Development of Immunochromatographic Assay for Determination of Tetracycline in Human Serum
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Immunoreactants by ELISA
2.2. Choice of Mode for ICA
2.3. Characterization of the Developed Assay Using Fortified Samples
3. Materials and Methods
3.1. Materials
3.2. Antibody Testing by ELISA
3.3. Estimation of the Selectivity of Antibodies Used
3.4. Preparation of Gold Nanoparticles and their Conjugation with Antibodies
3.5. Preparation of the Immunochromatographic Test Strips
3.6. ICA of TET
3.7. ICA Data Processing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chi, Z.; Liu, R. Phenotypic characterization of the binding of tetracycline to human serum albumin. Biomacromolecules 2011, 12, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Agwuh, K.N.; MacGowan, A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J. Antimicrob. Chemother. 2006, 58, 256–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, J.M.; Walker, C.B.; Murphy, J.C.; Goodson, J.M.; Socransky, S.S. Concentration of tetracycline in human gingival fluid after single doses. J. Clin. Periodontol. 1981, 8, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Græsbøll, K.; Christiansen, L.E.; Toft, N.; Matthews, L.; Nielsen, S.S. Pharmacokinetic-pharmacodynamic model to evaluate intramuscular tetracycline treatment protocols to prevent antimicrobial resistance in pigs. Antimicrob. Agents Chemother. 2015, 59, 1634–1642. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.; Iwersen-Bergmann, S.; Andresen, H.; Schmoldt, A. Therapeutic and toxic blood concentrations of nearly 1,000 drugs and other xenobiotics. Crit. Care 2012, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Zhao, G.; Zhao, H.; Zhai, G.; Chen, J.; Zhao, H. Antibiotics in a general population: Relations with gender, body mass index (BMI) and age and their human health risks. Sci. Total. Environ. 2017, 599–600, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Axisa, B.; Naylor, A.R.; Bell, P.R.F.; Thompson, M.M. Simple and reliable method of doxycycline determination in human plasma and biological tissues. J. Chromatogr. B Biomed. Sci. Appl. 2000, 744, 359–365. [Google Scholar] [CrossRef]
- Ramatla, T.; Ngoma, L.; Adetunji, M.; Mwanza, M. Evaluation of antibiotic residues in raw meat using different analytical methods. Antibiotics 2017, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Gavilán, R.; Nebot, C.; Miranda, J.; Martín-Gómez, Y.; Vázquez-Belda, B.; Franco, C.; Cepeda, A. Analysis of Tetracyclines in Medicated Feed for Food Animal Production by HPLC-MS/MS. Antibiotics 2016, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.R.; Rupp, H.S.; Wu, W.-H. Complexities in tetracycline analysis—Chemistry, matrix extraction, cleanup, and liquid chromatography. J. Chromatogr. A 2005, 1075, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Brum Junior, L.; Pugens, A.M.; Pritsch, M.C.; Mantovani, P.B.; dos Santos, M.B.; Manfio, J.L. Development and validation of a liquid chromatographic/tandem mass spectrometric method for determination of tetracycline in human plasma: Application to bioequivalence study. J AOAC Int. 2008, 91, 731–738. [Google Scholar] [PubMed]
- Goicoechea, H.C.; Olivieri, A.C. enhanced synchronous spectrofluorometric determination of tetracycline in blood serum by chemometric analysis. comparison of partial least-squares and hybrid linear analysis calibrations. Anal. Chem. 1999, 71, 4361–4368. [Google Scholar] [PubMed]
- Eltzov, E.; Guttel, S.; Adarina, L.Y.K.; Sinawang, P.D.; Ionescu, R.E.; Marks, R.S. Lateral Flow Immunoassays—From Paper Strip to Smartphone Technology. Electroanalysis 2015, 27, 2116–2130. [Google Scholar] [CrossRef]
- Mak, W.C.; Beni, V.; Turner, A.P.F. Lateral-flow technology: From visual to instrumental. Trends Anal. Chem. 2016, 79, 297–305. [Google Scholar] [CrossRef]
- Berlina, A.N.; Taranova, N.A.; Zherdev, A.V.; Sankov, M.N.; Andreev, I.V.; Martynov, A.I.; Dzantiev, B.B. Quantum-dot-based immunochromatographic assay for total IgE in human serum. PLoS ONE 2013, 8, e77485. [Google Scholar] [CrossRef] [PubMed]
- Charm TRIO Test. Available online: http://www.charm.com/products/test-and-kits/antibiotic-tests/rosa-lateral-flow/charm-trio-test/ (accessed on 1 November 2018).
