Chemical Characterization and Antimicrobial Activity of Essential Oils and Nanoemulsions of Eugenia uniflora and Psidium guajava
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Characterization of E. uniflora and P. guajava Essential Oils
2.2. Characterization and Stability of Nanoemulsions of E. uniflora and P. guajava
2.3. Antimicrobial Activity of Essential Oils and Nanoemulsions of P. guajava and E. uniflora
3. Materials and Methods
3.1. Essential Oils of E. uniflora and P. guajava
3.2. Identification of Major Volatile Compounds of E. uniflora and P. guajava Essential Oils
3.3. Determination of Total Phenolic Compounds and Antioxidant Activity of E. uniflora and P. guajava Essential Oils
3.4. Development of the P. guajava and E. uniflora Nanoemulsions
3.5. Characterization of E. uniflora and P. guajava Nanoemulsions
3.6. Stability Study of P. guajava and E. uniflora Nanoemulsions
3.7. Study of the Antimicrobial Activity of Essential Oils and Nanoemulsions of P. guajava and E. uniflora
3.7.1. Microorganisms and Inoculum Preparation
3.7.2. Agar-Well Diffusion Assay
3.7.3. Determination of Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC)
3.8. Time–Kill Kinetics Assays of E. uniflora and P. guajava Essential Oils and Nanoemulsions
3.9. Statistics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- da Costa, J.S.; Barroso, A.S.; Mourão, R.H.V.; da Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Seasonal and antioxidant evaluation of essential oil from Eugenia uniflora L., curzerene-rich, thermally produced in situ. Biomolecules 2020, 10, 328. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.C.; Navarro, D.M.A.F.; Marques, A.M.; Figueiredo, M.R.; de Aguiar, J.C.R.O.F.; da Câmara, C.A.G.; de Moraes, M.M.; dos Santos, F.H.G.; Santos, E.F.; Vieira, G.J.D.G.; et al. Oviposition deterrent activity of hydrolate, aqueous extract and major constituents of essential oil from the leaves of Eugenia uniflora (Myrtaceae) for the control of Aedes aegypti. Ind. Crop Prod. 2023, 198, 116710. [Google Scholar] [CrossRef]
- de Jesus, E.N.S.; Tavares, M.S.; Barros, P.A.C.; Miller, D.C.; da Silva, P.I.C.; Freitas, J.J.S.; de Lima, A.B.; Setzer, W.N.; da Silva, J.K.R.; Figueiredo, P.L.B. Chemical composition, antinociceptive and anti-inflammatory activities of the curzerene type essential oil of Eugenia uniflora from Brazil. J. Ethnopharmacol. 2023, 317, 116859. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Jawaid, T.; Alsanad, S.M.; Kamal, M.; Balaha, M.F. Composition, antibacterial efficacy, and anticancer activity of essential oil extracted from Psidium guajava (L.) leaves. Plants 2023, 12, 246. [Google Scholar] [CrossRef] [PubMed]
- de Souza, W.F.C.; de Lucena, F.A.; de Castro, R.J.S.; de Oliveira, C.P.; Quirino, M.R.; Martins, L.P. Exploiting the chemical composition of essential oils from Psidium cattleianum and Psidium guajava and its antimicrobial and antioxidant properties. J. Food Sci. 2021, 86, 4637–4649. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.C.; Costa, J.S.; Figueiredo, R.O.; Setzer, W.N.; Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Monoterpenes and sesquiterpenes of essential oils from Psidium species and their biological properties. Molecules 2021, 26, 965. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.K.; Hussein, S.; Qurbani, K.; Ibrahim, R.H.; Fareeq, A.; Mahmood, K.A.; Mohamed, M.G. Antimicrobial resistance: Impacts, challenges, and future prospects. J. Med. Surg. Public Health 2024, 2, 100081. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial resistance: A growing serious threat for global public health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- 9- Ahmad-Mansour, N.; Loubet, P.; Pouget, C.; Dunyach-Remy, C.; Sotto, A.; Lavigne, J.P.; Molle, V. Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments. Toxins 2021, 13, 677. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Ahuatzin-Flores, O.E.; Torres, E.; Chávez-Bravo, E. Acinetobacter baumannii, a multidrug-resistant opportunistic pathogen in new habitats: A systematic review. Microorganisms 2024, 12, 644. [Google Scholar] [CrossRef] [PubMed]
