Activity of Cefepime-Zidebactam against Multidrug-Resistant (MDR) Gram-Negative Pathogens
Abstract
:1. Introduction
2. Methodology
2.1. Isolates
2.2. Susceptibility Testing
3. Results
3.1. Activity against All Isolates
3.2. Activity against CPOs
3.3. Activity against ESBL-Producing and Plasmid-Mediated AmpC-Producing Enterobacterales
3.4. Activity against MDR Enterobacterales, P. aeruginosa, and A. baumannii Irrespective of Resistance Mechanisms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Tzouvelekis, L.S.; Markogiannakis, A.; Piperaki, E.; Souli, M.; Daikos, G.L. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin. Microbiol. Infect. 2014, 20, 862–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupont, H.; Gaillot, O.; Goetgheluck, A.S.; Plassart, C.; Emond, J.P.; Lecuru, M.; Gaillard, N.; Derdouri, S.; Lemaire, B.; Girard de Courtilles, M.; et al. Molecular Characterization of Carbapenem-Nonsusceptible Enterobacterial Isolates Collected during a Prospective Interregional Survey in France and Susceptibility to the Novel Ceftazidime-Avibactam and Aztreonam-Avibactam Combinations. Antimicrob. Agents Chemother. 2016, 60, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Lapuebla, A.; Abdallah, M.; Olafisoye, O.; Cortes, C.; Urban, C.; Quale, J.; Landman, D. Activity of Meropenem Combined with RPX7009, a Novel beta-Lactamase Inhibitor, against Gram-Negative Clinical Isolates in New York City. Antimicrob. Agents Chemother. 2015, 59, 4856–4860. [Google Scholar] [CrossRef] [PubMed]
- Beidenbach, D.J.; Kazmierczak, K.; Bouchillon, S.K.; Sahm, D.; Bradford, P.A. In Vitro Activity of Aztreonam-Avibactam against a Global Collection of Gram-Negative Pathogens from 2012 and 2013. Antimicrob. Agents Chemother. 2015, 59, 4239–4248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Estabrook, M.; Jacoby, G.A.; Nichols, W.W.; Testa, R.T.; Bush, K. In Vitro Susceptibility of Characterized Beta-Lactamase-Producing Strains Tested with Avibactam Combinations. Antimicrob. Agents Chemother. 2015, 59, 1789–1793. [Google Scholar] [CrossRef]
- Castanheira, M.; Huband, M.D.; Mendes, R.E.; Flamm, R.K. Meropenem-Vaborbactam Tested against Contemporary Gram-Negative Isolates Collected Worldwide during 2014, Including Carbapenem-Resistant, KPC-Producing, Multidrug-Resistant, and Extensively Drug-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [PubMed]
- Vasoo, S.; Cunningham, S.A.; Kohner, P.C.; Simner, P.J.; Mandrekar, J.N.; Lolans, K.; Hayden, M.K.; Patel, R. Comparison of a novel, rapid chromogenic biochemical assay, the Carba NP test, with the modified Hodge test for detection of carbapenemase-producing Gram-negative bacilli. J. Clin. Microbiol. 2013, 51, 3097–4101. [Google Scholar] [CrossRef]
- Singh, R.; Kim, A.; Tanudra, M.A.; Harris, J.J.; McLaughlin, R.E.; Patey, S.; O’Donnell, J.P.; Bradford, P.A.; Eakin, A.E. Pharmacokinetics/pharmacodynamics of a beta-lactam and beta-lactamase inhibitor combination: A novel approach for aztreonam/avibactam. J. Antimicrob. Chemother. 2015, 70, 2618–2626. [Google Scholar] [CrossRef]
