Antimicrobial Potential of Secalonic Acids from Arctic-Derived Penicillium chrysogenum INA 01369
Abstract
:1. Introduction
2. Results
2.1. Identification and Phylogenetic Analysis of Strain INA 01369
2.2. Effects of the Cultivation for Growth, Sporulation, and Secalonic Acid Complex Production
2.3. Genome Sequencing of Strain INA 01369 and Genome Annotation
2.4. Structure Elucidation of Compounds 1 and 2
2.5. Antimicrobial Activities of Secalonic Acids
3. Discussion
4. Materials and Methods
4.1. Strain of Penicillium chrysogenum INA 01369
4.2. DNA Isolation, Library Preparation, and Nanopore Sequencing
4.3. Phylogenetic Analysis and Genome Annotation
4.4. The Effect of Different Temperatures and Cultivation Conditions on Fungal Growth and Antimicrobial Activity
4.5. Purification and Identification of the Secalonic Acid Derivates
4.5.1. HPLC Analysis
4.5.2. Mass Spectrometry
4.5.3. NMR Spectroscopy
4.5.4. Circular Dichroism Spectroscopy
4.6. Antimicrobial Activity Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houbraken, J.; Kocsubé, S.; Visagie, C.M.; Yilmaz, N.; Wang, X.-C.; Meijer, M.; Kraak, B.; Hubka, V.; Bensch, K.; Samson, R.A.; et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud. Mycol. 2020, 95, 5–169. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, K.; Kapoor, N.; Kaur, H.; Abu-Seer, E.; Tariq, M.; Siddiqui, S.; Yadav, V.K.; Niazi, P.; Kumar, P.; Alghamdi, S. A Comprehensive Review of the Diversity of Fungal Secondary Metabolites and Their Emerging Applications in Healthcare and Environment. Mycobiology 2024, 1–53. [Google Scholar] [CrossRef]
- Lv, F.; Zeng, Y. Novel Bioactive Natural Products from Marine-Derived Penicillium Fungi: A Review (2021–2023). Mar. Drugs 2024, 22, 191. [Google Scholar] [CrossRef]
- Suresh, A.J.; Dass, R.S. Cold-Adapted Fungi: Evaluation and Comparison of Their Habitats, Molecular Adaptations and Industrial Applications. In Survival Strategies in Cold-Adapted Microorganisms; Goel, R., Soni, R., Suyal, D.C., Khan, M., Eds.; Springer: Singapore, 2022; pp. 31–61. [Google Scholar] [CrossRef]
- Li, P.; Xie, D.; Chen, H.; Qiu, Y.; Zhang, X.; Zhang, S.; Wang, L.; Lin, H.; Li, X.; Liu, K. Secondary metabolites from marine derived fungus Penicillium chrysogenum Y19-1 with proangiogenic and antithrombotic activities. Biochem. Syst. Ecol. 2023, 107, 104625. [Google Scholar] [CrossRef]
- Kochkina, G.A.; Pinchuk, I.P.; Ivanushkina, N.E.; Avtukh, A.N.; Pimenov, N.V. Fungi of the Arctic Seas. Microbiology 2024, 93, 282–292. [Google Scholar] [CrossRef]
- Glodowsky, A.P.; Ruberto, L.A.; Martorell, M.M.; Mac Cormack, W.P.; Levin, G.J. Cold active transglutaminase from antarctic Penicillium chrysogenum: Partial purification, characterization and potential application in food technology. Biocatal. Agric. Biotechnol. 2020, 29, 101807. [Google Scholar] [CrossRef]