- Ashurst, J.V.; Dawson, A. Klebsiella Pneumonia; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Bonten, M.; Johnson, J.R.; van den Biggelaar, A.H.J.; Georgalis, L.; Geurtsen, J.; de Palacios, P.I.; Gravenstein, S.; Verstraeten, T.; Hermans, P.; Poolman, J.T. Epidemiology of Escherichia coli bacteremia: A systematic literature review. Clin. Infect. Dis. 2021, 72, 1211–1219. [Google Scholar] [CrossRef]
- Nji, E.; Kazibwe, J.; Hambridge, T.; Joko, C.A.; Larbi, A.A.; Damptey, L.A.O.; Nkansa-Gyamfi, N.A.; Stålsby Lundborg, C.; Lien, T.Q. High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings. Sci. Rep. 2021, 11, 3372. [Google Scholar] [CrossRef]
- Navarro-Arias, M.J.; Hernández-Chávez, M.J.; García-Carnero, L.C.; Amezcua-Hernández, D.G.; Lozoya-Pérez, N.E.; Estrada-Mata, E.; Martínez-Duncker, I.; Franco, B.; Mora-Montes, H.M. Differential recognition of Candida tropicalis, Candida guilliermondii, Candida krusei, and Candida auris by human innate immune cells. Infect. Drug Resist. 2019, 12, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Gaviria, M.; Mora-Montes, H.M. Current aspects in the biology, pathogeny, and treatment of Candida krusei, a neglected fungal pathogen. Infect Drug Resist. 2020, 13, 1673–1689. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, E.M.; Alhatlani, B.Y.; de Paula Menezes, R.; Martins, C.H.G. Back to nature: Medicinal plants as promising sources for antibacterial drugs in the post-antibiotic era. Plants 2023, 12, 3077. [Google Scholar] [CrossRef] [PubMed]
- Yammine, J.; Chihib, N.E.; Gharsallaoui, A.; Dumas, E.; Ismail, A.; Karam, L. Essential oils and their active components applied as: Free, encapsulated and in hurdle technology to fight microbial contaminations: A review. Heliyon 2022, 8, e12472. [Google Scholar] [CrossRef]
- de Amorim, M.S.; Verdan, M.H.; Oliveira, C.S.; Santos, A.D.C. Essential oils of neotropical Myrtaceae species from 2011 until 2023: An update. Chem. Biodivers. 2024, e202401503. [Google Scholar] [CrossRef] [PubMed]
- Barradas, T.N.; Silva, K.G.d.H.e. Nanoemulsions of essential oils to improve solubility, stability and permeability: A review. Environ. Chem. Lett. 2021, 19, 1153–1171. [Google Scholar] [CrossRef]
- Weerapol, Y.; Manmuan, S.; Chuenbarn, T.; Limmatvapirat, S.; Tubtimsri, S. Nanoemulsion-based orodispersible film formulation of guava leaf oil for inhibition of oral cancer cells. Pharmaceutics 2023, 15, 2631. [Google Scholar] [CrossRef] [PubMed]
- Tavares, T.M.B.; Almeida, H.M.D.S.; Lage, M.V.M.; de Carvalho Feitosa, R.; da Silva Júnior, A.A. Nanoemulsions: A promising strategy in the fight against bacterial infections. Med. Sci. Forum. 2024, 24, 18. [Google Scholar]
- Hanan, E.; Dar, A.H.; Shams, R.; Goksen, G. New insights into essential oil nano emulsions loaded natural biopolymers recent development, formulation, characterization and packaging applications: A comprehensive review. Int. J. Biol. Macromol. 2024, 280, 135751. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, P.L.B.; Pinto, L.C.; da Costa, J.S.; da Silva, A.R.C.; Mourão, R.H.V.; Montenegro, R.C.; da Silva, J.K.R.; Maia, J.G.S. Composition, antioxidant capacity and cytotoxic activity of Eugenia uniflora L. chemotype-oils from the Amazon. J. Ethnopharmacol. 2019, 232, 30–38. [Google Scholar] [CrossRef]
