Antimicrobial Residues in Poultry Litter: Assessing the Association of Antimicrobial Persistence with Resistant Escherichia coli Strains
Abstract
:1. Introduction
2. Results
2.1. Verification of the Analytical Method
2.2. Detection and Quantification of Antimicrobials in Broiler Litter
2.3. Determination of Antimicrobial Residue Persistence in Broiler Litter
2.4. Antimicrobial Resistant E. coli Strains
2.5. Statistical Analysis Results
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.1.1. Experimental Animals
4.1.2. Treatment Protocol
4.1.3. Sampling
4.2. Antimicrobial Detection in Broiler Litter (UPLC-MS/MS)
4.2.1. Chemicals and Reagents
4.2.2. Standards and Working Solutions
4.2.3. Chemical Analysis of Samples
4.3. Persistence Determination
4.4. Isolation, Confirmation, and Susceptibility Testing of Strains
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Organisation for Animal Health. OIE List of Antimicrobial Agents of Veterinary Importance. Available online: https://www.woah.org/app/uploads/2021/06/a-oie-list-antimicrobials-june2021.pdf (accessed on 16 April 2024).
- Berendsen, B.J.; Lahr, J.; Nibbeling, C.; Jansen, L.J.M.; Bongers, I.E.; Wipfler, E.; Van De Schans, M. The persistence of a broad range of antibiotics during calve, pig and broiler manure storage. Chemosphere 2018, 204, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Pokrant, E.; Medina, F.; Maddaleno, A.; San Martín, B.; Cornejo, J. Determination of sulfachloropyridazine residue levels in feathers from broiler chickens after oral administration using liquid chromatography coupled to tandem mass spectrometry. PLoS ONE 2018, 13, e0200206. [Google Scholar] [CrossRef]
- Pokrant, E.; Trincado, L.; Yévenes, K.; Terraza, G.; Maddaleno, A.; San Martín, B.; Zavala, S.; Hidalgo, H.; Lapierre, L.; Cornejo, J. Determination of five antimicrobial families in droppings of therapeutically treated broiler chicken by high-performance liquid chromatography-tandem mass spectrometry. Poult. Sci. 2021, 100, 101313. [Google Scholar] [CrossRef] [PubMed]
- Tiedje, J.M.; Fu, Y.; Mei, Z.; Schäffer, A.; Dou, Q.; Amelung, W.; Wang, F. Antibiotic resistance genes in food production systems support One Health opinions. Curr. Opin. Environ. 2023, 34, 100492. [Google Scholar] [CrossRef]
- Yévenes, K.; Pokrant, E.; Pérez, F.; Riquelme, R.; Avello, C.; Maddaleno, A.; San Martín, B.; Cornejo, J. Assessment of three antimicrobial residue concentrations in broiler chicken droppings as a potential risk factor for public health and environment. Int. J. Environ. Res. Public Health 2018, 16, 24. [Google Scholar] [CrossRef] [PubMed]
- Kyakuwaire, M.; Olupot, G.; Amoding, A.; Nkedi-Kizza, P.; Ateenyi Basamba, T. How safe is chicken litter for land application as an organic fertilizer?: A review. Int. J. Environ. Res. Public Health 2019, 16, 3521. [Google Scholar]
- Santos Dalólio, F.S.; da Silva, J.N.; de Oliveira, A.C.; Tinôco, I.D.; Barbosa, R.C.; Resende, M.O.; Teixeira Albino, L.F.; Texeira Coelho, S. Poultry litter as biomass energy: A review and future perspectives. Renew. Sust. Energ. Rev. 2017, 76, 941–949. [Google Scholar] [CrossRef]
- Zamora-Sanabria, R.; Herrera-Muñoz, J.I.; Dorado-Montenegro, S.; Saborío-Montero, A. Efecto del alojamiento, reuso de la cama y almacenamiento en la composición química de la pollinaza. Agron. Costarric. 2019, 43, 91–105. [Google Scholar] [CrossRef]
