Sources and Transmission Routes of Carbapenem-Resistant Pseudomonas aeruginosa: Study Design and Methodology of the SAMPAN Study
Abstract
:1. Introduction
- Determine the carriage rates of CRPA and the risk factors for carriage in healthy individuals and patients at the moment of their admission to the hospital.
- Gain insight into the potentially relevant niches of CRPA in the moist environments of hospitals in different settings (non-outbreak, and high- and low-resource settings), as well as in (surface) water inside and outside of hospitals in three cities with different climates and water management systems.
- Unravel the genetic relatedness of CRPA in terms of clonality, resistance genes, and mobile genetic elements within the different reservoirs and climates in order to confirm possible transmission routes.
2. Materials and Methods
2.1. Study Design and Setting
2.2. Study Population and Recruitment Process
2.3. Data Collection
2.3.1. Human Samples
2.3.2. Questionnaire
2.3.3. Environmental Samples
2.4. Microbiological Methods
2.4.1. Samples from Healthy Individuals and Patients upon Hospital Admission
2.4.2. Hospital Environment Samples
2.4.3. Water Samples
2.4.4. Protocol Alignment
2.4.5. Identification and Antimicrobial Susceptibility Testing
2.4.6. Genotypic Characterization
- (i)
- Bacterial growth conditions: All of the CRPA isolates will be shipped to the Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada, for whole-genome sequencing. Briefly, each isolate will be grown by three-step streaking on Tryptic Soy Agar (BD Difco) for 24 h at 37 °C. Then, a pure colony will be grown in Tryptic Soy Broth (BD Difco) for 24 h at 37 °C. The bacterial density will be adjusted to an OD600nm of ~1.0 prior to the DNA extraction.
- (ii)
- Genomic DNA extraction: An amount of 1 mL of liquid culture will be centrifuged at 14,000× g for 10 min, and then processed with the QIAGEN DNeasy Blood & Tissue Kit using the manufacturer’s recommended protocol for Gram-negative bacteria. The resulting DNA will be quantified with the Qubit dsDNA BR assay (Thermo Fisher).
- (iii)
- Whole-genome sequencing: An amount of 400 ng of genomic DNA will be sequenced on the Oxford Nanopore GridION platform (Oxford Nanopore Technologies, Oxford, UK) using SQK-LSK114 chemistry on R10.4.1 flow cells. In parallel, 500 ng genomic DNA will be sequenced on the Illumina MiSeq (with TruSeq 3 chemistry) (Illumina, San Diego, CA, USA) to obtain short high-quality reads to correct the assembly gaps and nucleotide mismatch errors. Unless specified otherwise, the manufacturers’ recommended protocols will be followed for either the Nanopore or Illumina library preparation kits [33,34]. Hybrid assemblies will be analyzed for the presence of plasmids, resistance genes, etc., using the appropriate pipelines (the details of which will be included in subsequent manuscripts).
2.4.7. Statistical Analysis
2.5. Delphi Method: Development of Globally Applicable Smart Surveillance Strategy for CRPA
3. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance. 2016. Available online: https://amr-review.org/ (accessed on 8 January 2025).