- Doodman, S.; Saeidi, K.; Lorigooini, Z.; Kiani, M. Chemical composition of essential oils from Smyrnium cordifolium Boiss (Apiaceae) ecotypes. Biochem. Syst. Ecol. 2023, 110, 104682. [Google Scholar] [CrossRef]
- Poudel, D.K.; Ojha, P.K.; Rokaya, A.; Satyal, R.; Satyal, P.; Setzer, W.N. Analysis of volatile constituents in Curcuma species, viz. C. aeruginosa, C. zedoaria, and C. longa, from Nepal. Plants 2022, 11, 1932. [Google Scholar] [CrossRef]
- Thin, D.B.; Thinh, B.B.; Hanh, D.H. Chemical composition and antimicrobial activity of essential oils from leaves and rhizomes of Curcuma zedoaria obtained via supercritical fluid extraction. Nexo Rev. Cient. 2022, 35, 1091–1098. [Google Scholar] [CrossRef]
- dos Santos, F.R.; Rezende, S.R.d.F.; dos Santos, L.V.; da Silva, E.R.M.N.; Caiado, M.S.; de Souza, M.A.A.; Pontes, E.G.; de Carvalho, M.G.; Filho, R.B.; Castro, R.N. Larvicidal and fungicidal activity of the leaf essential oil of five Myrtaceae species. Chem. Biodivers. 2023, 20, e202300823. [Google Scholar] [CrossRef] [PubMed]
- Souza, T.S.; Ferreira, M.F.; Menini, L.; Souza, J.R.C.L.; Parreira, L.A.; Cecon, P.R.; Ferreira, A. Essential oil of Psidium guajava: Influence of genotypes and environment. Sci. Hortic. 2017, 216, 38–44. [Google Scholar] [CrossRef]
- Sarma, N.; Begum, T.; Pandey, S.K.; Gogoi, R.; Munda, S.; Lal, M. Chemical profiling of leaf essential oil of Lantana camara Linn. from north-east India. J. Essent. Oil-Bear. Plants. 2020, 23, 1035–1041. [Google Scholar] [CrossRef]
- Hong, M.; Kim, M.; Jang, H.; Bo, S.; Deepa, P.; Sowndhararajan, K.; Kim, S. Multivariate analysis of essential oil composition of Artemisia annua L. collected from different locations in Korea. Molecules 2023, 28, 1131. [Google Scholar]
- Chandra, M.; Prakash, O.; Kumar, R.; Bachheti, R.K.; Bhushan, B.; Kumar, M.; Pant, A.K. β-Selinene-rich essential oils from the parts of Callicarpa macrophylla and their antioxidant and pharmacological activities. Medicines 2017, 4, 52. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 29. [Google Scholar] [CrossRef] [PubMed]
- Woo, H.J.; Yang, J.Y.; Lee, M.H.; Kim, H.W.; Kwon, H.J.; Park, M.; Kim, S.K.; Park, S.Y.; Kim, S.H.; Kim, J.B. Inhibitory effects of β-caryophyllene on Helicobacter pylori infection in vitro and in vivo. Int. J. Mol. Sci. 2020, 21, 1008. [Google Scholar] [CrossRef] [PubMed]
- Toledo, A.G.; de Souza, J.G.D.L.; da Silva, J.P.B.; Favreto, W.A.J.; da Costa, W.F.; Pinto, F.G.D.S. Chemical composition, antimicrobial and antioxidant activity of the essential oil of leaves of Eugenia involucrata DC. Biosci. J. 2020, 36, 568–577. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; Elgamal, A.M.; EI-Amier, Y.A.; Mohamed, T.A.; El Gendy, A.E.-N.G.; Elshamy, A.I. Chemical Composition, Allelopathic, antioxidant, and anti-inflammatory activities of sesquiterpenes rich essential oil of Cleome amblyocarpa Barratte & Murb. Plants 2021, 10, 1294. [Google Scholar] [CrossRef] [PubMed]
- da Costa, J.S.; da Cruz, E.N.S.; Setzer, W.N.; da Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Essentials oils from Brazilian Eugenia and Syzygium species and their biological activities. Biomolecules 2020, 10, 1155. [Google Scholar] [CrossRef] [PubMed]
- Jerônimo, L.B.; da Costa, J.S.; Pinto, L.C.; Montenegro, R.C.; Setzer, W.N.; Mourao, R.H.V.; da Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Antioxidant and cytotoxic activities of Myrtaceae essential oils rich in terpenoids from Brazil. Nat. Prod. Commun. 2021, 16. [Google Scholar] [CrossRef]
- Özgen, P.S.O.; Biltekin, S.N.; İduğ, T.; Macit, C.; Ayran, İ.; Çelik, S.A.; Kültür, Ş.; Kan, Y.; Omurtag, G.Z. Chemical composition and in vitro mutagenic, antioxidant and anti-inflammatory activities of Lavandula angustifolia Mill. essential oil from Turkey. J. Res. Pharm. 2022, 26, 781–789. [Google Scholar]
