Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms
Abstract
:1. Introduction
2. Results
2.1. General Description of DNA Sequences
2.2. Bacterial Community Composition and Diversity
2.3. ARG Prevalence, Relative Abundance, and Correlation with Taxa
3. Discussion
4. Materials and Methods
4.1. Sampling Procedure
4.2. DNA Extraction from Faecal, DW, and Biofilm Samples
4.3. 16S rRNA Gene Amplification, Sequencing, and Data Analysis
4.4. Quantitative PCR (qPCR) Analysis of Antimicrobial Resistance Genes (ARGs)
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sparks, N.H.C. The Role of the Water Supply System in the Infection and Control of Campylobacter in Chicken. Worlds Poult. Sci. J. 2009, 65, 459–474. [Google Scholar] [CrossRef]
- Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. J. Clin. Microbiol. 1999, 37, 1771–1776. [Google Scholar] [CrossRef]
- Stewart, P.S.; Costerton, J.W. Antibiotic Resistance of Bacteria in Biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.N.; et al. Tackling Antibiotic Resistance: The Environmental Framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Hruby, C.E.; Soupir, M.L.; Moorman, T.B.; Shelley, M.; Kanwar, R.S. Effects of Tillage and Poultry Manure Application Rates on Salmonella and Fecal Indicator Bacteria Concentrations in Tiles Draining Des Moines Lobe Soils. J. Environ. Manag. 2016, 171, 60–69. [Google Scholar] [CrossRef]
- Marti, R.; Scott, A.; Tien, Y.C.; Murray, R.; Sabourin, L.; Zhang, Y.; Topp, E. Impact of Manure Fertilization on the Abundance of Antibiotic-Resistant Bacteria and Frequency of Detection of Antibiotic Resistance Genes in Soil and on Vegetables at Harvest. Appl. Environ. Microbiol. 2013, 79, 5701–5709. [Google Scholar] [CrossRef] [PubMed]
- Pruden, A.; Arabi, M.; Storteboom, H.N. Correlation Between Upstream Human Activities and Riverine Antibiotic Resistance Genes. Environ. Sci. Technol. 2012, 46, 11541–11549. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ouyang, W.; Qian, Y.; Su, C.; Su, J.; Chen, H. High-Throughput Profiling of Antibiotic Resistance Genes in Drinking Water Treatment Plants and Distribution Systems. Environ. Pollut. 2016, 213, 119–126. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Chen, J.; Wang, F.; Qi, W.; Li, Y. Impact of Disinfectant on Bacterial Antibiotic Resistance Transfer between Biofilm and Tap Water in a Simulated Distribution Network. Environ. Pollut. 2019, 246, 131–140. [Google Scholar] [CrossRef]
- Ma, L.; Li, B.; Zhang, T. New Insights into Antibiotic Resistome in Drinking Water and Management Perspectives: A Metagenomic Based Study of Small-Sized Microbes. Water Res. 2019, 152, 191–201. [Google Scholar] [CrossRef]
- Maes, S.; Vackier, T.; Nguyen Huu, S.; Heyndrickx, M.; Steenackers, H.; Sampers, I.; Raes, K.; Verplaetse, A.; De Reu, K. Occurrence and Characterisation of Biofilms in Drinking Water Systems of Broiler Houses. BMC Microbiol. 2019, 19, 77. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.A.; Topp, E. Role of Livestock in Microbiological Contamination of Water: Commonly the Blame, but Not Always the Source. Anim. Front. 2012, 2, 17–27. [Google Scholar] [CrossRef]
- Kelly, J.J.; Minalt, N.; Culotti, A.; Pryor, M.; Packman, A. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes. PLoS ONE 2014, 9, e98542. [Google Scholar] [CrossRef] [PubMed]
- Van Assche, A.; Crauwels, S.; De Brabanter, J.; Willems, K.A.; Lievens, B. Characterization of the Bacterial Community Composition in Water of Drinking Water Production and Distribution Systems in Flanders, Belgium. Microbiologyopen 2019, 8, e00726. [Google Scholar] [CrossRef]
- Zhu, Z.; Shan, L.; Zhang, X.; Hu, F.; Zhong, D.; Yuan, Y.; Zhang, J. Effects of Bacterial Community Composition and Structure in Drinking Water Distribution Systems on Biofilm Formation and Chlorine Resistance. Chemosphere 2021, 264, 128410. [Google Scholar] [CrossRef]