- Lapuebla, A.; Abdallah, M.; Olafisoye, O.; Cortes, C.; Urban, C.; Landman, D.; Quale, J. Activity of Imipenem with Relebactam against Gram-Negative Pathogens from New York City. Antimicrob. Agents Chemother. 2015, 59, 5029–5031. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, E.B.; Ledesma, K.R.; Chang, K.T.; Schwartz, M.S.; Motyl, M.R.; Tam, V.H. In vitro activity of MK-7655, a novel beta-lactamase inhibitor, in combination with imipenem against carbapenem-resistant Gram-negative bacteria. Antimicrob. Agents Chemother. 2012, 56, 3753–3757. [Google Scholar] [CrossRef]
- Georgiou, P.-C.; Siopi, M.; Tsala, M.; Lagarde, C.; Kloezen, W.; Donnelly, R.; Meletiadis, J.; Mouton, J. VNRX-5133, a novel broad-spectrum beta-lactamase inhibitor, enhances the activity of cefepime against resistant Enterobacteriaceae and P. aeruginosa isolates in a neutropenic mouse-thigh infection model, abstr. In Proceedings of the 28th European Congress of Clinical Microbiology and Infectious Diseases, Madrid, Spain, 21–24 April, 2018. [Google Scholar]
- Moya, B.; Barcelo, I.M.; Bhagwat, S.; Patel, M.; Bou, G.; Papp-Wallace, K.M.; Bonomo, R.A.; Oliver, A. Potent Beta-Lactam Enhancer Activity of Zidebactam and WCK 5153 against Acinetobacter baumannii, Including Carbapenemase-Producing Clinical Isolates. Antimicrob. Agents Chemother. 2017, 61, e01238-17. [Google Scholar] [CrossRef] [PubMed]
- Moya, B.; Barcelo, I.M.; Bhagwat, S.; Patel, M.; Bou, G.; Papp-Wallace, K.M.; Bonomo, R.A.; Oliver, A. WCK 5107 (Zidebactam) and WCK 5153 Are Novel Inhibitors of PBP2 Showing Potent “Beta-Lactam Enhancer” Activity against Pseudomonas aeruginosa, Including Multidrug-Resistant Metallo-Beta-Lactamase-Producing High-Risk Clones. Antimicrob. Agents Chemother. 2017, 61, e02529-16. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Clancy, C.J.; Hao, B.; Chen, L.; Press, E.G.; Iovine, N.M.; Kreiswirth, B.N.; Nguyen, M.H. Effects of Klebsiella pneumoniae carbapenemase subtypes, extended-spectrum beta-lactamases, and porin mutations on the in vitro activity of ceftazidime-avibactam against carbapenem-resistant K. pneumoniae. Antimicrob. Agents Chemother. 2015, 59, 5793–5797. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Potoski, B.A.; Haidar, G.; Hao, B.; Doi, Y.; Chen, L.; Press, E.G.; Kreiswirth, B.N.; Clancy, C.J.; Nguyen, M.H. Clinical Outcomes, Drug Toxicity, and Emergence of Ceftazidime-Avibactam Resistance Among Patients Treated for Carbapenem-Resistant Enterobacteriaceae Infections. Clin. Infect. Dis. 2016, 63, 1615–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphries, R.M.; Hemarajata, P. Resistance to Ceftazidime-Avibactam in Klebsiella pneumoniae Due to Porin Mutations and the Increased Expression of KPC-3. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.; Hemarajata, P.; Sun, D.; Rubio-Aparicio, D.; Tsivkovski, R.; Yang, S.; Sebra, R.; Kasarskis, A.; Nguyen, H.; Hanson, B.M.; et al. Humphries RM. Resistance to Ceftazidime-Avibactam Is Due to Transposition of KPC in a Porin-Deficient Strain of Klebsiella pneumoniae with Increased Efflux Activity. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [PubMed]