- Charm II Tetracyclines. Available online: http://www.charm.com/products/test-and-kits/antibiotic-tests/charm-ii-test-kits/charm-ii-tetracyclines/ (accessed on 1 November 2018).
- MaxSignal® Tetracycline (TET) ELISA Test Kit. Available online: http://www.biooscientific.com/antibiotic-residue-test-kits/MaxSignal-Tetracycline-TET-ELISA-Test-Kit (accessed on 13 November 2018).
- Urusov, A.E.; Petrakova, A.V.; Zherdev, A.V.; Dzantiev, B.B. «Multistage in one touch» design with a universal labeling conjugate for high-sensitive lateral flow immunoassays. Biosens. Bioelectron. 2016, 86, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Urusov, A.E.; Petrakova, A.V.; Gubaydullina, M.K.; Zherdev, A.V.; Eremin, S.A.; Kong, D.; Liu, L.; Xu, C.; Dzantiev, B.B. High-sensitivity immunochromatographic assay for fumonisin B1 based on indirect antibody labeling. Biotechnol. Lett. 2017, 39, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Sotnikov, D.V.; Berlina, A.N.; Ivanov, V.S.; Zherdev, A.V.; Dzantiev, B.B. Adsorption of proteins on gold nanoparticles: One or more layers? Colloids Surf. B Biointerfaces 2019, 173, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Jahanbani, S.; Benvidi, A. Comparison of two fabricated aptasensors based on modified carbon paste/oleic acid and magnetic bar carbon paste/Fe3O4@oleic acid nanoparticle electrodes for tetracycline detection. Biosens. Bioelectron. 2016, 85, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Haidara, H.; Saffaj, T.; Tan, A.; Bentama, A.; Outmoulait, W.; Benchekroun, Y.H.; Ihssane, B. Full validation using β-content, γ-confidence tolerance interval: Application for LC-MS/MS determination of Doxycycline in human plasma. Chemom. Intell. Lab. Syst. 2017, 168, 89–95. [Google Scholar] [CrossRef]
- Selvadurai, M.; Meyyanathan, S.N.; Rajan, S.; Padmanaban, G.; Suresh, B. Determination of doxycycline in human plasma by liquid chromatography-mass spectrometry after liquid-liquid extraction and its application in human pharmacokinetics studies. J. Bioequiv. Availab. 2010, 2, 93–97. [Google Scholar] [CrossRef]
- Chen, Y.; Kong, D.; Liu, L.; Song, S.; Kuang, H.; Xu, C. Development of an ELISA and immunochromatographic assay for tetracycline, oxytetracycline, and chlortetracycline residues in milk and honey based on the class-specific monoclonal Antibody. Food Anal. Methods 2016, 9, 905–914. [Google Scholar] [CrossRef]
- Berlina, A.N.; Vengerov, Y.Y.; Golubev, S.S.; Dzantiev, B.B.; Zherdev, A.V.; Kiseleva, Y.V.; Korolenko, Y.A.; Kudeyarov, Y.A.; Malyuchenko, V.M.; Taranova, N.A. The method of calibration curves for immunochromatographic express tests. Part 2. Immunochromatographic express tests with quantum dots. Meas. Tech. 2013, 55, 1434–1441. [Google Scholar]
