Chitosan-Based Semen Extenders: An Approach to Antibiotic-Free Artificial Insemination in Rabbit
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Extender Activity
2.2. Bacterial Counts Determination
2.3. Experiment 1: In Vitro Evaluation
2.4. Experiment 2: In Vivo Evaluation
3. Discussion
4. Materials and Methods
4.1. Extenders Composition
4.2. Determination of Microbial Resistance to the Extender
4.3. Enterococcus faecalis Counts in the Extenders After Refrigeration
4.4. Experiment 1: In Vitro Evaluation
4.4.1. Animals
4.4.2. Semen Preparation
4.4.3. Sperm Assessment
4.5. Experiment 2: In Vivo Evaluation
4.5.1. Animals
4.5.2. Artificial Insemination and Litter Size Traits
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morrell, J.M.; Cojkic, A.; Malaluang, P.; Ntallaris, T.; Lindahl, J.; Hansson, I. Antibiotics in semen extenders—A multiplicity of paradoxes. Reprod. Fertil. Dev. 2024, 36, RD23218. [Google Scholar] [CrossRef] [PubMed]
- Commission Delegated Regulation (EU). Title: Regulation (2023/C 220/01). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.C_.2023.220.01.0001.01.ENG&toc=OJ%3AC%3A2023%3A220%3AFULL (accessed on 1 December 2024).
- World Organisation for Animal Health (OIE). Terrestrial Animal Health Code. Available online: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/ (accessed on 1 December 2024).
- Waberski, D.; Riesenbeck, A.; Schulze, M.; Weitze, K.F.; Johnson, L. Application of preserved boar semen for artificial insemination: Past, present and future challenges. Theriogenology 2019, 137, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.; Painter, C.; Teerawattananon, Y. A protocol for a systematic literature review of economic evaluation studies of interventions to address antimicrobial resistance. Syst. Rev. 2021, 10, 242. [Google Scholar] [CrossRef]
- Viudes-de-Castro, M.P.; Vicente, J.S. Trends in rabbit insemination extenders for fresh and frozen semen: A review. World Rabbit. Sci. 2023, 31, 109–116. [Google Scholar] [CrossRef]
- Muñoz-Baquero, M.; Lorenzo-Rebenaque, L.; García-Vázquez, F.A.; García-Párraga, D.; Martínez-Priego, L.; De Marco-Romero, G.; Galán-Vendrell, I.; D’Auria, G.; Marco-Jiménez, F. Unveiling microbiome signature in inner body fluids: Comparison between wild and aquarium small-spotted catshark (Scyliorhinus canicula). Front. Mar. Sci. 2023, 10, 1151119. [Google Scholar] [CrossRef]
- Marco-Jiménez, F.; Borrás, S.; Garcia-Dominguez, X.; D’Auria, G.; Vicente, J.S.; Marin, C. Roles of host genetics and sperm microbiota in reproductive success in healthy rabbit. Theriogenology 2020, 158, 416–423. [Google Scholar] [CrossRef]
- Althouse, G.C. Sanitary procedures for the production of extended semen. Reprod. Domest. Anim. 2008, 43, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Pickett, B.W.; Voss, J.L.; Jones, R.L. Control of bacteria in stallions and their semen. J. Equine Vet. Sci. 1999, 19, 424–469. [Google Scholar] [CrossRef]
- Santos, C.S.; Silva, A.R. Current and alternative trends in antibacterial agents used in mammalian semen technology. Anim. Reprod. 2020, 17, e20190111. [Google Scholar] [CrossRef] [PubMed]
- Morrell, J.M.; Malaluang, P.; Cojkic, A.; Hansson, I. Alternatives to antibiotics in semen extenders used in artificial insemination. In The Global Antimicrobial Resistance Epidemic—Innovative Approaches and Cutting-Edge Solutions; Tellez-Isaias, G., Ed.; IntechOpen: London, UK, 2022; pp. 1–17. [Google Scholar] [CrossRef]
- Malaluang, P.; Wagner, L.H.; Cojkic, A.; Spergser, J.; Aurich, C.; Morrell, J.M. Reduced bacterial load in stallion semen by modified single-layer centrifugation or sperm washing. Theriogenology 2024, 216, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Lacalle, E.; Martínez-Martínez, S.; Fernández-Alegre, E.; Soriano-Úbeda, C.; Morrell, J.M.; Martínez-Pastor, F. Low-density colloid centrifugation removes bacteria from boar semen doses after spiking with selected species. Res. Vet. Sci. 2023, 158, 215–225. [Google Scholar] [CrossRef]
