positive Enterobacteriaceae in Patients From Beijing, China, 2009–2019: A Long-Term Longitudinal Observational Study. Front. Microbiol. 2022, 13, 826624. [Google Scholar] [CrossRef]
- Jansen, W.; van Hout, J.; Wiegel, J.; Iatridou, D.; Chantziaras, I.; De Briyne, N. Colistin Use in European Livestock: Veterinary Field Data on Trends and Perspectives for Further Reduction. Vet. Sci. 2022, 9, 650. [Google Scholar] [CrossRef]
- European Medicines Agency. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2022; Thirteenth ESVAC report; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Miguela-Villoldo, P.; Moreno, M.A.; Rodríguez-Lázaro, D.; Gallardo, A.; Hernández, M.; Serrano, T.; Sáez, J.L.; de Frutos, C.; Agüero, M.; Quesada, A.; et al. Longitudinal Study of the mcr-1 Gene Prevalence in Spanish Food-Producing Pigs from 1998 to 2021 and Its Relationship with the Use of Polymyxins. Porc. Health Manag. 2022, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, C.; Zhang, R.; Chen, Y.; Shen, Y.; Hu, F.; Liu, D.; Lu, J.; Guo, Y.; Xia, X.; et al. Changes in Colistin Resistance and mcr-1 Abundance in Escherichia coli of Animal and Human Origins Following the Ban of Colistin-Positive Additives in China: An Epidemiological Comparative Study. Lancet Infect. Dis. 2020, 20, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, M.; Spiller, O.B.; Andrey, D.O.; Hinchliffe, P.; Li, H.; MacLean, C.; Niumsup, P.; Powell, L.; Pritchard, M.; et al. Balancing mcr-1 Expression and Bacterial Survival Is a Delicate Equilibrium between Essential Cellular Defence Mechanisms. Nat. Commun. 2017, 8, 2054. [Google Scholar] [CrossRef] [PubMed]
- Ogunlana, L.; Kaur, D.; Shaw, L.P.; Jangir, P.; Walsh, T.; Uphoff, S.; MacLean, R.C. Regulatory Fine-Tuning of mcr-1 Increases Bacterial Fitness and Stabilises Antibiotic Resistance in Agricultural Settings. ISME J. 2023, 17, 2058–2069. [Google Scholar] [CrossRef]
- Li, R.; Xie, M.; Zhang, J.; Yang, Z.; Liu, L.; Liu, X.; Zheng, Z.; Chan, E.W.C.; Chen, S. Genetic Characterization of mcr-1-Bearing Plasmids to Depict Molecular Mechanisms Underlying Dissemination of the Colistin Resistance Determinant. J. Antimicrob. Chemother. 2017, 72, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Snesrud, E.; He, S.; Chandler, M.; Dekker, J.P.; Hickman, A.B.; McGann, P.; Dyda, F. A Model for Transposition of the Colistin Resistance Gene mcr-1 by ISApl1. Antimicrob. Agents Chemother. 2016, 60, 6973–6976. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, Y.; Lu, J.; Wang, Q.; Cui, Y.; Wang, Y.; Quan, J.; Zhao, D.; Du, X.; Liu, H.; et al. Clinical Relevance and Plasmid Dynamics of mcr-1-Positive Escherichia coli in China: A Multicentre Case-Control and Molecular Epidemiological Study. Lancet Microbe 2020, 1, e24–e33. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Van Dorp, L.; Shaw, L.P.; Bradley, P.; Wang, Q.; Wang, X.; Jin, L.; Zhang, Q.; Liu, Y.; Rieux, A.; et al. The Global Distribution and Spread of the Mobilized Colistin Resistance Gene mcr-1. Nat. Commun. 2018, 9, 1179. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, R.; Shao, D.; Yang, L.; Lu, J.; Liu, C.; Wang, X.; Jiang, J.; Wang, B.; Wu, C.; et al. Genomic Shift in Population Dynamics of mcr-1-Positive Escherichia coli in Human Carriage. Genom. Proteom. Bioinform. 2022, 20, 1168–1179. [Google Scholar] [CrossRef]