- Gonçalves, V.N.; Carvalho, C.R.; Martins, L.B.M.; Barreto, D.L.C.; da Silva, B.F.; Queiroz, S.C.N.; Tamang, P.; Bajsa-Hirschel, J.; Cantrell, C.L.; Duke, S.O.; et al. Bioactive Metabolites Produced by Fungi Present in Antarctic, Arctic, and Alpine Ecosystems. In Fungi Bioactive Metabolites; Deshmukh, S.K., Takahashi, J.A., Saxena, S., Eds.; Springer: Singapore, 2024; pp. 537–563. [Google Scholar] [CrossRef]
- Grum-Grzhimaylo, O.A.; Shurigina, A.A.; Debets, A.J.M.; Aanen, D.K. Biogeography and uniqueness of filamentous terrestrial fungi in the polar regions. Fungal Biol. Rev. 2024, 49, 100382. [Google Scholar] [CrossRef]
- Lindsay, C.A.; Kinghorn, A.D.; Rakotondraibe, H.L. Bioactive and unusual steroids from Penicillium fungi. Phytochemistry 2023, 209, 113638. [Google Scholar] [CrossRef]
- Toghueo, R.M.K.; Boyom, F.F. Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3Biotech 2020, 10, 107. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, O.; Li, X.; Liu, X.; Lei, H.; Wu, B. Structures and bioactivities of secondary metabolites from Penicillium genus since 2010. Fitoterapia 2022, 163, 105349. [Google Scholar] [CrossRef]
- Li, H.; Fu, Y.; Song, F.; Xu, X. Recent Updates on the Antimicrobial Compounds from Marine-Derived Penicillium fungi. Chem. Biodivers. 2023, 20, e202301278. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.P.; Shu, Y.; Zhang, S.Q.; Yao, L.L.; Li, B.X.; Zhu, L.; Zhang, X.; Xiao, H.; Cai, L.; Ding, Z.T. Polyketides with antimicrobial activities from Penicillium canescens DJJ-1. Phytochemistry 2023, 206, 113554. [Google Scholar] [CrossRef]
- Fierro, F.; Vaca, I.; Castillo, N.I.; García-Rico, R.O.; Chávez, R. Penicillium chrysogenum, a vintage model with a cutting-edge profile in biotechnology. Microorganisms 2022, 10, 573. [Google Scholar] [CrossRef]
- Zhang, S.; He, Y.; Li, F.; Lin, S.; Yang, B.; Mo, S.; Li, H.; Wang, J.; Qi, C.; Hu, Z.; et al. Bioassay-Directed Isolation of Antibacterial Metabolites from an Arthropod-Derived Penicillium chrysogenum. J. Nat. Prod. 2020, 83, 3397–3403. [Google Scholar] [CrossRef]
- Li, T.-X.; Su, H.-Y.; Yu, J.-C.; Hao, H.; Jia, X.-W.; Shi, F.-C.; Xu, C.-P. Antibacterial metabolites from the beetle-associated fungus Penicillium chrysogenum. An. Acad. Bras. Ciências 2023, 95, e20220178. [Google Scholar] [CrossRef]
- Shaaban, R.; Elnaggar, M.S.; Khalil, N.; Singab, A.N.B. A comprehensive review on the medicinally valuable endosymbiotic fungi Penicillium chrysogenum. Arch Microbiol. 2023, 205, 240. [Google Scholar] [CrossRef] [PubMed]
- Pacios-Michelena, S.; González, C.N.A.; Herrera, R.R.; Alvarez-Perez, O.B.; González, M.L.C.; Valdés, R.A.; Valdés, J.A.A.; Salas, M.G.; Iliná, A. Biomass from phytopathogens and culture conditions improve Penicillium chrysogenum antimicrobial activity and antifungal compounds production. Environ. Qual. Manag. 2023, 33, 349–358. [Google Scholar] [CrossRef]
- Sawant, A.M.; Navale, V.D.; Vamkudoth, K.R. Isolation and Molecular Characterization of Indigenous Penicillium chrysogenum/rubens Strain Portfolio for Penicillin V Production. Microorganisms 2023, 11, 1132. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Zhou, F.; Xue, Y.; Liu, C. Genomic insights into Penicillium chrysogenum adaptation to subseafloor sedimentary environments. BMC Genom. 2024, 25, 4. [Google Scholar] [CrossRef]