- World Health Organization. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Antimicrobial Resistance Collaborators. The burden of antimicrobial resistance in the Americas in 2019: A cross-country systematic analysis. Lancet Reg. Health Am. 2023, 25, 100561. [Google Scholar] [CrossRef]
- European Antimicrobial Resistance, C. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: A cross-country systematic analysis. Lancet Public Health 2022, 7, e897–e913. [Google Scholar] [CrossRef]
- World Health Organization. WHO Integrated Global Suveillance on ESBL-Producing E. coli Using a “One Health” Approach: Implementation and Opportunities; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Puspandari, N.; Sunarno, S.; Febrianti, T.; Febriyana, D.; Saraswati, R.D.; Rooslamiati, I.; Amalia, N.; Nursofiah, S.; Hartoyo, Y.; Herna, H.; et al. Extended spectrum beta-lactamase-producing Escherichia coli surveillance in the human, food chain, and environment sectors: Tricycle project (pilot) in Indonesia. One Health 2021, 13, 100331. [Google Scholar] [CrossRef]
- Banu, R.A.; Alvarez, J.M.; Reid, A.J.; Enbiale, W.; Labi, A.K.; Ansa, E.D.O.; Annan, E.A.; Akrong, M.O.; Borbor, S.; Adomako, L.A.B.; et al. Extended Spectrum Beta-Lactamase Escherichia coli in River Waters Collected from Two Cities in Ghana, 2018–2020. Trop. Med. Infect. Dis. 2021, 6, 105. [Google Scholar] [CrossRef]
- Kizny Gordon, A.E.; Mathers, A.J.; Cheong, E.Y.L.; Gottlieb, T.; Kotay, S.; Walker, A.S.; Peto, T.E.A.; Crook, D.W.; Stoesser, N. The Hospital Water Environment as a Reservoir for Carbapenem-Resistant Organisms Causing Hospital-Acquired Infections-A Systematic Review of the Literature. Clin. Infect. Dis. 2017, 64, 1435–1444. [Google Scholar] [CrossRef] [PubMed]
- Carling, P.C. Wastewater drains: Epidemiology and interventions in 23 carbapenem-resistant organism outbreaks. Infect. Control Hosp. Epidemiol. 2018, 39, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.M.; Büchler, A.C.; Voor in ’t holt, A.F.; Severin, J.A.; Bootsma, M.C.J.; Gommers, D.; Kretzschmar, M.E.; Vos, M.C. Routes of transmission of VIM-positive Pseudomonas aeruginosa in the adult intensive care unit-analysis of 9 years of surveillance at a university hospital using a mathematical model. Antimicrob. Resist. Infect. Control 2022, 11, 55. [Google Scholar] [CrossRef]
- Quinteira, S.; Peixe, L. Multiniche screening reveals the clinically relevant metallo-beta-lactamase VIM-2 in Pseudomonas aeruginosa far from the hospital setting: An ongoing dispersion process? Appl. Environ. Microbiol. 2006, 72, 3743–3745. [Google Scholar] [CrossRef] [PubMed]
- Devarajan, N.; Köhler, T.; Sivalingam, P.; van Delden, C.; Mulaji, C.K.; Mpiana, P.T.; Ibelings, B.W.; Poté, J. Antibiotic resistant Pseudomonas spp. in the aquatic environment: A prevalence study under tropical and temperate climate conditions. Water Res. 2017, 115, 256–265. [Google Scholar] [CrossRef]
- Esposito, F.; Cardoso, B.; Fontana, H.; Fuga, B.; Cardenas-Arias, A.; Moura, Q.; Fuentes-Castillo, D.; Lincopan, N. Genomic Analysis of Carbapenem-Resistant Pseudomonas aeruginosa Isolated From Urban Rivers Confirms Spread of Clone Sequence Type 277 Carrying Broad Resistome and Virulome Beyond the Hospital. Front. Microbiol. 2021, 12, 701921. [Google Scholar] [CrossRef]