- Aitken, S.L.; Tarrand, J.J.; Deshpande, L.M.; Tverdek, F.P.; Jones, A.L.; Shelburne, S.A.; Prince, R.A.; Bhatti, M.M.; Rolston, K.V.; Jones, R.N.; et al. High Rates of Nonsusceptibility to Ceftazidime-avibactam and Identification of New Delhi Metallo-beta-lactamase Production in Enterobacteriaceae Bloodstream Infections at a Major Cancer Center. Clin. Infect. Dis. 2016, 63, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Nguyen, M.H.; Press, E.G.; Chen, L.; Kreiswirth, B.N.; Clancy, C.J. Emergence of Ceftazidime-Avibactam Resistance and Restoration of Carbapenem Susceptibility in Klebsiella pneumoniae Carbapenemase-Producing K pneumoniae: A Case Report and Review of Literature. Open Forum Infect. Dis. 2017, 4. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, G.A. AmpC beta-lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef]
- Livermore, D.M.; Andrews, J.M.; Hawkey, P.M.; Ho, P.L.; Keness, Y.; Doi, Y.; Paterson, D.; Woodford, N. Are susceptibility tests enough, or should laboratories still seek ESBLs and carbapenemases directly? J. Antimicrob. Chemother. 2012, 67, 1569–1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, K.S. Extended-spectrum-beta-lactamase, AmpC, and Carbapenemase issues. J. Clin. Microbiol. 2010, 48, 1019–1025. [Google Scholar] [CrossRef]
- Winkler, M.L.; Papp-Wallace, K.M.; Taracila, M.A.; Bonomo, R.A. Avibactam and inhibitor-resistant SHV beta-lactamases. Antimicrob. Agents Chemother. 2015, 59, 3700–3709. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, S.D.; Giacobbe, R.A.; Johnstone, M.R.; Alm, R.A. Activity of avibactam against Enterobacter cloacae producing an extended-spectrum class C beta-lactamase enzyme. J. Antimicrob. Chemother. 2014, 69, 2942–2946. [Google Scholar] [CrossRef]
- Thomson, G.; Turner, D.; Brasso, W.; Kircher, S.; Guillet, T.; Thomson, K. High-Stringency Evaluation of the Automated BD Phoenix CPO Detect and Rapidec Carba NP Tests for Detection and Classification of Carbapenemases. J. Clin. Microbiol. 2017, 55, 3437–3443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moland, E.S.; Hanson, N.D.; Black, J.A.; Hossain, A.; Song, W.; Thomson, K.S. Prevalence of newer b-lactamases in gram-negative clinical isolates collected in the United States from 2001 to 2002. J. Clin. Microbiol. 2006, 44, 3318–3324. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement M100-ED28; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Poole, K. Pseudomonas aeruginosa: Resistance to the max. Front. Microbiol. 2011, 2, 65. [Google Scholar] [CrossRef] [PubMed]
- Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M.; Mushtaq, S.; Warner, M.; Vickers, A.; Woodford, N. In vitro activity of cefepime/zidebactam (WCK 5222) against Gram-negative bacteria. J. Antimicrob. Chemother. 2017, 72, 1373–1385. [Google Scholar] [CrossRef] [Green Version]
- Walsh, T.R. Emerging carbapenemases: A global perspective. Int. J. Antimicrob. Agents 2010, 36, S8–S14. [Google Scholar] [CrossRef]
- Walsh, T.R.; Toleman, M.A. The emergence of pan-resistant Gram-negative pathogens merits a rapid global political response. J. Antimicrob. Chemother. 2012, 67, 1–3. [Google Scholar] [CrossRef]