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Berlina, A.N.; Zherdev, A.V.; Xu, C.; Eremin, S.A.; Dzantiev, B.B. Development of lateral flow immunoassay for rapid control and quantification of the presence of the colorant Sudan I in spices and seafood. Food Control. 2017, 73, 247–253. [Google Scholar] [CrossRef]
Sample | IC20 1, ng/mL | IC50, ng/mL | IC80 2, ng/mL |
---|---|---|---|
Direct antibody labeling | |||
Undiluted serum | 3.8 ± 1.4 * | 10.9 ± 5.9 | 35.0 ± 14.4 |
Serum diluted 1:1 (v/v) with buffer | 1.7 ± 0.3 * | 5.4 ± 1.4 | 17.8 ± 8.1 |
Indirect antibody labeling | |||
Undiluted serum | 0.7 ± 0.2 | 2.6 ± 0.3 | 10.1 ± 1.2 * |
Serum diluted 1:1 (v/v) with buffer | 0.8 ± 0.1 | 2.1 ± 0.2 | 5.4 ± 1.1 * |
No. | Antibiotic | IC50, ng/mL | CR, % |
---|---|---|---|
1 | Tetracycline | 8.1 | 100 |
2 | Ampicillin | >5000 | <0.1 |
3 | Chloramphenicol | >5000 | <0.1 |
4 | Streptomycin | >5000 | <0.1 |
Fortification Level, ng/mL | Recovery ± Standard Deviation (%) | |
---|---|---|
Undiluted Serum | Serum Diluted 1:1 (v/v) | |
35 | 121.4 ± 7.7 * | 132.0 ± 12.2 * |
12 | 113.8 ± 9.8 | 116.7 ± 10.5 |
4 | 92.0 ± 4.6 * | 108.6 ± 7.9 * |
LOD, Working Range (ng/mL) | Method | Kind of Sample | Specific Conditions | Ref. |
---|---|---|---|---|
332 | LC-MS/MS | Human serum | Extraction of tetracycline | [6] |
200,400−4000 | Spectrofluorometry | Human serum | Addition of Mg2+ for tetracycline detection | [12] |
50–6000 | LC-MS/MS | Human plasma | Protein precipitation for assay of tetracycline and oxytetracycline | [11] |
125,250–5000 | HPLC | Human plasma, tissues | Solid-phase extraction of doxycycline | [7] |
20–1600 | LC-MS | Human plasma | Protein precipitation for assay of doxycycline | [23] |
100,500–5000 | LC-MS | Human plasma | Liquid-liquid extraction of doxycycline | [24] |
11 (visual LOD) | ICA | Human serum | This study |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berlina, A.N.; Bartosh, A.V.; Zherdev, A.V.; Xu, C.; Dzantiev, B.B. Development of Immunochromatographic Assay for Determination of Tetracycline in Human Serum. Antibiotics 2018, 7, 99. https://doi.org/10.3390/antibiotics7040099
Berlina AN, Bartosh AV, Zherdev AV, Xu C, Dzantiev BB. Development of Immunochromatographic Assay for Determination of Tetracycline in Human Serum. Antibiotics. 2018; 7(4):99. https://doi.org/10.3390/antibiotics7040099
Chicago/Turabian StyleBerlina, Anna N., Anastasia V. Bartosh, Anatoly V. Zherdev, Chuanlai Xu, and Boris B. Dzantiev. 2018. "Development of Immunochromatographic Assay for Determination of Tetracycline in Human Serum" Antibiotics 7, no. 4: 99. https://doi.org/10.3390/antibiotics7040099
APA StyleBerlina, A. N., Bartosh, A. V., Zherdev, A. V., Xu, C., & Dzantiev, B. B. (2018). Development of Immunochromatographic Assay for Determination of Tetracycline in Human Serum. Antibiotics, 7(4), 99. https://doi.org/10.3390/antibiotics7040099