- World Health Organization Food and Agriculture Organization of the United Nations and World Organisation for Animal Health. Technical Brief on Water, Sanitation, Hygiene and Wastewater Management to Prevent Infections and Reduce the Spread of Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Estepa, V.; Rojo-Bezares, B.; Torres, C.; Sáenz, Y. Faecal carriage of Pseudomonas aeruginosa in healthy humans: Antimicrobial susceptibility and global genetic lineages. FEMS Microbiol. Ecol. 2014, 89, 15–19. [Google Scholar] [CrossRef]
- Valenza, G.; Tuschak, C.; Nickel, S.; Krupa, E.; Lehner-Reindl, V.; Höller, C. Prevalence, antimicrobial susceptibility, and genetic diversity of Pseudomonas aeruginosa as intestinal colonizer in the community. Infect. Dis. 2015, 47, 654–657. [Google Scholar] [CrossRef]
- Remold, S.K.; Brown, C.K.; Farris, J.E.; Hundley, T.C.; Perpich, J.A.; Purdy, M.E. Differential habitat use and niche partitioning by Pseudomonas species in human homes. Microb. Ecol. 2011, 62, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Kerckhoffs, A.P.M.; Ben-Amor, K.; Samsom, M.; van der Rest, M.E.; de Vogel, J.; Knol, J.; Akkermans, L.M.A. Molecular analysis of faecal and duodenal samples reveals significantly higher prevalence and numbers of Pseudomonas aeruginosa in irritable bowel syndrome. J. Med. Microbiol. 2011, 60, 236–245. [Google Scholar] [CrossRef]
- Tran, N.B.V.; Truong, Q.M.; Nguyen, L.Q.A.; Nguyen, N.M.H.; Tran, Q.H.; Dinh, T.T.P.; Hua, V.S.; Nguyen, V.D.; Lambert, P.A.; Nguyen, T.T.H. Prevalence and Virulence of Commensal Pseudomonas Aeruginosa Isolates from Healthy Individuals in Southern Vietnam (2018–2020). Biomedicines 2022, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Shahab, S.N.; van Veen, A.; Büchler, A.C.; Saharman, Y.R.; Karuniawati, A.; Vos, M.C.; Voor In ’t Holt, A.F.; Severin, J.A. In search of the best method to detect carriage of carbapenem-resistant Pseudomonas aeruginosa in humans: A systematic review. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 50. [Google Scholar] [CrossRef] [PubMed]
- SAMPAN Consortium. SAMPAN Self-Sampling Instruction Videos; SAMPAN Consortium: Rotterdam, The Netherlands, 2021. [Google Scholar]
- Voor in ’t holt, A.F.; Severin, J.A.; Lesaffre, E.M.; Vos, M.C. A systematic review and meta-analyses show that carbapenem use and medical devices are the leading risk factors for carbapenem-resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2014, 58, 2626–2637. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; United Nations Children’s Fund (UNICEF). Core Questions on Drinking Water and Sanitation for Household Surveys; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Van der Schoor, A.S.; Severin, J.A.; Klaassen, C.H.W.; Gommers, D.; Bruno, M.J.; Hendriks, J.M.; Voor In ’t Holt, A.F.; Vos, M.C. Environmental contamination with highly resistant microorganisms after relocating to a new hospital building with 100% single-occupancy rooms: A prospective observational before-and-after study with a three-year follow-up. Int. J. Hyg. Environ. Health 2023, 248, 114106. [Google Scholar] [CrossRef] [PubMed]
- ISO 16266:2006; Water Quality—Detection and Enumeration of Pseudomonas aeruginosa—Method by Membrane Filtration. International Organization for Standardization: Geneva, Switzerland, 2006.