- Lacalle, E.; Fernández-Alegre, E.; Soriano-Úbeda, C.; Martínez-Martínez, S.; Domínguez, J.C.; González-Montaña, J.R.; Morrell, J.M.; Martínez-Pastor, F. Single-layer centrifugation (SLC) for bacterial removal with Porcicoll positively modifies chromatin structure in boar spermatozoa. Theriogenology 2023, 201, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Viudes-de-Castro, M.P.; Talaván, A.G.; Vicente, J.S. Evaluation of dextran for rabbit sperm cryopreservation: Effect on frozen-thawed rabbit sperm quality variables and reproductive performance. Anim. Reprod. Sci. 2021, 226, 106714. [Google Scholar] [CrossRef] [PubMed]
- Castellini, C.; Mourvaki, E.; Cardinali, R.; Collodel, G.; Lasagna, E.; Del Vecchio, M.T.; Dal Bosco, A. Secretion patterns and effect of prostate-derived granules on the sperm acrosome reaction of rabbit buck. Theriogenology 2012, 78, 715–723. [Google Scholar] [CrossRef]
- Ros-Santaella, J.L.; Nový, P.; Scaringi, M.; Pintus, E. Antimicrobial peptides and proteins as alternative antibiotics for porcine semen preservation. BMC Vet. Res. 2024, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Viudes-de-Castro, M.P.; Marco-Jimenez, F.; Vicente, J.S.; Marin, C. Antibacterial activity of some molecules added to rabbit semen extender as alternatives to antibiotics. Animals 2021, 11, 1178. [Google Scholar] [CrossRef] [PubMed]
- Gadea, J. Review: Semen extenders used in the artificial insemination of swine. Span. J. Agric. Res. 2003, 1, 17–27. [Google Scholar] [CrossRef]
- Ijaz, A.; Ducharme, R.; Moffatt, R.; Buhr, M.M. Effect of osmotic stress on boar sperm: Water transport and development of membrane tolerance. Cryobiology 1999, 39, 315–327. [Google Scholar] [CrossRef]
- Li, J.; Cai, C.; Li, J.; Li, J.; Li, J.; Sun, T.; Wang, L.; Wu, H.; Yu, G. Chitosan-Based Nanomaterials for Drug Delivery. Molecules 2018, 23, 2661. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Guan, Y.L.; Yang, D.Z.; Li, Z.; Yao, K. Antibacterial action of chitosan and carboxymethylated chitosan. J. Appl. Polym. Sci. 2001, 79, 1324–1335. [Google Scholar]
- Hosseinnejad, M.; Jafari, S.M. Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Luther, A.M.; Nguyen, T.Q.; Verspohl, J.; Waberski, D. Antimicrobially active semen extenders allow the reduction of antibiotic use in pig insemination. Antibiotics 2021, 10, 1319. [Google Scholar] [CrossRef] [PubMed]
- Wooley, R.E.; Jones, M.S. Action of EDTA-Tris and antimicrobial agent combinations on selected pathogenic bacteria. Vet. Microbiol. 1983, 8, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Wijma, R.A.; Huttner, A.; Koch, B.C.P.; Mouton, J.W.; Muller, A.E. Review of the Pharmacokinetic Properties of Nitrofurantoin and Nitroxoline. J. Antimicrob. Chemother. 2018, 73, 2916–2926. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, C.; Prognon, P.; Bourlioux, P. Roles of divalent cations and pH in mechanism of action of nitroxoline against Escherichia coli strains. Antimicrob. Agents Chemother. 1995, 39, 707–713. [Google Scholar] [CrossRef]
- Repac Antić, D.; Parčina, M.; Gobin, I.; Petković Didović, M. Chelation in Antibacterial Drugs: From Nitroxoline to Cefiderocol and Beyond. Antibiotics 2022, 11, 1105. [Google Scholar] [CrossRef] [PubMed]
- Palmer, L.D.; Skaar, E.P. Transition metals and virulence in bacteria. Annu. Rev. Genet. 2016, 50, 67–91. [Google Scholar] [CrossRef]
- Sarkees, M.; Al-Maarrawi, K. Chitosan: A natural substitute of EDTA solution for final irrigation in endodontics treatment. Niger. J. Clin. Pract. 2020, 23, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.C.; Wang, X.Y.; Gao, X.J. Influence of EDTA conditioning on dentin microtensile bond strength. J. Pract. Stomatol. 2013, 29, 550–552. [Google Scholar]