- Zhong, L.L.; Phan, H.T.T.; Shen, C.; Vihta, K.D.; Sheppard, A.E.; Huang, X.; Zeng, K.J.; Li, H.Y.; Zhang, X.F.; Patil, S.; et al. High Rates of Human Fecal Carriage of mcr-1-Positive Multidrug-Resistant Enterobacteriaceae Emerge in China in Association with Successful Plasmid Families. Clin. Infect. Dis. 2018, 66, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Treilles, M.; Châtre, P.; Drapeau, A.; Madec, J.Y.; Haenni, M. Spread of the mcr-1 Colistin-Resistance Gene in Escherichia coli through Plasmid Transmission and Chromosomal Transposition in French Goats. Front. Microbiol. 2023, 13, 1023403. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, S.; Van Hattem, J.M.; Arcilla, M.S.; Willemse, N.; Melles, D.C.; Penders, J.; Vinh, T.N.; Thi Hoa, N.; Bootsma, M.C.J.; Van Genderen, P.J.; et al. Global Phylogenetic Analysis of Escherichia coli and Plasmids Carrying the mcr-1 Gene Indicates Bacterial Diversity but Plasmid Restriction. Sci. Rep. 2017, 7, 15364. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Zhong, L.L.; Yang, Y.; Doi, Y.; Paterson, D.L.; Stoesser, N.; Ma, F.; El-Sayed Ahmed, M.A.E.G.; Feng, S.; Huang, S.; et al. Dynamics of mcr-1 Prevalence and mcr-1-Positive Escherichia coli after the Cessation of Colistin Use as a Feed Additive for Animals in China: A Prospective Cross-Sectional and Whole Genome Sequencing-Based Molecular Epidemiological Study. Lancet Microbe 2020, 1, E34. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhou, H.; Xu, J.; Wang, Y.; Zhang, Q.; Walsh, T.R.; Shao, B.; Wu, C.; Hu, Y.; Yang, L.; et al. Anthropogenic and Environmental Factors Associated with High Incidence of mcr-1 Carriage in Humans across China. Nat. Microbiol. 2018, 3, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Snesrud, E.; McGann, P.; Chandler, M. The Birth and Demise of the ISApl1-mcr-1-ISApl1 Composite Transposon: The Vehicle for Transferable Colistin Resistance. mBio 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Hayer, S.S.; Casanova-Higes, A.; Paladino, E.; Elnekave, E.; Nault, A.; Johnson, T.; Bender, J.; Perez, A.; Alvarez, J. Global Distribution of Extended Spectrum Cephalosporin and Carbapenem Resistance and Associated Resistance Markers in Escherichia Coli of Swine Origin—A Systematic Review and Meta-Analysis. Front. Microbiol. 2022, 13, 853810. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, X.; Shi, C. Global Spread of mcr-Producing Salmonella enterica Isolates. Antibiotics 2022, 11, 998. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wu, J.; Zhao, J.; Xi, Y.; Jin, Y.; Yang, H.; Chen, S.; Long, J.; Duan, G. Global Epidemiology and Genetic Diversity of mcr-Positive Klebsiella Pneumoniae: A Systematic Review and Genomic Analysis. Environ. Res. 2024, 259, 119516. [Google Scholar] [CrossRef]
- European Medicines Agency. Updated Advice on the Use of Colistin Products in Animals within the European Union: Development of Resistance and Possible Impact on Human and Animal Health; European Medicines Agency, Committee for Medicinal Products for Veterinary Use (CVMP): London, UK, 2016. [Google Scholar]
- Tyson, G.H.; Li, C.; Hsu, C.H.; Ayers, S.; Borenstein, S.; Mukherjee, S.; Tran, T.T.; McDermot, P.F.; Zhao, S. The mcr-9 Gene of Salmonella and Escherichia coli Is Not Associated with Colistin Resistance in the United States. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Yang, Y.; Cao, S.; Liu, H.; Li, X.; Sun, J.; Li, F.; Ishfaq, M.; Zhang, X. Prevalence and Characteristic of Swine-Origin mcr-1-Positive Escherichia coli in Northeastern China. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Nagy, Á.; Székelyhidi, R.; Hanczné Lakatos, E.; Kapcsándi, V. Review on the Occurrence of the mcr-1 Gene Causing Colistin Resistance in Cow’s Milk and Dairy Products. Heliyon 2021, 7, e06800. [Google Scholar] [CrossRef] [PubMed]