- Mechergui, K.; Jaouadi, W.; Coelho, J.; Khouja, M.L. Effect of harvest year on production, chemical composition and antioxidant activities of essential oil of oregano (Origanum vulgare subsp glandulosum (Desf.) Ietswaart) growing in North Africa. Ind. Crop. Prod. 2016, 90, 32–37. [Google Scholar] [CrossRef]
- El-Demerdash, F.M.; El-Sayed, R.A.; Abdel-Daim, M.M. Rosmarinus officinalis essential oil modulates renal toxicity and oxidative stress induced by potassium dichromate in rats. J. Trace Elem. Med. Biol. 2021, 67, 126791. [Google Scholar] [CrossRef] [PubMed]
- Preeti, S.S.; Malik, R.; Bhatia, S.; Al Harrasi, A.; Rani, C.; Saharan, R.; Kumar, S.G.; Sehrawat, R. Nanoemulsion: An emerging novel technology for improving the bioavailability of drugs. Scientifica 2023, 1, 6640103. [Google Scholar] [CrossRef] [PubMed]
- Naseema, A.; Kovooru, L.; Behera, A.K.; Kumar, K.P.; Srivastava, P. A critical review of synthesis procedures, applications and future potential of nanoemulsions. Adv. Colloid Interface Sci. 2021, 287, 102318. [Google Scholar]
- Moazeni, M.; Davari, A.; Shabanzadeh, S.; Akhtari, J.; Saeedi, M.; Mortyeza-Semnani, K.; Abastabar, M.; Nabili, M.; Moghadam, F.H.; Roohi, B.; et al. In vitro antifungal activity of Thymus vulgaris essential oil nanoemulsion. J. Herb. Med. 2021, 28, 100452. [Google Scholar] [CrossRef]
- Chu, Y.; Gao, C.; Liu, X.; Zhang, N.; Xu, T.; Feng, X.; Yang, Y.; Shen, X.; Tang, X. Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. LWT 2020, 122, 109054. [Google Scholar] [CrossRef]
- Ntalli, N.; Zochios, G.; Nikolaou, P.; Winkiel, M.; Petrelli, R.; Bonacucina, G.; Perinelli, D.R.; Spinozzi, E.; Maggi, F.; Benelli, G. Carlina acaulis essential oil nanoemulsion for managing Meloidogyne incognita. Ind. Crops Prod. 2023, 193, 116180. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Morteza-Semnani, K.; Saeedi, M.; Akbari, J.; Eghbali, M.; Babaei, A.; Hashemi, S.M.H.; Nokhodchi, A. Development of a novel nanoemulgel formulation containing cumin essential oil as skin permeation enhancer. Drug Deliv. Transl. Res. 2022, 12, 1455–1465. [Google Scholar] [CrossRef]
- Dakhlaoui, S.; Bourgou, S.; Zar Kalai, F.; Hammami, M.; Essafi, M.; Jallouli, S.; Msaada, K. Essential oil and its nanoemulsion of Eucalyptus cladocalyx: Chemical characterization, antioxidant, anti-inflammatory and anticancer activities. Int. J. Environ. Health Res. 2024, 34, 2899–2912. [Google Scholar] [CrossRef]
- Soulaimani, B.; Abbad, I.; Varoni, E.; Iriti, M.; Mezrioui, N.E.; Hassani, L.; Abbad, A. Optimization of antibacterial activity of essential oil mixture obtained from three medicinal plants: Evaluation of synergism with conventional antibiotics and nanoemulsion effectiveness. S. Afr. J. Bot. 2022, 151, 900–908. [Google Scholar] [CrossRef]
- Gurpreet, K.; Singh, S.K. Review of nanoemulsion formulation and characterization techniques. Indian J. Pharm. Sci. 2018, 80, 781–789. [Google Scholar] [CrossRef]
- Wu, M.-H.; Yan, H.H.; Chen, Z.-Q.; He, M. Effects of emulsifier type and environmental stress on the stability of curcumin emulsion. J. Dispers. Sci. Technol. 2017, 38, 1375–1380. [Google Scholar] [CrossRef]