- Casares-Crespo, L.; Fernández-Serrano, P.; Vicente Antón, J.S.; Moce Cervera, E.T.; Castellini, C.; Stabile, A.; Viudes De Castro, M.P. Insemination extender supplementation with bestatin and EDTA has no effect on rabbit reproductive performance. Theriogenology 2018, 105, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Scornik, O.A.; Botbol, V. Bestatin as an experimental tool in mammals. Curr. Drug Metab. 2001, 2, 67–85. [Google Scholar] [CrossRef] [PubMed]
- Casares-Crespo, L.; Fernández-Serrano, P.; Viudes-de-Castro, M.P. Protection of GnRH analogue by chitosan-dextran sulfate nanoparticles for intravaginal application in rabbit artificial insemination. Theriogenology 2018, 116, 49–52. [Google Scholar] [CrossRef]
- Johnson, L.A.; Weitze, K.F.; Fiser, P.; Maxwell, W.M. Storage of boar semen. Anim. Reprod. Sci. 2000, 62, 143–172. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Anderson, M.; Chien, Y.W. Characterization of in-vitro spermicidal activity of chelating agent against human sperm. J. Pharm. Sci. 1996, 85, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Rafigh, S.M.; Heydarinasab, A. Mesoporous chitosan-SiO2 nanoparticles: Synthesis, characterization, and CO2 adsorption capacity. ACS Sustain. Chem. Eng. 2017, 5, 10379–10386. [Google Scholar] [CrossRef]
- Sanmugam, A.; Abbishek, S.; Kumar, S.L.; Sairam, A.B.; Palem, V.V.; Kumar, R.S.; Almansour, A.I.; Arumugam, N.; Vikraman, D. Synthesis of chitosan-based reduced graphene oxide-CeO2 nanocomposites for drug delivery and antibacterial applications. J. Mech. Behav. Biomed. Mater. 2023, 145, 106033. [Google Scholar] [CrossRef] [PubMed]
- Basseri, H.; Bakhtiyari, R.; Hashemi, S.J.; Baniardelani, M.; Shahraki, H.; Hosainpour, L. Antibacterial/antifungal activity of extracted chitosan from American cockroach (Dictyoptera: Blattidae) and German cockroach (Blattodea: Blattellidae). J. Med. Entomol. 2019, 56, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Ul-Islam, M.; Alabbosh, K.F.; Manan, S.; Khan, S.; Ahmad, F.; Ullah, M.W. Chitosan-based nanostructured biomaterials: Synthesis, properties, and biomedical applications. Adv. Ind. Eng. Polym. Res. 2024, 7, 79–99. [Google Scholar]
- Gimeno-Martos, S.; Bosa, L.; Lorenzo, P.L.; Arias-Álvarez, M.; Castellini, C.; García-Rebollar, P.; García-García, R.M. Influence of free and microencapsulated recombinant rabbit nerve growth factor with chitosan on rabbit sperm quality parameters. Reprod. Domest. Anim. 2024, 59 (Suppl. S3), e14636. [Google Scholar] [CrossRef]
- Park, W.; Shin, H.; Choi, B.; Rhim, W.K.; Na, K.; Han, D.K. Advanced hybrid nanomaterials for biomedical applications. Prog. Mater. Sci. 2020, 114, 100686. [Google Scholar] [CrossRef]
- Mahmoud, M.; Abd-Allah, S.M.; Abdel-Halim, B.R.; Khalil, A.A.Y. Ameliorative effect of chitosan nanoparticles in capacitation media on post-thawing in vitro fertilizing ability of bovine spermatozoa. Reprod. Domest. Anim. 2023, 58, 1428–1438. [Google Scholar] [CrossRef] [PubMed]
- Rajalakshmi, A.; Krithiga, N.; Jayachitra, A. Antioxidant activity of the chitosan extracted from shrimp exoskeleton. Middle-East. J. Sci. Res. 2013, 16, 1446–1451. [Google Scholar]
- Hamed, I.; Ozogul, F.; Regenstein, J.M. Industrial applications of crustacean byproducts (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci. Technol. 2016, 48, 40–50. [Google Scholar] [CrossRef]
- Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef]