- Yang, Y.; Ashworth, A.J.; Willett, C.; Cook, K.; Upadhyay, A.; Owens, P.R.; Ricke, S.C.; Debruyn, J.M.; Moore, P.A., Jr. Review of antibiotic resistance, ecology, dissemination, and mitigation in US broiler poultry systems. Front. Microbiol. 2019, 10, 2639. [Google Scholar] [CrossRef]
- Hubbard, L.E.; Givens, C.E.; Griffin, D.W.; Iwanowicz, L.R.; Meyer, M.T.; Kolpin, D.W. Poultry litter as potential source of pathogens and other contaminants in groundwater and surface water proximal to large-scale confined poultry feeding operations. Sci. Total Environ. 2020, 735, 139459. [Google Scholar] [CrossRef]
- Ngogang, M.P.; Ernest, T.; Kariuki, J.; Mouliom Mouiche, M.M.; Ngogang, J.; Wade, A.; van der Sande, M.A.B. Microbial contamination of chicken litter manure and antimicrobial resistance threat in an urban area setting in Cameroon. Antibiotics 2020, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Fatoba, D.; Amoako, D.; Abia, A.K.; Essack, S.Y. Transmission of antibiotic-resistant Escherichia coli from chicken litter to agricultural soil. Front. Environ. Sci. 2022, 9, 640. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, L.; Chen, L.; Li, S.; Sun, L. Bioaccumulation of antibiotics in crops under long-term manure application: Occurrence, biomass response and human exposure. Chemosphere 2019, 219, 882–895. [Google Scholar] [CrossRef] [PubMed]
- Cornejo, J.; Pokrant, E.; Krogh, M.; Briceño, C.; Hidalgo, H.; Maddaleno, A.; Araya, C.; San Martín, B. Determination of oxytetracycline and 4-epi-oxytetracycline residues in feathers and edible tissues of broiler chickens using liquid chromatography coupled with tandem mass spectrometry. J. Food Prot. 2017, 80, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Jansen, L.J.M.; Bolck, Y.J.C.; Berendsen, B.J.A. Feather segmentation to discriminate between different enrofloxacin treatments in order to monitor off-label use in the poultry sector. Anal. Bioanal. Chem. 2016, 408, 495–502. [Google Scholar] [CrossRef]
- Murray, A.K.; Stanton, I.C.; Tipper, H.J.; Wilkinson, H.; Schmidt, W.; Hart, A.; Gaze, W.H. A critical meta-analysis of predicted no effect concentrations for antimicrobial resistance selection in the environment. Water Res. 2024, 266, 122310. [Google Scholar] [CrossRef]
- Pokrant, E.; Vargas, M.B.; Navarrete, M.J.; Yévenes, K.; Trincado, L.; Cortés, P.; Cornejo, J. Assessing the Effect of Oxytetracycline on the Selection of Resistant Escherichia coli in Treated and Untreated Broiler Chickens. Antibiotics 2023, 12, 1652. [Google Scholar] [CrossRef]
- Espinosa-Castaño, I.; Báez Arias, M.; Hernández Fillor, R.E.; López Dorta, Y.; Lobo Rivero, E.; Corona-González, B. Resistencia antimicrobiana en bacterias de origen animal: Desafíos para su contención desde el laboratorio. Rev. Salud Anim. 2019, 41. [Google Scholar]
- Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization. Asean Guidelines for the Prudent Use of Ntimicrobials in Livestock. Available online: https://faolex.fao.org/docs/pdf/asean203301.pdf (accessed on 31 December 2024).
- United Nations. Environment Assembly of the United Nations Environment Programme. Available online: https://www.informea.org/sites/default/files/decisions/UNEP-EA.3-Res.4_english.pdf (accessed on 31 December 2024).