- Shahab, S.N.; Bexkens, M.L.; Kempenaars, N.; Rijfkogel, A.; Karuniawati, A.; Vos, M.C.; Goessens, W.H.F.; Severin, J.A. Stability of four carbapenem antibiotics in discs used for antimicrobial susceptibility testing. bioRxiv 2024. [Google Scholar] [CrossRef]
- Shahab, S.N.; van Veen, A.; Kempenaars, N.; Rijfkogel, A.; Schmitt, H.; Saharman, Y.R.; Vos, M.C.; Karuniawati, A.; Severin, J.A. Development of a highly-sensitive method to detect the carriage of carbapenem-resistant Pseudomonas aeruginosa in humans. bioRxiv 2024. [Google Scholar] [CrossRef]
- Van der Bij, A.K.; Van der Zwan, D.; Peirano, G.; Severin, J.A.; Pitout, J.D.; Van Westreenen, M.; Goessens, W.H.; Group, M.-P.S.S. Metallo-β-lactamase-producing Pseudomonas aeruginosa in The Netherlands: The nationwide emergence of a single sequence type. Clin. Microbiol. Infect. 2012, 18, E369–E372. [Google Scholar] [CrossRef] [PubMed]
- Pelegrin, A.C.; Saharman, Y.R.; Griffon, A.; Palmieri, M.; Mirande, C.; Karuniawati, A.; Sedono, R.; Aditianingsih, D.; Goessens, W.H.F.; van Belkum, A.; et al. High-Risk International Clones of Carbapenem-Nonsusceptible Pseudomonas aeruginosa Endemic to Indonesian Intensive Care Units: Impact of a Multifaceted Infection Control Intervention Analyzed at the Genomic Level. mBio 2019, 10, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Shahab, S.N.; van Veen, A.; Kemper, M.A.; Rijfkogel, A.; Vos, M.C.; Karuniawati, A.; Severin, J.A.; Schmitt, H. Detection Methods for Carbapenem-Resistant Pseudomonas aeruginosa in Surface Water and Wastewater. Sci. Total Environ. 2025, 961, 178086. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute, Ed.; Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2022. [Google Scholar]
- Illumina. TruSeq® DNA Sample Preparation Guide; Illumina: San Diego, CA, USA, 2012. [Google Scholar]
- Oxford Nanopore Technologies. Ligation sequencing DNA V14 (SQK-LSK114). Available online: https://nanoporetech.com/document/genomic-dna-by-ligation-sqk-lsk114 (accessed on 8 January 2025).
- Doran, G.T. There’s a S.M.A.R.T. way to write managements’s goals and objectives. Manag. Rev. 1981, 70, 11. [Google Scholar]
- Bordier, M.; Uea-Anuwong, T.; Binot, A.; Hendrikx, P.; Goutard, F.L. Characteristics of One Health surveillance systems: A systematic literature review. Prev. Vet. Med. 2020, 181, 104560. [Google Scholar] [CrossRef] [PubMed]
- Fuentefria, D.B.; Ferreira, A.E.; Corção, G. Antibiotic-resistant Pseudomonas aeruginosa from hospital wastewater and superficial water: Are they genetically related? J. Environ. Manag. 2011, 92, 250–255. [Google Scholar] [CrossRef]
- Babu Rajendran, N.; Arieti, F.; Mena-Benítez, C.A.; Galia, L.; Tebon, M.; Alvarez, J.; Gladstone, B.P.; Collineau, L.; De Angelis, G.; Duro, R.; et al. EPI-Net One Health reporting guideline for antimicrobial consumption and resistance surveillance data: A Delphi approach. Lancet Reg. Health Eur. 2023, 26, 100563. [Google Scholar] [CrossRef]
- One Health High-Level Expert, P.; Hayman, D.T.S.; Adisasmito, W.B.; Almuhairi, S.; Behravesh, C.B.; Bilivogui, P.; Bukachi, S.A.; Casas, N.; Becerra, N.C.; Charron, D.F.; et al. Developing One Health surveillance systems. One Health 2023, 17, 100617. [Google Scholar] [CrossRef]
- Paulus, G.K.; Hornstra, L.M.; Alygizakis, N.; Slobodnik, J.; Thomaidis, N.; Medema, G. The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes. Int. J. Hyg. Environ. Health 2019, 222, 635–644. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Erasmus MC University Medical Center, Rotterdam, The Netherlands | Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy | Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia |
---|---|---|---|
No. of hospital beds | 581 | 1526 | 811 |