- Vaz-Moreira, I.; Nunes, O.C.; Manaia, C.M. Diversity and Antibiotic Resistance Patterns of Sphingomonadaceae Isolates from Drinking Water. Appl. Environ. Microbiol. 2011, 77, 5697–5706. [Google Scholar] [CrossRef]
- Willems, A. The Family Comamonadaceae BT—The Prokaryotes: Alphaproteobacteria and Betaproteobacteria; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 777–851. ISBN 978-3-642-30197-1. [Google Scholar]
- Szafraniec, G.M.; Szeleszczuk, P.; Dolka, B. Review on Skeletal Disorders Caused by Staphylococcus Spp. in Poultry. Vet. Q. 2022, 42, 21–40. [Google Scholar] [CrossRef] [PubMed]
- Brooke, J.S. Stenotrophomonas Maltophilia: An Emerging Global Opportunistic Pathogen. Clin. Microbiol. Rev. 2012, 25, 2–41. [Google Scholar] [CrossRef]
- Meng, W.S.; Sui, X.; Xiao, Y.; Zou, Q.; Cui, Y.; Wang, T.; Chen, Z.; Li, D. Regulating Effects of Chlorinated Drinking Water on Cecal Microbiota of Broiler Chicks. Poult. Sci. 2023, 102, 103140. [Google Scholar] [CrossRef]
- Rychlik, I. Composition and Function of Chicken Gut Microbiota. Animals 2020, 10, 103. [Google Scholar] [CrossRef]
- Schokker, D.; Jansman, A.J.M.; Veninga, G.; de Bruin, N.; Vastenhouw, S.A.; de Bree, F.M.; Bossers, A.; Rebel, J.M.J.; Smits, M.A. Perturbation of Microbiota in One-Day Old Broiler Chickens with Antibiotic for 24 Hours Negatively Affects Intestinal Immune Development. BMC Genom. 2017, 18, 241. [Google Scholar] [CrossRef]
- Laconi, A.; Tilli, G.; Galuppo, F.; Grilli, G.; Souillard, R.; Piccirillo, A. Stakeholders’ Perceptions of Biosecurity Implementation in Italian Poultry Farms. Animals 2023, 13, 3246. [Google Scholar] [CrossRef]
- Holmes, A.H.; Moore, L.S.P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J. V Understanding the Mechanisms and Drivers of Antimicrobial Resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Laconi, A.; Tolosi, R.; Mughini-Gras, L.; Cuccato, M.; Cannizzo, F.T.; Piccirillo, A. Amoxicillin and Thiamphenicol Treatments May Influence the Co-Selection of Resistance Genes in the Chicken Gut Microbiota. Sci. Rep. 2022, 12, 20413. [Google Scholar] [CrossRef]
- Bailey, M.A.; Taylor, R.M.; Brar, J.S.; Corkran, S.C.; Velásquez, C.; Novoa Rama, E.; Oliver, H.F.; Singh, M. Prevalence and Antimicrobial Resistance of Campylobacter from Antibiotic-Free Broilers during Organic and Conventional Processing. Poult. Sci. 2019, 98, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Salerno, B.; Furlan, M.; Sabatino, R.; Di Cesare, A.; Leati, M.; Volanti, M.; Barco, L.; Orsini, M.; Losasso, C.; Cibin, V. Antibiotic Resistance Genes Load in an Antibiotic Free Organic Broiler Farm. Poult. Sci. 2022, 101, 101675. [Google Scholar] [CrossRef]
- Smoglica, C.; Farooq, M.; Ruffini, F.; Marsilio, F.; Di Francesco, C.E. Microbial Community and Abundance of Selected Antimicrobial Resistance Genes in Poultry Litter from Conventional and Antibiotic-Free Farms. Antibiotics 2023, 12, 1461. [Google Scholar] [CrossRef]
- Farooq, M.; Smoglica, C.; Ruffini, F.; Soldati, L.; Marsilio, F.; Di Francesco, C.E. Antibiotic Resistance Genes Occurrence in Conventional and Antibiotic-Free Poultry Farming, Italy. Animals 2022, 12, 2310. [Google Scholar] [CrossRef]
- Laconi, A.; Mughini-Gras, L.; Tolosi, R.; Grilli, G.; Trocino, A.; Carraro, L.; Di Cesare, F.; Cagnardi, P.; Piccirillo, A. Microbial Community Composition and Antimicrobial Resistance in Agricultural Soils Fertilized with Livestock Manure from Conventional Farming in Northern Italy. Sci. Total Environ. 2021, 760, 143404. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Liu, Y.; Pan, C.; Chen, J.; He, L.; Ying, G. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water. Sci. Total Environ. 2015, 616–617, 453–461. [Google Scholar] [CrossRef]