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, Ł.; Gaffke, L.; Pierzynowska, K.; Cyske, Z.; Choszcz, M.; Węgrzyn, G.; Węgrzyn, A. Enrofloxacin—The ruthless killer of eukaryotic cells or the last hope in the fight against bacterial infections? Int. J. Mol. Sci. 2022, 23, 3648. [Google Scholar] [CrossRef] [PubMed]
- Trouchon, T.; Lefebvre, S. A review of enrofloxacin for veterinary use. Open J. Vet. Med. 2016, 6, 40–58. [Google Scholar] [CrossRef]
- Pokrant, E.; Yévenes, K.; Trincado, L.; Terraza, G.; Galarce, N.; Maddaleno, A.; Martín, B.S.; Lapierre, L.; Cornejo, J. Evaluation of Antibiotic Dissemination into the Environment and Untreated Animals, by Analysis of Oxytetracycline in Poultry Droppings and Litter. Animals 2021, 11, 853. [Google Scholar] [CrossRef] [PubMed]
- Slana, M.; Pahor, V.; Cvitkovič Maričič, L.; Sollner-Dolenc, M. Excretion pattern of enrofloxacin after oral treatment of chicken broilers. J. Vet. Pharmacol. Ther. 2014, 37, 611–614. [Google Scholar] [CrossRef]
- Sureshkumar, V.; Sarathchandra, G. Excretion of enrofloxacin residues in poultry droppings after pulse water medication in broiler chicken–an environmental concern. J. Entomol. Zool. Stud. 2020, 8, 89–90. [Google Scholar]
- Vargas, M.; Pokrant, E.; García, I.; Cadena, R.; Mena, F.; Yévenes, K.; Fuentes, C.; Zavala, S.; Flores, A.; Maturana, M.; et al. Assessing the spread of sulfachloropyridazine in poultry environment and its impact on Escherichia coli resistance. Prev. Vet. Med. 2024, 233, 106362. [Google Scholar] [CrossRef]
- Fučík, J.; Amrichová, A.; Brabcová, K.; Karpíšková, R.; Koláčková, I.; Pokludová, L.; Poláková, Š.; Mravcová, L. Fate of fluoroquinolones in field soil environment after incorporation of poultry litter from a farm with enrofloxacin administration via drinking water. Environ. Sci. Pollut. Res. Int. 2024, 31, 20017–20032. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, H. Adsorption behavior of antibiotic in soil environment: A critical review. Front. Environ. Sci. Eng. 2015, 9, 565–574. [Google Scholar] [CrossRef]
- Burow, E.; Rostalski, A.; Harlizius, J.; Gangl, A.; Simoneit, C.; Grobbel, M.; Kollas, C.; Tenhagen, B.A.; Käsbohrer, A. Antibiotic resistance in Escherichia coli from pigs from birth to slaughter and its association with antibiotic treatment. Prev. Vet. Med. 2019, 165, 52–62. [Google Scholar] [CrossRef]
- Baharoglu, Z.; Garriss, G.; Mazel, D. Multiple pathways of genome plasticity leading to development of antibiotic resistance. Antibiotics 2013, 2, 288–315. [Google Scholar] [CrossRef]
- Mathieu, A.; Fleurier, S.; Frenoy, A.; Dairou, J.; Bredeche, M.F.; Sanchez-Vizuete, P.; Song, X.; Matic, I. Discovery and function of a general core hormetic stress response in E. coli induced by sublethal concentrations of antibiotics. Cell Rep. 2016, 17, 46–57. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, Y.; Sun, Y.; Ma, L.; Zeng, Q.; Jiang, X.; Li, A.; Zhenling, Z.; Zhang, T. Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes. Microbiome 2018, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Huang, Y.; Guo, L.; Zhang, S.; Wu, R.; Fang, X.; Xu, H.; Nie, Q. Metagenomic analysis reveals the microbiome and antibiotic resistance genes in indigenous Chinese yellow-feathered chickens. Front. Microbiol. 2022, 13, 930289. [Google Scholar] [CrossRef]
- Ding, J.; Dai, R.; Yang, L.; He, C.; Xu, K.; Liu, S.; Zhao, W.; Xiao, L.; Luo, L.; Zhang, Y.; et al. Inheritance and establishment of gut microbiota in chickens. Front. Microbiol. 2017, 8, 1967. [Google Scholar] [CrossRef]
- Lee, S.; La, T.M.; Lee, H.J.; Choi, I.S.; Song, C.S.; Park, S.Y.; Lee, J.K.; Lee, S.W. Characterization of microbial communities in the chicken oviduct and the origin of chicken embryo gut microbiota. Sci. Rep. 2019, 9, 6838. [Google Scholar] [CrossRef]
- Jansen, L.J.M.; Berentsen, R.J.; Arends, M.; Berendsen, B.J.A. The vertical transmission of antibiotic residues from parent hens to broilers. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2020, 37, 783–792. [Google Scholar] [CrossRef]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482. [Google Scholar] [CrossRef]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic resistance in bacteria—A review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- van der Horst, M.A.; Fabri, T.H.; Schuurmans, J.M.; Koenders, B.B.; Brul, S.; ter Kuile, B.H. Effects of therapeutical and reduced levels of antibiotics on the fraction of antibiotic-resistant strains of Escherichia coli in the chicken gut. Foodborne Pathog. Dis. 2013, 10, 55–61. [Google Scholar] [CrossRef]