- Nakano, A.; Nakano, R.; Nishisouzu, R.; Suzuki, Y.; Horiuchi, S.; Kikuchi-Ueda, T.; Ubagai, T.; Ono, Y.; Yano, H. Prevalence and Relatedness of mcr-1-Mediated Colistin-Resistant Escherichia coli Isolated From Livestock and Farmers in Japan. Front. Microbiol. 2021, 12, 664931. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhu, H.; Liu, C.; Xie, H.; Li, C.; Cao, X.; Shen, H. Epidemiological and Genomic Characteristics of Global mcr-Positive Escherichia coli Isolates. Front. Microbiol. 2023, 13, 1105401. [Google Scholar] [CrossRef] [PubMed]
- Chansamouth, V.; Mayxay, M.; Dance, D.A.B.; Roberts, T.; Phetsouvanh, R.; Vannachone, B.; Vongsouvath, M.; Davong, V.; Inthavong, P.; Khounsy, S.; et al. Antimicrobial Use and Resistance Data in Human and Animal Sectors in the Lao PDR: Evidence to Inform Policy. BMJ Glob. Health 2021, 6, e007009. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, T.; Jinnai, M.; Kawahara, R.; Diep, K.T.; Thang, N.N.; Hoa, T.T.; Hanh, L.K.; Khai, P.N.; Sumimura, Y.; Yamamoto, Y. Frequent Use of Colistin-Based Drug Treatment to Eliminate Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Backyard Chicken Farms in Thai Binh Province, Vietnam. Trop. Anim. Health Prod. 2017, 49, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Fang, L.X.; Wu, Z.; Deng, H.; Yang, R.S.; Li, X.P.; Li, S.M.; Liao, X.P.; Feng, Y.; Liu, Y.H. Genetic Analysis of the IncX4 Plasmids: Implications for a Unique Pattern in the mcr-1 Acquisition. Sci. Rep. 2017, 7, 424. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Ma, S.; Chen, S.; Schwarz, S.; Cao, Y.; Dang, X.; Zhai, W.; Zou, Z.; Shen, J.; Lyu, Y.; et al. Low Prevalence of Colistin-Resistant Escherichia coli from Companion Animals, China, 2018–2021. One Health Adv. 2023, 1, 14. [Google Scholar] [CrossRef]
- Miguela-Villoldo, P.; Hernández, M.; Moreno, M.A.; Rodríguez-Lázaro, D.; Quesada, A.; Domínguez, L.; Ugarte-Ruiz, M. National Colistin Sales versus Colistin Resistance in Spanish Pig Production. Res. Vet. Sci. 2019, 123, 141–143. [Google Scholar] [CrossRef]
- Yoshizawa, N.; Hikoda-Kogiku, Y.; Tamamura-Andoh, Y.; Kusumoto, M. mcr-1 Remains Detectable in Various Escherichia Coli Lineages Isolated from Healthy Swine after Withdrawal of Colistin Use on the Farm. J. Vet. Med. Sci. 2023, 85, 536–540. [Google Scholar] [CrossRef]
- García, V.; García-Meniño, I.; Gómez, V.; Jiménez-Orellana, M.; Méndez, A.; Aguarón, A.; Roca, E.; Mora, A. Mobile Colistin Resistance (mcr), Extended-Spectrum Beta-Lactamase (ESBL) and Multidrug Resistance Monitoring in Escherichia coli (Commensal and Pathogenic) in Pig Farming: Need of Harmonized Guidelines and Clinical Breakpoints. Front. Microbiol. 2022, 13, 1042612. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I.; Levin, B.R. The Biological Cost of Antibiotic Resistance. Curr. Opin. Microbiol. 1999, 2, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Yi, L.X.; Yu, L.F.; Wang, J.; Liu, Y.; Chen, X.; Lv, L.; Yang, J.; Liu, J.H. Fitness Advantage of mcr-1-Bearing IncI2 and IncX4 Plasmids in Vitro. Front. Microbiol. 2018, 9, 331. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wu, R.; Xia, Q.; Yu, J.; Yi, L.X.; Huang, Y.; Deng, M.; He, W.Y.; Bai, Y.; Lv, L.; et al. The Evolution of Infectious Transmission Promotes the Persistence of mcr-1 Plasmids. mBio 2023, 14, e0044223. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-Access Bacterial Population Genomics: BIGSdb Software, the PubMLST.Org Website and Their Applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Wirth, T.; Falush, D.; Lan, R.; Colles, F.; Mensa, P.; Wieler, L.H.; Karch, H.; Reeves, P.R.; Maiden, M.C.J.; Ochman, H.; et al. Sex and Virulence in Escherichia Coli: An Evolutionary Perspective. Mol. Microbiol. 2006, 60, 1136–1151. [Google Scholar] [CrossRef]