- Kuvarina, A.E.; Roshka, Y.A.; Rogozhin, E.A.; Nikitin, D.A.; Kurakov, A.V.; Sadykova, V.S. Antimicrobial Properties and the Effect of Temperature on the Formation of Secondary Metabolites in Psychrophilic Micromycetes. Appl. Biochem. Microbiol. 2022, 58, 243–250. [Google Scholar] [CrossRef]
- Rosa, L.H. Fungi of Antarctica: Diversity, Ecology and Biotechnological Applications; Springer Nature: Cham, Switzerland, 2019; pp. 1–352. [Google Scholar] [CrossRef]
- Nikitin, D.A. Ecological Characteristics of Antarctic Fungi. Dokl. Biol. Sci. 2023, 508, 32–54. [Google Scholar] [CrossRef]
- Yoshinaga, T.T.; Giovanella, P.; de Farias, G.S.; Dos Santos, J.A.; Pellizzer, E.P.; Sette, L.D. Fungi from Antarctic marine sediment: Characterization and assessment for textile dye decolorization and detoxification. Braz. J. Microbiol. 2024, 55, 3437–3448. [Google Scholar] [CrossRef]
- Wei, X.; Matsuda, Y. Unraveling the Fungal Strategy for Tetrahydroxanthone Biosynthesis and Diversification. Org. Lett. 2020, 22, 1919–1923. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Xu, H.; Zhang, Y.; Rao, Y. Biosynthetic Pathways of Dimeric Natural Products Containing Bisanthraquinone and Related Xanthones. ChemBioChem 2023, 24, e202200586. [Google Scholar] [CrossRef]
- Qin, T.; Porco, J.A., Jr. Total syntheses of secalonic acids A and D. Angew. Chem. Int. Ed. Engl. 2014, 53, 3171–3174. [Google Scholar] [CrossRef]
- Andersen, R.; Büchi, G.; Kobbe, B.; Demain, A.L. Secalonic acids D and F are toxic metabolites of Aspergillus aculeatus. J. Org. Chem. 1977, 42, 352–353. [Google Scholar] [CrossRef]
- Burchard, F.; Gottschalk, E.M.; Ohnsorge, U.; Hüper, F. Mutterkorn-Farbstoffe, XII. Trennung, Struktur und absolute Konfiguration der diastereomeren Secalonsäuren A, B und C. Chem. Ber. 1966, 99, 3842–3862. [Google Scholar] [CrossRef]
- Ying, Z.; Li, X.-M.; Wang, B.-G.; Li, H.-L.; Meng, L.-H. Rubensteroid A, a new steroid with antibacterial activity from Penicillium rubens AS-130. J. Antibiot. 2023, 76, 563–566. [Google Scholar] [CrossRef]
- Guzmán-Chávez, F.; Zwahlen, R.D.; Bovenberg, R.A.L.; Driessen, A.J.M. Engineering of the Filamentous Fungus Penicillium chrysogenum as Cell Factory for Natural Products. Front. Microbiol. 2018, 9, 2768. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Villegas-Moreno, J.; Clark, B.R. Secondary metabolites from Penicillium chrysogenum WX6 and their chemotaxonomic significance. Biochem. Syst. Ecol. 2024, 116, 104858. [Google Scholar] [CrossRef]
- Xu, X.; Dong, Y.; Yang, J.; Wang, L.; Ma, L.; Song, F.; Ma, X. Secondary Metabolites from Marine-Derived Fungus Penicillium rubens BTBU20213035. J. Fungi 2024, 10, 424. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Wang, Y.; Shi, T.; Wang, B. Penicillium janthinellum: A Potential Producer of Natural Products. Fermentation 2024, 10, 157. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, B.; Li, D.; Chen, X.; Wang, Q.; Shu, B.; Li, Q.; Tong, Q.; Chen, C.; Zhu, H.; et al. Griseofulvin analogues from the fungus Penicillium griseofulvum and their anti-inflammatory activity. Bioorg Chem. 2023, 139, 106736. [Google Scholar] [CrossRef] [PubMed]