- Naves, L.B.; Dhand, C.; Venugopal, J.R.; Rajamani, L.; Ramakrishna, S.; Almeida, L. Nanotechnology for the treatment of melanoma skin cancer. Prog. Biomater. 2017, 6, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Firoozy, M.; Anarjan, N. Preparation of maltodextrin stabilized α-tocopherol nanoemulsions using solvent-displacement technique. Food Sci. Technol. Int. 2019, 25, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Chookiat, S.; Theansungnoen, T.; Kiattisin, K.; Intharuksa, A. Nanoemulsions containing Mucuna pruriens (L.) DC. seed extract for cosmetic applications. Cosmetics 2024, 11, 29. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kotturi, H.; Nikfarjam, S.; Bhargava, K.; Ahsan, N.; Khandaker, M. Antimicrobial activity of polycaprolactone nanofiber coated with lavender and neem oil nanoemulsions against airborne bacteria. Membranes 2024, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Pavoni, L.; Perinelli, D.R.; Bonacucina, G.; Cespi, M.; Palmieri, G.F. An overview of micro- and nanoemulsions as vehicles for essential oils: Formulation, preparation and stability. Nanomaterials 2020, 10, 135. [Google Scholar] [CrossRef]
- Somala, N.; Laosinwattana, C.; Teerarak, M. Formulation process, physical stability and herbicidal activities of Cymbopogon nardus essential oil-based nanoemulsion. Sci. Rep. 2022, 12, 10280. [Google Scholar] [CrossRef]
- Yin, H.A.; Wahab, R.A.; Rehman, G.U.; Abidin, M.H.Z.; Wong, K.Y. A novel water-in-oil-in-water double nanoemulsion of α-mangostin and kojic acid for topical applications. Arab. J. Sci. Eng. 2024, 49, 9291–9305. [Google Scholar] [CrossRef]
- Teng, F.; He, M.; Xu, J.; Chen, F.; Wu, C.; Wang, Z.; Li, Y. Effect of ultrasonication on the stability and storage of soy protein isolate-phosphatidylcholine nanoemulsions. Sci Rep. 2020, 10, 14010. [Google Scholar] [CrossRef]
- Kaur, G.; Panigrahi, C.; Agarwal, S.; Khuntia, A.; Sahoo, M. Recent trends and advancements in nanoemulsions: Production methods, functional properties, applications in food sector, safety and toxicological effects. Food Phys. 2024, 1, 100024. [Google Scholar] [CrossRef]
- Chuesiang, P.; Siripatrawan, U.; Sanguandeekul, R.; McClements, D.J.; McLandsborough, L. Antimicrobial activity of PIT-fabricated cinnamon oil nanoemulsions: Effect of surfactant concentration on morphology of foodborne pathogens. Food Control. 2019, 98, 405–411. [Google Scholar] [CrossRef]
- Amasha, R.H. Inhibition of some multidrug-resistant bacteria using prepared essential oil nanoemulsion formulas and their mode of action. J. Contemp. Med. Sci. 2024, 10, 142–149. [Google Scholar] [CrossRef]
- Pilong, P.; Chuesiang, P.; Mishra, D.K.; Siripatrawan, U. Characteristics and antimicrobial activity of microfluidized clove essential oil nanoemulsion optimized using response surface methodology. J. Food Process. Preserv. 2022, 46, e16886. [Google Scholar] [CrossRef]
- Liu, M.; Pan, Y.; Feng, M.; Guo, W.; Fan, X.; Feng, L.; Huang, J.; Cao, Y. Garlic essential oil in water nanoemulsion prepared by high-power ultrasound: Properties, stability and its antibacterial mechanism against MRSA isolated from pork. Ultrason Sonochem. 2022, 90, 106201. [Google Scholar] [CrossRef] [PubMed]
- Jawaid, T.; Alaseem, A.M.; Khan, M.M.; Mukhtar, B.; Kamal, M.; Anwer, R.; Ahmed, S.; Alam, A. Preparation and evaluation of nanoemulsion of citronella essential oil with improved antimicrobial and anti-cancer properties. Antibiotics 2023, 12, 478. [Google Scholar] [CrossRef] [PubMed]
- Hassanshahian, M.; Saadatfar, A.; Masoumipour, F. Formulation and characterization of nanoemulsion from Alhagi maurorum essential oil and study of its antimicrobial, antibiofilm, and plasmid curing activity against antibiotic-resistant pathogenic bacteria. J. Environ. Health Sci. Eng. 2020, 18, 1015–1027. [Google Scholar] [CrossRef] [PubMed]
- Fidelis, E.M.; Savall, A.S.P.; Pereira, F.O.; Quines, C.B.; Ávila, D.S.; Pinton, S. Pitanga (Eugenia uniflora L.) as a source of bioactive compounds for health benefits: A review. Arab. J. Chem. 2022, 15, 103691. [Google Scholar]