- Laconi, A.; Tolosi, R.; Mughini-Gras, L.; Mazzucato, M.; Ferrè, N.; Carraro, L.; Cardazzo, B.; Capolongo, F.; Merlanti, R.; Piccirillo, A. Beehive Products as Bioindicators of Antimicrobial Resistance Contamination in the Environment. Sci. Total Environ. 2022, 823, 151131. [Google Scholar] [CrossRef] [PubMed]
- Lopatto, E.; Choi, J.; Colina, A.; Ma, L.; Howe, A.; Hinsa-Leasure, S. Characterizing the Soil Microbiome and Quantifying Antibiotic Resistance Gene Dynamics in Agricultural Soil Following Swine CAFO Manure Application. PLoS ONE 2019, 14, e0220770. [Google Scholar] [CrossRef] [PubMed]
- Cherak, Z.; Loucif, L.; Moussi, A.; Rolain, J.M. Epidemiology of Mobile Colistin Resistance (Mcr) Genes in Aquatic Environments. J. Glob. Antimicrob. Resist. 2021, 27, 51–62. [Google Scholar] [CrossRef]
- Khan, H.; Miao, X.; Liu, M.; Ahmad, S.; Bai, X. Behavior of Last Resort Antibiotic Resistance Genes (Mcr-1 and BlaNDM-1) in a Drinking Water Supply System and Their Possible Acquisition by the Mouse Gut Flora. Environ. Pollut. 2020, 259, 113818. [Google Scholar] [CrossRef]
- Apostolakos, I.; Mughini-Gras, L.; Fasolato, L.; Piccirillo, A. Assessing the Occurrence and Transfer Dynamics of ESBL/PAmpC-Producing Escherichia Coli across the Broiler Production Pyramid. PLoS ONE 2019, 14, e0217174. [Google Scholar] [CrossRef] [PubMed]
- Daehre, K.; Projahn, M.; Semmler, T.; Roesler, U.; Friese, A. Extended-Spectrum Beta-Lactamase-/AmpC Beta-Lactamase-Producing Enterobacteriaceae in Broiler Farms: Transmission Dynamics at Farm Level. Microb. Drug Resist. 2017, 24, 511–518. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “All-Species Living Tree Project (LTP)” Taxonomic Frameworks. Nucleic Acids Res. 2014, 42, 643–648. [Google Scholar] [CrossRef]
- Ferrari, S.; Cribari-Neto, F. Beta Regression for Modelling Rates and Proportions. J. Appl. Stat. 2004, 31, 799–815. [Google Scholar] [CrossRef]
Variable | Number (n) | Percentage (%) |
---|---|---|
Number of barns | ||
≤2 | 4 | 40 |
3–4 | 5 | 50 |
5 | 1 | 10 |
Surface (m2) | ||
≤2000 | 4 | 40 |
2000–4000 | 1 | 10 |
>4000 | 5 | 50 |
Birds per cycle | ||
≤10,000 | 2 | 20 |
10,000–20,000 | 4 | 40 |
>20,000 | 4 | 40 |
Water source | ||
Water main | 4 | 40 |
Water well | 6 | 60 |
Annual microbiological control of DW | ||
Yes | 10 | 100 |
No | 0 | 0 |
Annual physical-chemical control of DW | ||
Yes | 10 | 100 |
No | 0 | 0 |
DW treatment during cycle | ||
Yes | 8 | 80 |
No | 2 | 20 |
DW treatment between cycles | ||
Yes | 3 | 30 |
No | 7 | 70 |
Products used for DW treatment | ||
Acidifiers | 1 | 10 |
Hypochlorite | 3 | 30 |
Hydrogen peroxide | 2 | 20 |
Acidifiers + Hypochlorite | 1 | 10 |
Hypochlorite + Hydrogen peroxide | 2 | 20 |
Acidifiers + Hypochlorite + Hydrogen peroxide | 1 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccirillo, A.; Tolosi, R.; Mughini-Gras, L.; Kers, J.G.; Laconi, A. Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms. Antibiotics 2024, 13, 808. https://doi.org/10.3390/antibiotics13090808
Piccirillo A, Tolosi R, Mughini-Gras L, Kers JG, Laconi A. Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms. Antibiotics. 2024; 13(9):808. https://doi.org/10.3390/antibiotics13090808
Chicago/Turabian StylePiccirillo, Alessandra, Roberta Tolosi, Lapo Mughini-Gras, Jannigje G. Kers, and Andrea Laconi. 2024. "Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms" Antibiotics 13, no. 9: 808. https://doi.org/10.3390/antibiotics13090808
APA StylePiccirillo, A., Tolosi, R., Mughini-Gras, L., Kers, J. G., & Laconi, A. (2024). Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms. Antibiotics, 13(9), 808. https://doi.org/10.3390/antibiotics13090808