- Chantziaras, I.; Smet, A.; Haesebrouck, F.; Boyen, F.; Dewulf, J. Studying the effect of administration route and treatment dose on the selection of enrofloxacin resistance in commensal Escherichia coli in broilers. J. Antimicrob. Chemother. 2017, 72, 1991–2001. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Ahmed, S.; Gu, Y.; Huang, J.; An, B.; Wu, C.; Zhou, Y.; Cheng, G. The effects of natural products and environmental conditions on antimicrobial resistance. Molecules 2021, 26, 4277. [Google Scholar] [CrossRef] [PubMed]
- Fruci, M.; Poole, K. Bacterial stress responses as determinants of antimicrobial resistance. In Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria; Wiley: Hoboken, NJ, USA, 2016; pp. 115–136. [Google Scholar]
- Ezzariai, A.; Hafidi, M.; Khadra, A.; Aemig, Q.; El Fels, L.; Barret, M.; Merlina, G.; Patureau, D.; Pinelli, E. Human and veterinary antibiotics during composting of sludge or manure: Global perspectives on persistence, degradation, and resistance genes. J. Hazard. Mater. 2018, 359, 465–481. [Google Scholar] [CrossRef] [PubMed]
- Selvam, A.; Wong, J.W.C. Degradation of antibiotics in livestock manure during composting. Curr. Dev. Biotechnol. Bioeng. 2017, 267–292. [Google Scholar] [CrossRef]
- Gurmessa, B.; Milanovic, V.; Pedretti, E.F.; Corti, G.; Ashworth, A.J.; Aquilanti, L.; Ferrocino, I.; Corvaglia, M.R.; Cocco, S. Post-digestate composting shifts microbial composition and degrades antimicrobial resistance genes. Bioresour. Technol. 2021, 340, 125662. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yin, X.; Li, F.; Wu, B.; Zhu, L.; Ge, D.; Wang, N.; Chen, A.; Zhang, L.; Yan, B.; et al. Response characteristics of antibiotic resistance genes and bacterial communities during agricultural waste composting: Focusing on biogas residue combined with biochar amendments. Bioresour. Technol. 2023, 372, 128636. [Google Scholar] [CrossRef]
- Paranhos, A.G.D.O.; Pereira, A.R.; Coelho, L.D.N.; Silva, S.D.Q.; De Aquino, S.F. Hydrothermal pre-treatment followed by anaerobic digestion for the removal of tylosin and antibiotic resistance agents from poultry litter. Environ. Sci. Pollut. Res. Int. 2023, 30, 42443–42455. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ma, W.; Zhou, K.; An, B.; Huo, M.; Lin, X.; Wang, L.; Wang, H.; Liu, Z.; Cheng, G.; et al. Effects of composting on the fate of doxycycline, microbial community, and antibiotic resistance genes in swine manure and broiler manure. Sci. Total Environ. 2022, 832, 155039. [Google Scholar] [CrossRef]
- da Silva Gonçalves, J.V.; Sant’Anna, G.S.L.; Ferreira, P.F.A.; de Souza, M.A.A.G.; da Cunha, J.M.F.; de Souza, M.M.S.; Celho, I. Investigation of antimicrobial resistance genes in organic fertilizers from animal residues. Rev. Bras. Agropecu. Sustentável 2022, 12, 64–70. [Google Scholar] [CrossRef]
- Dhanarani, T.S.; Shankar, C.; Park, J.; Dexilin, M.; Kumar, R.R.; Thamaraiselvi, K. Study on acquisition of bacterial antibiotic resistance determinants in poultry litter. Poult. Sci. 2009, 88, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture and Forestry. Poultry Management in New Zealand: Production, Manure Management and Emission Estimations for the Commercial Chicken, Turkey, Duck and Layer Industries Within New Zealand. 2012. Available online: https://www.mpi.govt.nz/dmsdocument/2956-Emission-estimations-for-the-commercial-chicken-turkey-duck-and-layer-industries-within-New-Zealand (accessed on 28 December 2024).
- Department of Agriculture, Fisheries and Forestry. Australian Animal Welfare Standards and Guidelines for Poultry. 2022. Available online: https://www.agriculture.gov.au/sites/default/files/documents/poultry-standards-guidelines-2022.pdf (accessed on 28 December 2024).
- The European Parliament and the Council of the European Union. REGULATION (EC) No 1069/2009 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 October 2009 Laying down Health Rules as Regards Animal By-Products and Derived Products Not Intended for Human Consumption and Repealing Regulation (EC) No 1774/2002 (Animal By-Products Regulation). Available online: https://eur-lex.europa.eu/eli/reg/2009/1069/oj (accessed on 29 December 2024).