- Gillsch, F.; Mbui, F.; Bilitewski, U.; Schobert, R. Syntheses and Antibacterial Evaluation of New Penicillium Metabolites Gregatins G and Thiocarboxylics, C. Chem Biodivers. 2023, 20, e202300181. [Google Scholar] [CrossRef] [PubMed]
- Pandey, N.; Jain, R.; Dhakar, K.; Sharma, A.; Pandey, A. A reduction in temperature induces bioactive red pigment production in a psychrotolerant Penicillium sp. GEU_37 isolated from Himalayan soil. Fungal Biol. 2023, 127, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Tamariz-Angeles, C.; Olivera-Gonzales, P.; Santillán-Torres, M.; Briceño-Luna, V.; Silva-Villafana, A.; Villena, G.K. Diverse biological activities and secondary metabolites profile of Penicillium brevicompactum HE19ct isolated from the high-Andean medicinal plant Perezia coerulescens. Fungal Biol. 2023, 127, 1439–1450. [Google Scholar] [CrossRef]
- Schor, R.; Cox, R.J. Classic fungal natural products in the genomic age: The molecular legacy of Harold Raistrick. Nat. Prod. Rep. 2018, 35, 230–256. [Google Scholar] [CrossRef]
- Deshmukh, S.K.; Takahashi, J.A.; Saxena, S. Fungi Bioactive Metabolites; Springer Nature: Singapore, 2024; pp. 1–762. [Google Scholar] [CrossRef]
- Yao, G.; Chen, X.; Zheng, H.; Liao, D.; Yu, Z.; Wang, Z.; Chen, J. Genomic and Chemical Investigation of Bioactive Secondary Metabolites from a Marine-Derived Fungus Penicillium steckii P2648. Front. Microbiol. 2021, 12, 600991. [Google Scholar] [CrossRef]
- Farooq, S.; Qayum, A.; Nalli, Y.; Lauro, G.; Chini, M.G.; Bifulco, G.; Chaubey, A.; Singh, S.K.; Riyaz-Ul-Hassan, S.; Ali, A. Discovery of a Secalonic Acid Derivative from Aspergillus aculeatus, an Endophyte of Rosa damascena Mill., Triggers Apoptosis in MDA-MB-231 Triple Negative Breast Cancer Cells. ACS Omega 2020, 5, 24296–24310. [Google Scholar] [CrossRef] [PubMed]
- Sagou, D.; Pakora, G.A.; Essoh, Y.C.; Yeo, D.; Kacou, N.A. Diversity of Endophytic Fungi Isolated from the Bark of Ceiba pentandra (L.) Gaertn., (Bombacaceae) and Antibacterial Potential of Secalonic Acid A Produced by Diaporthe searlei EC 321. Chem. Biodivers. 2023, 20, e202301010. [Google Scholar] [CrossRef]
- Palmgren, M.S.; Fleischhacker, D.S. Penicillium oxalicum and Secalonic Acid D in Fresh Corn. In Biodeterioration Research, 1st ed.; Llewellyn, G.C., O’Rear, C.E., Eds.; Springer: Boston, MA, USA, 1987; Volume 1, pp. 193–196. [Google Scholar] [CrossRef]
- Zeng, R.S.; Luo, S.M.; Shi, Y.H.; Shi, M.B.; Cong, Y.T. Physiological and Biochemical Mechanism of Allelopathy of Secalonic Acid F on Higher Plants. AGRON J. 2001, 93, 72–79. [Google Scholar] [CrossRef]