- Mohamed, S.; Elsayed, H.; Ibrahim, R.; Kamal, A.; Saleh, M. Chemical profile, anti-inflammatory, and antimicrobial activities of the essential oil and lipoidal matter obtained from two Eugenia species cultivated in Egypt. Egypt. J. Chem. 2023, 66, 849–859. [Google Scholar] [CrossRef]
- Ferreira, O.O.; da Silva, S.H.M.; de Oliveira, M.S.; Andrade, E.H.d.A. Chemical composition and antifungal activity of Myrcia multiflora and Eugenia florida essential oils. Molecules 2021, 26, 7259. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, Y.; Huang, T.; Shi, K.; Wu, Z. Chemical compositions, antioxidant and antimicrobial activities of essential oils of Psidium guajava L. leaves from different geographic regions in China. Chem. Biodivers. 2017, 14, e1700114. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines. 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Antonelo, F.A.; Rodrigues, M.S.; Cruz, L.C.; Pagnoncelli, M.G.; da Cunha, M.A.A.; Bonatto, S.J.R.; Busso, C.; Júnior, A.W.; Montanher, P.F. Bioactive compounds derived from Brazilian Myrtaceae species: Chemical composition and antioxidant, antimicrobial and cytotoxic activities. Biocatal. Agric. Biotechnol. 2023, 48, 102629. [Google Scholar] [CrossRef]
- Obuotor, T.M.; Omankhanlen, A.; Lasisi, A.A. Antimicrobial efficacy of the extract, fractions and essential oils from the leaves of Eugenia uniflora Linn (Myrtaceae). Ife J. Sci. 2017, 19, 159–168. [Google Scholar] [CrossRef]
- Hanif, M.U.; Hussain, A.I.; Chatha, S.A.S.; Kamal, G.M.; Ahmad, T. Variation in composition and bioactivities of essential oil from leaves of two different cultivars of Psidium guajava L. J. Essent. Oil-Bear. Plants. 2018, 21, 65–76. [Google Scholar] [CrossRef]
- Shehabeldine, A.M.; Doghish, A.S.; El-Dakroury, W.A.; Hassanin, M.M.H.; Al-Askar, A.A.; AbdElgawad, H.; Hashem, A.H. Antimicrobial, antibiofilm, and anticancer activities of Syzygium aromaticum essential oil nanoemulsion. Molecules 2023, 28, 5812. [Google Scholar] [CrossRef]
- Sharma, K.; Guleria, S.; Razdan, V.K.; Babu, V. Synergistic antioxidant and antimicrobial activities of essential oils of some selected medicinal plants in combination and with synthetic compounds. Ind. Crops Prod. 2020, 154, 112569. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; El-Sayed, H.S. Antimicrobial nanoemulsion formulation based on thyme (Thymus vulgaris) essential oil for UF labneh preservation. J. Mater. Res. Technol. 2021, 10, 1029–1041. [Google Scholar] [CrossRef]
- Shahabi, N.; Tajik, H.; Moradi, M.; Forough, M.; Ezati, P. Physical, antimicrobial and antibiofilm properties of Zataria multiflora Boiss essential oil nanoemulsion. Int. J. Food Sci. Technol. 2017, 52, 1645–1652. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Morais, S.M.; Sampaio, C.G.; Pérez-Jiménez, J.; Saura-Calixto, F.G. Metodologia Científica: Determinação da Atividade Antioxidante Toral em Frutas Pela Captura do Radical Livre DPPH, 1st ed.; Comunicado Técnico; Embrapa Agroindústria Tropical: Fortaleza, CE, Brasil, 2007; pp. 1–4. [Google Scholar]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Morais, S.M.; Sampaio, C.G.; Pérez-Jiménez, J.; Saura-Calixto, F.G. Metodologia Científica: Determinação da Atividade Antioxidante Toral em Frutas Pela Captura do Radical Livre ABTS, 1st ed.; Comunicado Técnico; Embrapa Agroindústria Tropical: Fortaleza, CE, Brasil, 2007; pp. 1–4. [Google Scholar]
- Cardoso, C.O.; Ferreira-Nunes, R.; Cunha-Filho, M.; Gratieri, T.; Gelfuso, G.M. In situ gelling microemulsion for topical ocular delivery of moxifloxacin and betamethasone. J. Mol. Liq. 2022, 360, 119559. [Google Scholar] [CrossRef]
- Brasil. Resolution RDC 318/2019 of the Brazilian Health Regulatory Agency (Anvisa). Available online: https://www.legisweb.com.br/legislacao/?id=384462 (accessed on 23 December 2024).