- European Comission (EC). COMMISSION REGULATION (EU) No 142/2011 of 25 February 2011 Implementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council Laying Down Health Rules as Regards Animal By-Products and Derived Products not Intended for Human Consumption and Implementing Council Directive 97/78/EC as Regards Certain Samples and Items Exempt from Veterinary Checks at the Border Under That Directive. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R0142 (accessed on 29 December 2024).
- The European Parliament and the Council of the European Union. REGULATION (EU) 2019/1009 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and AMENDING REGULATIONS (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1009 (accessed on 29 December 2024).
- Aviagen. Ross Broiler Management Book. 2018. Available online: https://aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-BroilerHandbook2018-EN.pdf (accessed on 28 July 2024).
- Ministerio de Salud de Chile MINSAL. Ley 20.380 Sobre Protección de Animales. 03 Octubre 2009. Available online: https://www.bcn.cl/leychile/navegar?idNorma=1006858 (accessed on 28 July 2024).
- European Comission (EC). Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. 2010. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010L0063 (accessed on 16 July 2024).
- American Veterinary Medical Association. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition. Available online: https://www.avma.org/sites/default/files/2020-02/Guidelines-on-Euthanasia-2020.pdf (accessed on 16 August 2024).
- United States Department of Agriculture USDA. Poultry Industry Manual. Available online: https://www.aphis.usda.gov/animal_health/emergency_management/downloads/documents_manuals/poultry_ind_manual.pdf (accessed on 28 July 2024).
- International Atomic Energy Agency (IAEA). Soil Sampling for Environmental Contaminants; IAEA: Vienna, Austria, 2004; Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1415_web.pdf (accessed on 10 September 2024).
- Yévenes, K.; Pokrant, E.; Trincado, L.; Lapierre, L.; Galarce, N.; San Martín, B.; Maddaleno, A.; Hidalgo, H.; Cornejo, J. Detection of antimicrobial residues in poultry litter: Monitoring a risk through a selective and sensitive HPLC–MS/MS method. Animals 2021, 11, 1399. [Google Scholar] [CrossRef] [PubMed]
- European Comission (EC). Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the Performance of Analytical Methods for Residues of Pharmacologically Active Substances Used in Food-Producing Animals and on the Interpretation of Results as Well as on the Methods to Be Used for Sampling and Repealing Decisions 2002/657/EC and 98/179/EC. 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R0808 (accessed on 30 July 2024).
- European Medicines Agency EMA. VICH Topic GL2: Guideline on Validation of Analytical Procedures. Step Consensus Guideline. 1998. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/vich-gl2-validation-analytical-procedures-methodology-step-7-consensus-guideline_en.pdf (accessed on 30 July 2024).
- European Medicines Agency EMA. VICH topic GL49: Studies to Evaluate the Metabolism and Residues Kinetics of Veterinary Drugs in Human Food-Producing Animals: Validation of Analytical Methods Used in Residue Depletion Studies. 2015. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/vich-gl49-studies-evaluate-metabolism-residue-kinetics-veterinary-drugs-food-producing-animals_en.pdf (accessed on 30 July 2024).
- EMA. European Medicines Agency. Guideline on Determination of Withdrawal Periods for Edible Tissues. EMA/CVMP/SWP/735325/2012. 2022. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/adopted-guideline-determination-withdrawal-periods-edible-tissues-revision-2_en.pdf (accessed on 30 July 2024).
- Toro, M.; Rivera, D.; Jiménez, M.F.; Díaz, L.; Navarrete, P.; Reyes-Jara, A. Isolation and Characterization of non-O157 Shiga Toxin-Producing Escherichia coli (STEC) Isolated from Retail Ground beef in Santiago, Chile. Food Microbiol. 2018, 75, 55–60. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; CLSI Supplement VET01S; CLSI: Wayne, PA, USA, 2020. [Google Scholar]
- Clinical and Laboratory Standards Institute CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; CLSI Supplement M100; CLSI: Malvern, PA, USA, 2021. [Google Scholar]
- European Medicines Agency. Enrofloxacin (Extension to All Food-Producing Species)-Summary Report 5, Committee for Veterinary Medicinal Products. Available online: https://www.ema.europa.eu/en/documents/mrl-report/enrofloxacin-extension-all-food-producing-species-summary-report-5-committee-veterinary-medicinal-products_en.pdf (accessed on 16 October 2024).
- European Medicines Agency. Oxytetracycline, Tetracycline, Chlortetracycline-Summary Report 2, Committee for Veterinary Medicinal Products. Available online: https://www.ema.europa.eu/en/documents/mrl-report/oxytetracycline-tetracycline-chlortetracycline-summary-report-2-committee-veterinary-medicinal-products_en.pdf (accessed on 16 October 2024).