- Wu, J.; Shui, H.; Zhang, M.; Zeng, Y.; Zheng, M.; Zhu, K.-K.; Wang, S.-B.; Bi, H.; Hong, K.; Cai, Y.-S. Aculeaxanthones A–E, new xanthones from the marine-derived fungus Aspergillus aculeatinus WHUF0198. Front. Microbiol. 2023, 14, 1138830. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Krohn, K.; Zia-Ullah; Flörke, U.; Pescitelli, G.; Di Bari, L.; Antus, S.; Kurtán, T.; Rheinheimer, J.; Draeger, D.; et al. New mono- and dimeric members of the secalonic acid family: Blennolides A-G isolated from the fungus Blennoria sp. Chem. Eur. J. 2008, 14, 4913–4923. [Google Scholar] [CrossRef]
- Hooper, J.W.; Marlow, W.; Whalley, W.B.; Borthwick, A.D.; Bowden, R. The chemistry of fungi. Part LXV. The structures of Ergochrysin A, Isoergochrysin A and Ergoxanthin, and of Secalonic Acids A, B, C, and D. J. Chem. Soc. 1971, 21, 3580–3590. [Google Scholar] [CrossRef]
- Yan, L.-H.; Du, F.-Y.; Li, X.-M.; Yang, S.-Q.; Wang, B.-G.; Li, X. Antibacterial Indole Diketopiperazine Alkaloids from the Deep-Sea Cold Seep-Derived Fungus Aspergillus chevalieri. Mar. Drugs 2023, 21, 195. [Google Scholar] [CrossRef]
- Badiali, C.; Petruccelli, V.; Brasili, E.; Pasqua, G. Xanthones: Biosynthesis and Trafficking in Plants, Fungi and Lichens. Plants 2023, 12, 694. [Google Scholar] [CrossRef]
- El-Elimat, T.; Figueroa, M.; Raja, H.A.; Graf, T.N.; Swanson, S.M.; Falkinham, J.O., 3rd; Wani, M.C.; Pearce, C.J.; Oberlies, N.H. Biosynthetically Distinct Cytotoxic Polyketides from Setophoma terrestris. European J. Org. Chem. 2015, 1, 109–121. [Google Scholar] [CrossRef]
- Houbraken, J.; Frisvad, J.C.; Samson, R.A. Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus 2011, 2, 87–95. [Google Scholar] [CrossRef]
- Mamangkey, J.; Mendes, L.W.; Mustopa, A.Z.; Hartanto, A. Endophytic Aspergillii and Penicillii from medicinal plants: A focus on antimicrobial and multidrug resistant pathogens inhibitory activity. Comput. Biol. Bionanotech. Biotechnol. J. 2024, 105, 83–95. [Google Scholar] [CrossRef]
- Ying, Z.; Li, X.M.; Yang, S.Q.; Wang, B.G.; Li, H.L.; Meng, L.H. New Polyketide and Sesquiterpenoid Derivatives from the Magellan Seamount-Derived Fungus Penicillium rubens AS-130. Chem Biodivers. 2023, 20, e202300229. [Google Scholar] [CrossRef]
- Kifer, D.; Sulyok, M.; Jakšić, D.; Krska, R.; Šegvić Klarić, M. Fungi and their metabolites in grain from individual households in Croatia. Food Addit. Contam. Part B 2021, 14, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Prathiksha, J.; Murali, T.S.; Nayak, R. Synthetic and Natural Xanthones as Antibacterial Agents—Review. ChemistrySelect 2024, 9, 36. [Google Scholar] [CrossRef]
- Baptista, J.P.; Teixeira, G.M.; de Jesus, M.L.A.; Bertê, R.; Higashi, A.; Mosela, M.; da Silva, D.V.; de Oliveira, J.P.; Sanches, D.S.; Brancher, J.D.; et al. Antifungal activity and genomic characterization of the biocontrol agent Bacillus velezensis CMRP 4489. Sci. Rep. 2022, 12, 17401. [Google Scholar] [CrossRef]
- Abd-El-Khair, H.; Abdel-Gaied, T.; Mikhail, M.S.; Abdel-Alim, A.; El-Nasr, H. Biological control of Pectobacterium carotovorum subsp. carotovorum, the causal agent of bacterial soft rot in vegetables, in vitro and in vivo tests. Bull. Natl. Res. Cent. 2021, 45, 4. [Google Scholar]