- Abdel-Halim, B.R. Protective effect of chitosan nanoparticles against the inhibitory effect of linoleic acid supplementation on maturation and developmental competence of bovine oocytes. Theriogenology 2018, 114, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, D.G.; Yaneva, Z.L. Antioxidant properties and redox-modulating activity of chitosan and its derivatives: Biomaterials with application in cancer therapy. Biores. Open Access 2020, 9, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Viudes-de-Castro, M.P.; Vicente, J.S. Effect of sperm count on the fertility and prolificity rates of meat rabbits. Anim. Reprod. Sci. 1997, 46, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Viudes-de-Castro, M.P.; Mocé, E.; Lavara, R.; Marco-Jiménez, F.; Vicente, J.S. Aminopeptidase activity in seminal plasma and effect of dilution rate on rabbit reproductive performance after insemination with an extender supplemented with buserelin acetate. Theriogenology 2014, 81, 1223–1228. [Google Scholar] [CrossRef]
- Biada, I.; Ibáñez-Escriche, N.; Blasco, A.; Casto-Rebollo, C.; Santacreu, M.A. Microbiome composition as a potential predictor of longevity in rabbits. Genet. Sel. Evol. 2024, 56, 25. [Google Scholar] [CrossRef]
- Martínez-Álvaro, M.; Ibáñez-Escriche, N.; Casto-Rebollo, C. Innovación en el Aprendizaje Estadístico: Inferencia Bayesiana Amigable en el Lenguaje de Programación R; Universidad de Zaragoza, Servicio de Publicaciones: Zaragoza, Spain, 2023. [Google Scholar]
Pregnancy Rate (%) | Prolificacy | Embryonic Losses (%) | Fetal Losses (%) | |
---|---|---|---|---|
EDTA | 57.52 ± 11.41 | 9.14 ± 1.25 | 3.41 ± 3.79 | 28.73 ± 5.25 |
Chitosan | 76.81 ± 11.73 | 8.80 ± 1.09 | 9.50 ± 3.66 | 27.59 ± 5.22 |
EDTA and Chitosan | 86.81 ± 10.74 | 5.24 ± 0.95 | 46.53 ± 3.78 | 54.21 ± 6.70 |
+AB | 84.65 ± 11.99 | 9.19 ± 1.01 | 15.22 ± 3.89 | 31.30 ± 5.79 |
−AB | 87.34 ± 15.09 | 8.96 ± 1.29 | 9.20 ± 4.77 | 18.49 ± 6.44 |
Extenders Comparison | Pregnancy Rate | Prolificacy | ||||||
---|---|---|---|---|---|---|---|---|
Mean Difference | P0 | HPD95% | PEP | Mean Difference | P0 | HPD95% | PEP | |
+AB vs. EDTA | 0.27 | 0.94 | [−0.05;0.59] | 0.10 | 0.05 | 0.51 | [−2.82;3.52] | 0.97 |
+AB vs. Chitosan | 0.08 | 0.68 | [−0.27;0.38] | 0.63 | 0.38 | 0.61 | [−2.46;3.42] | 0.20 |
+AB vs. EDTA and Chitosan | −0.02 | 0.55 | [−0.32;0.31] | 0.88 | 3.93 | 0.99 | [1.11;6.62] | 0.00 |
+AB vs. −AB | 0.02 | 0.55 | [−0.36;0.40] | 0.89 | 0.25 | 0.56 | [−2.91;3.48] | 0.29 |
Extenders Comparison | Embryonic Losses (%) | Fetal Losses (%) | ||||||
---|---|---|---|---|---|---|---|---|
Mean Difference | P0 | HPD95% | PEP | Mean Difference | P0 | HPD95% | PEP | |
+AB vs. EDTA | 0.11 | 0.98 | [0.01;0.22] | 0.02 | 0.02 | 0.63 | [−0.12;0.19] | 0.74 |
+AB vs. Chitosan | 0.05 | 0.83 | [−0.05;0.15] | 0.34 | 0.04 | 0.69 | [−0.12;0.18] | 0.61 |
+AB vs. EDTA and Chitosan | −0.31 | 1.00 | [−0.41;−0.20] | 0.00 | −0.23 | 0.99 | [−0.40;−0.06] | 0.00 |
+AB vs. −AB | 0.06 | 0.85 | [−0.05;0.15] | 0.29 | 0.13 | 0.93 | [−0.05;0.28] | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marco-Jiménez, F.; Ferriz-Nuñez, C.; Viudes-de-Castro, M.P.; Vicente, J.S.; Lorenzo-Rebenaque, L. Chitosan-Based Semen Extenders: An Approach to Antibiotic-Free Artificial Insemination in Rabbit. Antibiotics 2025, 14, 55. https://doi.org/10.3390/antibiotics14010055
Marco-Jiménez F, Ferriz-Nuñez C, Viudes-de-Castro MP, Vicente JS, Lorenzo-Rebenaque L. Chitosan-Based Semen Extenders: An Approach to Antibiotic-Free Artificial Insemination in Rabbit. Antibiotics. 2025; 14(1):55. https://doi.org/10.3390/antibiotics14010055
Chicago/Turabian StyleMarco-Jiménez, Francisco, Celia Ferriz-Nuñez, Maria Pilar Viudes-de-Castro, José Salvador Vicente, and Laura Lorenzo-Rebenaque. 2025. "Chitosan-Based Semen Extenders: An Approach to Antibiotic-Free Artificial Insemination in Rabbit" Antibiotics 14, no. 1: 55. https://doi.org/10.3390/antibiotics14010055
APA StyleMarco-Jiménez, F., Ferriz-Nuñez, C., Viudes-de-Castro, M. P., Vicente, J. S., & Lorenzo-Rebenaque, L. (2025). Chitosan-Based Semen Extenders: An Approach to Antibiotic-Free Artificial Insemination in Rabbit. Antibiotics, 14(1), 55. https://doi.org/10.3390/antibiotics14010055