- European Medicines Agency. Sulfonamides-Summary Report 1, Committee for Veterinary Medicinal Products. Available online: https://www.ema.europa.eu/en/documents/mrl-report/sulfonamides-summary-report-1-committee-veterinary-medicinal-products_en.pdf (accessed on 16 October 2024).
Analyte | Retention Time (Minutes) | LOD 1 (μg kg−1) | LOQ 2 (μg kg−1) |
---|---|---|---|
Oxitetracycline | 2.96 | 5 | 15 |
4-epi-oxitetracycline | 2.86 | 10 | 15 |
Enrofloxacin | 3.84 | 2.50 | 4.10 |
Ciprofloxacin | 3.85 | 2.50 | 4.80 |
Sulfachloropyridazine | 3.97 | 2.50 | 3.90 |
Day Post Treatment | Sulfachloropyridazine | Oxytetracycline + 4-Epi-oxytetracycline | Enrofloxacin + Ciprofloxacin | |||
---|---|---|---|---|---|---|
Average Concentration (μg kg−1) ± SD a | RSD (%) b | Average Concentration (μg kg−1) ± SD | RSD (%) | Average Concentration (μg kg−1) ± SD | RSD (%) | |
2 | 42,910.14 ± 4059.00 | 9.45 | 92,711.98 ± 11,154.29 | 12.03 | 8.79 ± 0.85 | 9.61 |
4 | 14,152.54 ± 2814.84 | 19.89 | 49,840.30 ± 9070.00 | 18.20 | 9424.79 ± 584.02 | 6.20 |
7 | 23,595.14 ± 1316.48 | 5.58 | 55,983.86 ± 4720.98 | 8.43 | 9566.58 ± 471.82 | 4.93 |
10 | 21,469.28 ± 7049.86 | 32.84 | 25,651.97 ± 868.66 | 3.39 | 6249.15 ± 278.49 | 4.46 |
13 | 3513.16 ± 611.24 | 17.40 | 31,663.96 ± 3918.62 | 12.38 | 5519.60 ± 371.92 | 6.74 |
Slaughter day c | 207.19 ± 12.22 | 5.90 | 25,110.64 ± 489.91 | 1.95 | 5739.60 ± 305.47 | 5.32 |
Day Post Treatment | Resistant Strains | |||
---|---|---|---|---|
Treatment Group | Control Group | |||
Number of Strains | Prevalence (%) | Number of Strains | Prevalence (%) | |
2 | 15 | 100 | 3 | 20 |
10 | 15 | 100 | 5 | 33.33 |
Slaughter day * | 12 | 80 | 5 | 33.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortés, P.; Pokrant, E.; Yévenes, K.; Maddaleno, A.; Flores, A.; Vargas, M.B.; Trincado, L.; Maturana, M.; Lapierre, L.; Cornejo, J. Antimicrobial Residues in Poultry Litter: Assessing the Association of Antimicrobial Persistence with Resistant Escherichia coli Strains. Antibiotics 2025, 14, 89. https://doi.org/10.3390/antibiotics14010089
Cortés P, Pokrant E, Yévenes K, Maddaleno A, Flores A, Vargas MB, Trincado L, Maturana M, Lapierre L, Cornejo J. Antimicrobial Residues in Poultry Litter: Assessing the Association of Antimicrobial Persistence with Resistant Escherichia coli Strains. Antibiotics. 2025; 14(1):89. https://doi.org/10.3390/antibiotics14010089
Chicago/Turabian StyleCortés, Paula, Ekaterina Pokrant, Karina Yévenes, Aldo Maddaleno, Andrés Flores, María Belén Vargas, Lina Trincado, Matías Maturana, Lisette Lapierre, and Javiera Cornejo. 2025. "Antimicrobial Residues in Poultry Litter: Assessing the Association of Antimicrobial Persistence with Resistant Escherichia coli Strains" Antibiotics 14, no. 1: 89. https://doi.org/10.3390/antibiotics14010089
APA StyleCortés, P., Pokrant, E., Yévenes, K., Maddaleno, A., Flores, A., Vargas, M. B., Trincado, L., Maturana, M., Lapierre, L., & Cornejo, J. (2025). Antimicrobial Residues in Poultry Litter: Assessing the Association of Antimicrobial Persistence with Resistant Escherichia coli Strains. Antibiotics, 14(1), 89. https://doi.org/10.3390/antibiotics14010089