- Clinical and Laboratory Standards Institute. M27 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed.; CLSI: Wayne, PA, USA, 2017; 46p. [Google Scholar]
- Clinical and Laboratory Standards Institute. M07 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; CLSI: Wayne, PA, USA, 2018; 91p. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests; CLSI Document M02-A1; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Ristivojević, P.; Dimkić, I.; Guzelmeric, E.; Trifković, J.; Knežević, M.; Berić, T.; Yesilada, E.; Milojković-Opsenica, D.; Stanković, S. Profiling of Turkish propolis subtypes: Comparative evaluation of their phytochemical compositions, antioxidant and antimicrobial activities. LWT 2018, 95, 367–379. [Google Scholar] [CrossRef]
- Leber, A.L. Clinical Microbiology Procedures Handbook, 4th ed.; ASM Press: Washington, DC, USA, 2020; pp. 967–978. [Google Scholar]
Components | Composition (%) | Classification | |
---|---|---|---|
1 | β-Myrcene | 0.63 | Monoterpene |
2 | α-Felandrene | 0.17 | Monoterpene |
3 | β-Thujene | 0.20 | Monoterpene |
4 | Trans-β-Ocimene | 1.30 | Monoterpene |
5 | β-Ocimene | 3.32 | Monoterpene |
6 | γ-Terpinene | 0.15 | Monoterpene |
7 | Terpinolene | 0.14 | Monoterpene |
8 | δ-Elemene | 1.20 | Sesquiterpene |
9 | α-Cubebene | 0.31 | Sesquiterpene |
10 | Copaene | 0.30 | Sesquiterpene |
11 | β-Elemene | 4.74 | Sesquiterpene |
12 | β-Caryophyllene | 5.16 | Sesquiterpene |
13 | γ-Elemene | 1.72 | Sesquiterpene |
14 | Bicyclosesquifelandrene | 0.16 | Sesquiterpene |
15 | Humulene | 0.43 | Sesquiterpene |
16 | Alloaromadendrene | 0.53 | Sesquiterpene |
17 | β-Panasinsene | 0.71 | Sesquiterpene |
18 | β-Cubebene | 6.79 | Sesquiterpene |
19 | β-Selinene | 0.47 | Sesquiterpene |
20 | Curzerene | 34.80 | Sesquiterpene |
21 | δ-Guaiene | 1.34 | Sesquiterpene |
22 | γ-Cadinene | 0.14 | Sesquiterpene |
23 | δ-Cadinene | 2.01 | Sesquiterpene |
24 | α-Cadinene | 0.40 | Sesquiterpene |
25 | Germacrene B | 11.92 | Sesquiterpene |
26 | Spathulenol | 1.14 | Sesquiterpene |
27 | Globulol | 0.80 | Sesquiterpene |
28 | Aristoladiene | 3.28 | Sesquiterpene |
29 | Germacrone | 3.99 | Sesquiterpene |
30 | Calamenene | 4.62 | Sesquiterpene |
31 | Aristolene | 5.73 | Sesquiterpene |
Monoterpenes | 5.91% | ||
Sesquiterpenes | 92.69% | ||
% of Identification | 98.60% |
Components | Composition (%) | Classification | |
---|---|---|---|
1 | α-Pinene | 0.24 | Monoterpene |
2 | p-Cimene | 0.18 | Monoterpene |
3 | Limonene | 0.75 | Monoterpene |
4 | Eucalyptol | 4.58 | Monoterpene |
5 | α-Terpineol | 0.19 | Monoterpene |
6 | Copaene | 0.80 | Sesquiterpene |
7 | β-Caryophyllene | 25.92 | Sesquiterpene |
8 | Humulene | 3.95 | Sesquiterpene |
9 | β-Panasinsene | 2.17 | Sesquiterpene |
10 | β-Selinene | 22.64 | Sesquiterpene |
11 | γ-Selinene | 19.13 | Sesquiterpene |
12 | α-Muurolene | 0.63 | Sesquiterpene |
13 | β-Bisabolene | 0.17 | Sesquiterpene |
14 | γ-Cadinene | 2.69 | Sesquiterpene |
15 | 7-epi-α-Selinene | 0.49 | Sesquiterpene |
16 | δ-Cadinene | 2.48 | Sesquiterpene |
17 | α-Calacorene | 0.23 | Sesquiterpene |
18 | Caryophyllene Oxide | 5.61 | Sesquiterpene |
19 | Humulene Oxide | 0.37 | Sesquiterpene |
20 | t-Cadinol | 1.34 | Sesquiterpene |
21 | Selin-6-en-4-α-ol | 3.54 | Sesquiterpene |
Monoterpenes | 5.94% | ||
Sesquiterpenes | 92.16% | ||
% of Identification | 98.10% |
Analyses | Essential Oils | |
---|---|---|
E. uniflora | P. guajava | |
ABTS (μmol TE/mL) | 853.62 ± 29.74 a | 204.19 ± 25.01 b |