- Feil, E.J.; Li, B.C.; Aanensen, D.M.; Hanage, W.P.; Spratt, B.G. EBURST: Inferring Patterns of Evolutionary Descent among Clusters of Related Bacterial Genotypes from Multilocus Sequence Typing Data. J. Bacteriol. 2004, 186, 1518–1530. [Google Scholar] [CrossRef]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for Predictions of Phenotypes from Genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Robertson, J.; Nash, J.H.E. MOB-Suite: Software Tools for Clustering, Reconstruction and Typing of Plasmids from Draft Assemblies. Microb. Genom. 2018, 4, e000206. [Google Scholar] [CrossRef]
- Carattoli, A.; Hasman, H. PlasmidFinder and In Silico PMLST: Identification and Typing of Plasmid Replicons in Whole-Genome Sequencing (WGS). Methods Mol. Biol. 2020, 2075, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Tang, H. ISEScan: Automated Identification of Insertion Sequence Elements in Prokaryotic Genomes. Bioinformatics 2017, 33, 3340–3347. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Wickham, H. Ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Argimón, S.; Abudahab, K.; Goater, R.J.E.; Fedosejev, A.; Bhai, J.; Glasner, C.; Feil, E.J.; Holden, M.T.G.; Yeats, C.A.; Grundmann, H.; et al. Microreact: Visualizing and Sharing Data for Genomic Epidemiology and Phylogeography. Microb. Genom. 2016, 2, e000093. [Google Scholar] [CrossRef]
Incompatibility Group | Number of Plasmids (%) | Mean Number of AMR Genes in the Plasmid | Mean Number of AMR Genes in the Whole Genome |
---|---|---|---|
IncI2 | 1231 (40.4) | 1.3 | 13.3 |
IncX4 | 813 (26.7) | 1.5 | 11.4 |
IncHI2 | 574 (18.8) | 14.6 | 18.1 |
p0111 | 151 (5) | 4 | 14.3 |
IncHI1 | 69 (2.3) | 7 | 12 |
IncP1 | 62 (2.0) | 1.7 | 11.3 |
IncB/O/K/Z | 9 (0.3) | 3.4 | 9.7 |
IncN | 8 (0.3) | 10. | 15.5 |
IncFIA(HII) | 8 (0.3) | 7.4 | 15.2 |
IncX3 | 5 (0.2) | 2.8 | 21.4 |
Not Determined | 102 (3.34) | 4.9 | 12.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcias, B.; Flores, M.A.; Fernández, M.; Monteith, W.; Pascoe, B.; Sheppard, S.K.; Martín, M.; Cortey, M.; Darwich, L. Global Variation in Escherichia coli mcr-1 Genes and Plasmids from Animal and Human Genomes Following Colistin Usage Restrictions in Livestock. Antibiotics 2024, 13, 759. https://doi.org/10.3390/antibiotics13080759
Garcias B, Flores MA, Fernández M, Monteith W, Pascoe B, Sheppard SK, Martín M, Cortey M, Darwich L. Global Variation in Escherichia coli mcr-1 Genes and Plasmids from Animal and Human Genomes Following Colistin Usage Restrictions in Livestock. Antibiotics. 2024; 13(8):759. https://doi.org/10.3390/antibiotics13080759
Chicago/Turabian StyleGarcias, Biel, Mayra Alejandra Flores, Mercedes Fernández, William Monteith, Ben Pascoe, Samuel K. Sheppard, Marga Martín, Martí Cortey, and Laila Darwich. 2024. "Global Variation in Escherichia coli mcr-1 Genes and Plasmids from Animal and Human Genomes Following Colistin Usage Restrictions in Livestock" Antibiotics 13, no. 8: 759. https://doi.org/10.3390/antibiotics13080759
APA StyleGarcias, B., Flores, M. A., Fernández, M., Monteith, W., Pascoe, B., Sheppard, S. K., Martín, M., Cortey, M., & Darwich, L. (2024). Global Variation in Escherichia coli mcr-1 Genes and Plasmids from Animal and Human Genomes Following Colistin Usage Restrictions in Livestock. Antibiotics, 13(8), 759. https://doi.org/10.3390/antibiotics13080759