- Hassan, N.; Rafiq, M.; Hayat, M.; Shah, A.A.; Hasan, F. Psychrophilic and psychrotrophic fungi: A comprehensive review. Rev. Environ. Sci. Biotechnol. 2016, 15, 147–172. [Google Scholar] [CrossRef]
- Delaglio, F.; Grzesiek, S.; Vuister, G.W.; Zhu, G.; Pfeifer, J.; Bax, A. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 1995, 6, 277–293. [Google Scholar] [CrossRef]
- Lee, W.; Tonelli, M.; Markley, J.M. NMRFAM-SPARKY: Enhanced software for biomolecular NMR spectroscopy. Bioinformatics 2014, 31, 1325–1327. [Google Scholar] [CrossRef]
- Wayne, P. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi: Approved Standard, 2nd ed.; Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2008; 35p, ISBN 1-56238-668-9. [Google Scholar]
- Wayne, P. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard, 3rd ed.; Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2008; 25p, ISBN 1-56238-666-2. [Google Scholar]
- EUCAST: AST of Bacteria. The European Committee on Antimicrobial Susceptibility Testing. Available online: https://www.eucast.org/ast_of_bacteria (accessed on 10 December 2024).
Strain | Secalonic Acid D | Secalonic Acid F | Ampicillin | Amphotericin B |
---|---|---|---|---|
P. aeruginosa ATCC 27853 | 16 | 8 | 4 | nt |
E. coli ATCC 25922 | 4 | 4 | 4 | nt |
S. aureus INA 00985 MRSA | 8 | 2 | >64 | nt |
P. caratovorum VKM-B1247 | 16 | 4 | 2 | nt |
F. solani VKPM F 890 | 8 | 8 | nt | 0.5 |
A. fumigatus VKM F-37 | >64 | 16 | nt | 2 |
C. albicans ATCC 14053 | 8 | 4 | nt | 0.5 |
A. niger ATCC 16404 | >32 | 4 | nt | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roshka, Y.A.; Markelova, N.N.; Mashkova, S.D.; Malysheva, K.V.; Georgieva, M.L.; Levshin, I.B.; Polshakov, V.I.; Arutyunian, A.M.; Vasilchenko, A.S.; Sadykova, V.S. Antimicrobial Potential of Secalonic Acids from Arctic-Derived Penicillium chrysogenum INA 01369. Antibiotics 2025, 14, 88. https://doi.org/10.3390/antibiotics14010088
Roshka YA, Markelova NN, Mashkova SD, Malysheva KV, Georgieva ML, Levshin IB, Polshakov VI, Arutyunian AM, Vasilchenko AS, Sadykova VS. Antimicrobial Potential of Secalonic Acids from Arctic-Derived Penicillium chrysogenum INA 01369. Antibiotics. 2025; 14(1):88. https://doi.org/10.3390/antibiotics14010088
Chicago/Turabian StyleRoshka, Yulia A., Natalia N. Markelova, Sofia D. Mashkova, Kseniya V. Malysheva, Marina L. Georgieva, Igor B. Levshin, Vladimir I. Polshakov, Alexander M. Arutyunian, Alexey S. Vasilchenko, and Vera S. Sadykova. 2025. "Antimicrobial Potential of Secalonic Acids from Arctic-Derived Penicillium chrysogenum INA 01369" Antibiotics 14, no. 1: 88. https://doi.org/10.3390/antibiotics14010088
APA StyleRoshka, Y. A., Markelova, N. N., Mashkova, S. D., Malysheva, K. V., Georgieva, M. L., Levshin, I. B., Polshakov, V. I., Arutyunian, A. M., Vasilchenko, A. S., & Sadykova, V. S. (2025). Antimicrobial Potential of Secalonic Acids from Arctic-Derived Penicillium chrysogenum INA 01369. Antibiotics, 14(1), 88. https://doi.org/10.3390/antibiotics14010088