- Savard, P.; Perl, T.M. Combating the spread of carbapenemases in Enterobacteriaceae: A battle that infection prevention should not lose. Clin. Microbiol. Infect. 2014, 20, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Manenzhe, R.I.; Zar, H.J.; Nicol, M.P.; Kaba, M. The spread of carbapenemase-producing bacteria in Africa: A systematic review. J. Antimicrob. Chemother. 2015, 70, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Huttner, A.; Harbarth, S.; Carlet, J.; Cosgrove, S.; Goossens, H.; Holmes, A.; Jarlier, V.; Voss, A.; Pittet, D. Antimicrobial resistance: A global view from the 2013 World Healthcare-Associated Infections Forum. Antimicrob. Resist. Infect. Control 2013, 2, 31. [Google Scholar] [CrossRef] [PubMed]
Organism Group | Type of Resistance Mechanism | Specific Mechanisms |
---|---|---|
Enterobacterales | Class A Carbapenemase | KPC-2, KPC-3, KPC-4, KPC-6, KPC-8, KPC-18, NMC-A, SME-type, GES-5 |
Class B Carbapenemase | IMP-1, IMP-8, VIM, VIM-1, VIM-2, NDM, NDM-1, | |
Class D Carbapenemase | OXA-48, OXA-181, OXA-232 | |
Dual Carbapenemase Classes | KPC-18 + VIM-1, OXA-181 + NDM, NDM-1 + OXA-181+ CTX-M-15 | |
ESBL (+/- AmpC) | CTX-M-1, CTX-M-2, CTX-M-9, CTX-M-12, CTX-M-14, CTX-M-15, CTX-M-18, CTX-M-28, CTX-M-45, TEM-16, SHV-3, SHV-4, SHV-7, SHV-12 | |
Plasmid-mediated AmpC | CMY, DHA, FOX, LAT | |
P. aeruginosa | Class A Carbapenemase | KPC, KPC-5, |
Class B Carbapenemase | IMP-1, IMP-7, IMP-18, VIM-2, VIM-4, VIM-7, GIM-1, SPM-1 | |
Efflux/Porin/AmpC/ESBL | Upregulation for MexAB-OprM, MexEF-OprN, MexXY-OprM, diminished or nonfunctional OprD, AmpC upregulation, OXA-45 ESBL | |
A. baumannii | Class A Carbapenemase | KPC |
Class B Carbapenemase | NDM | |
Class D Carbapenemase | OXA-23, OXA-40, OXA-58 | |
Dual Carbapenemase Classes | OXA-23 + NDM |
Agent | Results Against All 132 Isolates in μg/mL | ||
---|---|---|---|
MIC Range | MIC50 | MIC90 | |
FEP-ZID | 0.03 – ≥128 | 0.5 | 16 |
Cefepime | 0.03 – ≥128 | 16 | ≥128 |
Cefoperazone + sulbactam | ≤0.25 – ≥64 | 16 | ≥64 |
Ceftolozane + tazobactam | ≤0.06 – ≥64 | 32 | ≥64 |
Piperacillin + tazobactam | 0.5 – ≥256 | 128 | ≥256 |
Ceftazidime | ≤0.06 – ≥256 | 128 | ≥256 |
Imipenem | ≤0.06 – ≥256 | 4 | 128 |
Amikacin | ≤0.25 – ≥256 | 16 | ≥256 |
Levofloxacin | 0.03 – ≥32 | 16 | ≥32 |
Polymyxin B | 0.25 – ≥16 | 1 | ≥16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomson, K.S.; AbdelGhani, S.; Snyder, J.W.; Thomson, G.K. Activity of Cefepime-Zidebactam against Multidrug-Resistant (MDR) Gram-Negative Pathogens. Antibiotics 2019, 8, 32. https://doi.org/10.3390/antibiotics8010032
Thomson KS, AbdelGhani S, Snyder JW, Thomson GK. Activity of Cefepime-Zidebactam against Multidrug-Resistant (MDR) Gram-Negative Pathogens. Antibiotics. 2019; 8(1):32. https://doi.org/10.3390/antibiotics8010032
Chicago/Turabian StyleThomson, Kenneth S., Sameh AbdelGhani, James W. Snyder, and Gina K. Thomson. 2019. "Activity of Cefepime-Zidebactam against Multidrug-Resistant (MDR) Gram-Negative Pathogens" Antibiotics 8, no. 1: 32. https://doi.org/10.3390/antibiotics8010032
APA StyleThomson, K. S., AbdelGhani, S., Snyder, J. W., & Thomson, G. K. (2019). Activity of Cefepime-Zidebactam against Multidrug-Resistant (MDR) Gram-Negative Pathogens. Antibiotics, 8(1), 32. https://doi.org/10.3390/antibiotics8010032