DPPH (μmol TE/mL) | 183.71 ± 8.43 a | 51.30 ± 20.01 b |
Phenolic Compounds (mg GAE/mL) | 1.30 ± 0.35 a | 1.11 ± 0.64 b |
Analyses | Nanoemulsions | |
---|---|---|
E. uniflora | P. guajava | |
Size (nm) | 105.30 ± 0.60 a | 99.50 ± 0.70 b |
PDI | 0.32 ± 0.01 b | 0.43 ± 0.01 a |
Zeta Potential (mV) | −9.29 ± 0.20 a | −7.34 ± 0.20 b |
pH | 5.75 ± 0.01 a | 5.41 ± 0.10 a |
Microorganisms | Zone Diameter (mm) | |||||
---|---|---|---|---|---|---|
EUEO (Pure) | EUEO (15%) | NEUEO | PGEO (Pure) | PGEO (15%) | NPGEO | |
S. aureus | 8.04 ± 0.25 c | 9.62 ± 0.34 b | 8.41 ± 0.96 c | 9.10 ± 0.19 b | 10.93 ± 0.60 a | 8.02 ± 0.33 c |
E. coli | n | n | n | n | n | n |
K. pneumoniae | n | n | 15.13 ± 0.45 a | n | n | 9.97 ± 0.75 b |
P. aeruginosa | n | n | 9.31 ± 0.39 a | n | n | 10.05 ± 0.39 a |
A. baumannii | n | n | 10.79 ± 0.34 a | n | n | 6.06 ± 4.04 b |
C. albicans | 7.78 ± 0.32 c | 14.30 ± 9.53 b | 20.97 ± 3.09 a | n | n | n |
C. krusei | 6.67 ± 4.45 c | 9.40 ± 0.40 b | 15.20 ± 0.85 a | n | n | n |
Microorganisms | EUEO | NEUEO | PGEO | NPGEO | ||||
---|---|---|---|---|---|---|---|---|
(mg/mL) | ||||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
S. aureus | 1.95 e | 17.53 b | 3.38 d | 30.46 a | 1.13 f | 10.16 c | 11.34 c | >55.00 |
E. coli | 5.84 d | 52.59 a | 11.28 c | >55.00 | 0.42 f | 3.86 e | 3.52 e | 31.64 b |
K. pneumoniae | 1.39 f | 12.49 c | 8.57 d | >55.00 | 5.65 e | 50.81 a | 23.50 b | >55.00 |
A. baumannii | 0.25 g | 2.34 e | 6.31 d | 54.81 a | 1.22 f | 11.01 b | 5.95 c | 53.57 a |
P. aeruginosa | 5.75 e | 51.71 b | 20.08 c | >55.00 | 4.61 f | 41.49 a | 8.58 d | >55.00 |
C. albicans | 8.50 d | >55.00 | 1.22 f | 11.02 b | 5.74 e | 51.66 a | 9.07 c | >55.00 |
C. krusei | 4.58 d | 41.19 a | 0.54 g | 4.84 d | 3.48 e | 31.33 b | 1.26 f | 11.35 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, R.D.; Matos, B.N.; Freire, D.O.; da Silva, F.S.; do Prado, B.A.; Gomes, K.O.; de Araújo, M.O.; Bilac, C.A.; Rodrigues, L.F.S.; da Silva, I.C.R.; et al. Chemical Characterization and Antimicrobial Activity of Essential Oils and Nanoemulsions of Eugenia uniflora and Psidium guajava. Antibiotics 2025, 14, 93. https://doi.org/10.3390/antibiotics14010093
dos Santos RD, Matos BN, Freire DO, da Silva FS, do Prado BA, Gomes KO, de Araújo MO, Bilac CA, Rodrigues LFS, da Silva ICR, et al. Chemical Characterization and Antimicrobial Activity of Essential Oils and Nanoemulsions of Eugenia uniflora and Psidium guajava. Antibiotics. 2025; 14(1):93. https://doi.org/10.3390/antibiotics14010093
Chicago/Turabian Styledos Santos, Rebeca Dias, Breno Noronha Matos, Daniel Oliveira Freire, Franklyn Santos da Silva, Bruno Alcântara do Prado, Karolina Oliveira Gomes, Marta Oliveira de Araújo, Carla Azevedo Bilac, Letícia Fernandes Silva Rodrigues, Izabel Cristina Rodrigues da Silva, and et al. 2025. "Chemical Characterization and Antimicrobial Activity of Essential Oils and Nanoemulsions of Eugenia uniflora and Psidium guajava" Antibiotics 14, no. 1: 93. https://doi.org/10.3390/antibiotics14010093
APA Styledos Santos, R. D., Matos, B. N., Freire, D. O., da Silva, F. S., do Prado, B. A., Gomes, K. O., de Araújo, M. O., Bilac, C. A., Rodrigues, L. F. S., da Silva, I. C. R., de Sá Barreto, L. C. L., Gomes da Camara, C. A., de Moraes, M. M., Gelfuso, G. M., & Orsi, D. C. (2025). Chemical Characterization and Antimicrobial Activity of Essential Oils and Nanoemulsions of Eugenia uniflora and Psidium guajava. Antibiotics, 14(1), 93. https://doi.org/10.3390/antibiotics14010093