Type of patient rooms | 100% adult single-occupancy rooms | Multiple-occupancy rooms (mainly two-person rooms) | Multiple-occupancy rooms (mainly more than four-person rooms) |
No. of admissions per year | 30,288 | 60,000 | 13,500 |
Distance to the nearby river 2 | “Nieuwe Maas” river: 655 m | “Tevere” river: 2260 m | “Ciliwung” river: less than 10 m |
Building area | 203,000 m2 | 233,236 m2 | 182,856 m2 |
Surface area | 100,000 m2 | 201,066 m2 | 121,926 m2 |
No. of city inhabitants (millions) | 0.652 | 2.872 | 11.249 |
Population density (people/km2) | 3043 | 2232 | 14,464 |
The Netherlands: Rotterdam Erasmus MC University Medical Center | Italy: Rome Fondazione Policlinico Universitario Agostino Gemelli IRCCS | Indonesia: Jakarta Dr. Cipto Mangunkusumo General Hospital | |
---|---|---|---|
Patients at the moment of their admission to the hospital | |||
Wards for recruiting patients | Gastroenterology Gynecology Internal medicine Neurosurgery Surgery Urology | Gastroenterology Infectious diseases | Cardiology Geriatric medicine Internal medicine Neurology Surgery |
Clinical CRPA isolates | |||
Collection of clinical CRPA isolates | From the entire hospital (except children) | From the entire hospital (except children) | From the entire hospital (including children) |
Healthy individuals | |||
Methods used to recruit healthy individuals | Letter in the mailbox Large-scale requests through social media, local newspapers, and local radio stations | Live events | Home visits by members of the research team |
Returning swabs to the hospital | Via regular mail | Provided during live events | Provided during home visit |
Hospital environment | |||
Sampling sites | Two sink drains and one shower drain per patient room | One sink drain, one shower drain, and one shower head per patient room Sink drain in disabled bathroom Sink drain in kitchen | One sink drain and one shower drain per patient room Sink drains in all nurse stations |
Water | |||
Sampling sites | Inside the hospital:
Outside the hospital:
| Inside the hospital:
Outside the hospital:
| Inside the hospital:
Outside the hospital:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Veen, A.; Shahab, S.N.; Rijfkogel, A.; Voor in ’t holt, A.F.; Klaassen, C.H.W.; Vos, M.C.; Saharman, Y.R.; Karuniawati, A.; Zelli, S.; De Lorenzis, D.; et al. Sources and Transmission Routes of Carbapenem-Resistant Pseudomonas aeruginosa: Study Design and Methodology of the SAMPAN Study. Antibiotics 2025, 14, 94. https://doi.org/10.3390/antibiotics14010094
van Veen A, Shahab SN, Rijfkogel A, Voor in ’t holt AF, Klaassen CHW, Vos MC, Saharman YR, Karuniawati A, Zelli S, De Lorenzis D, et al. Sources and Transmission Routes of Carbapenem-Resistant Pseudomonas aeruginosa: Study Design and Methodology of the SAMPAN Study. Antibiotics. 2025; 14(1):94. https://doi.org/10.3390/antibiotics14010094
Chicago/Turabian Stylevan Veen, Anneloes, Selvi N. Shahab, Amber Rijfkogel, Anne F. Voor in ’t holt, Corné H. W. Klaassen, Margreet C. Vos, Yulia Rosa Saharman, Anis Karuniawati, Silvia Zelli, Desy De Lorenzis, and et al. 2025. "Sources and Transmission Routes of Carbapenem-Resistant Pseudomonas aeruginosa: Study Design and Methodology of the SAMPAN Study" Antibiotics 14, no. 1: 94. https://doi.org/10.3390/antibiotics14010094
APA Stylevan Veen, A., Shahab, S. N., Rijfkogel, A., Voor in ’t holt, A. F., Klaassen, C. H. W., Vos, M. C., Saharman, Y. R., Karuniawati, A., Zelli, S., De Lorenzis, D., Menchinelli, G., De Angelis, G., Sanguinetti, M., Kemper, M., de Jong, A. E. E., Mohammadi, S., Renaud, V., Kukavica-Ibrulj, I., Potvin, M., ... Severin, J. A. (2025). Sources and Transmission Routes of Carbapenem-Resistant Pseudomonas aeruginosa: Study Design and Methodology of the SAMPAN Study. Antibiotics, 14(1), 94. https://doi.org/10.3390/antibiotics14010094