Characterizing Antimicrobial Use in the Livestock Sector in Three South East Asian Countries (Indonesia, Thailand, and Vietnam)
Abstract
:1. Introduction
Antimicrobial Resistance as a One Health Challenge
2. Results
2.1. An Overview of Livestock Production Systems
2.1.1. Pig Production
2.1.2. Broiler Production
2.1.3. Aquaculture Production
2.2. Antimicrobial Use Policy and Surveillance
2.3. Antimicrobial Use Behaviors
2.3.1. Pig Production
2.3.2. Broiler Production
2.3.3. Aquaculture Systems
2.4. The Economic Drivers for Antimicrobial Use
2.4.1. Vietnam
2.4.2. Thailand
2.4.3. Indonesia
3. Discussion
3.1. Drivers for Antimicrobial Use in Livestock
3.2. The Development of the Framework on the Antimicrobial Use/AMR Complex in Livestock
4. Materials and Methods
4.1. Framing the Antimicrobial Use/AMR Complex in Livestock in South East Asia
- The small-medium commercial broiler sector in Indonesia,
- The small-medium commercial pig sector in Vietnam,
- The small-medium commercial pig sector and the larger integrated broiler sector in Thailand.
4.2. Case Study Methodology
4.3. Ethical Approval
5. Conclusions and Implications for Policy Development
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gerland, P.; Raftery, A.E.; Ševčíková, H.; Li, N.; Gu, D.; Spoorenberg, T.; Alkema, L.; Fosdick, B.K.; Chunn, J.; Lalic, N.; et al. World population stabilization unlikely this century. Science 2014, 346, 234–237. [Google Scholar] [CrossRef] [PubMed]
- World Bank Population, Total. The World Bank Data. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL (accessed on 29 January 2019).
- Quigley, J.M. Urbanization, Agglomeration, and Economic Development. In Urbanization and Growth; The World Bank Group: Washington, DC, USA, 2009; ISBN 978-0-8213-7573-0. [Google Scholar]
- Regmi, A.; Dyck, J. Effects of Urbanization on Global Food Demand. In Changing Structure of Global Food Consumption and Trade; Economic Research Service: Washington, DC, USA, 2001; ISBN 1428940472. [Google Scholar]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Available online: https://amr-review.org/sites/default/files/160525_Final paper_with cover.pdf (accessed on 8 January 2019).
- WHO. World Health Organisation Global Action Plan on Antimicrobial Resistance; The World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Aidara-Kane, A.; Angulo, F.J.; Conly, J.M.; Minato, Y.; Silbergeld, E.K.; McEwen, S.A.; Collignon, P.J.; Balkhy, H.; Collignon, P.; Conly, J.; et al. World Health Organization (WHO) guidelines on use of medically important antimicrobials in food-producing animals. Antimicrob. Resist. Infect. Control 2018, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- OIE. OIE Terrestrial Animal Health Code. Chapter 6.10. Responsible and Prudent Use of Antimicrobial Agents in Veterinary Medicine; The World Organisation for Animal Health: Paris, France, 2014. [Google Scholar]
- FAO. The Food and Agricultural Organisation Action Plan on Antimicrobial Resistance 2016–2020; The Food and Agriculture Organization: Rome, Italy, 2016. [Google Scholar]
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef]
- Antimicrobials in Agriculture and the Environment: Reducing Unnecessary Use and Waste. Available online: https://amr-review.org/sites/default/files/Antimicrobials in agriculture and the environment—Reducing unnecessary use and waste.pdf. (accessed on 21 January 2019).
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Health 2017, 1, e316–e327. [Google Scholar] [CrossRef]
- Hadjadj, L.; Riziki, T.; Zhu, Y.; Li, J.; Diene, S.M.; Rolain, J.-M. Study of mcr-1 Gene-Mediated Colistin Resistance in Enterobacteriaceae Isolated from Humans and Animals in Different Countries. Genes (Basel) 2017, 8, 394. [Google Scholar] [CrossRef] [PubMed]
- Seiffert, S.N.; Hilty, M.; Perreten, V.; Endimiani, A. Extended-spectrum cephalosporin-resistant gram-negative organisms in livestock: An emerging problem for human health? Drug Resist. Updat. 2013, 16, 22–45. [Google Scholar] [CrossRef] [PubMed]
- Moradigaravand, D.; Jamrozy, D.; Mostowy, R.; Anderson, A.; Nickerson, E.K.; Thaipadungpanit, J.; Wuthiekanun, V.; Limmathurotsakul, D.; Tandhavanant, S.; Wikraiphat, C.; et al. Evolution of the Staphylococcus argenteus ST2250 clone in Northeastern Thailand is linked with the acquisition of livestock-associated staphylococcal genes. MBio 2017, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Graveland, H.; Wagenaar, J.A.; Bergs, K.; Heesterbeek, H.; Heederik, D. Persistence of livestock associated MRSA CC398 in humans is dependent on intensity of animal contact. PLoS ONE 2011, 6, e16830. [Google Scholar] [CrossRef] [PubMed]
- Patchanee, P.; Tadee, P.; Arjkumpa, O.; Love, D.; Chanachai, K.; Alter, T.; Hinjoy, S.; Tharavichitkul, P. Occurrence and characterization of livestock-associated methicillin-resistant Staphylococcus aureus in pig industries of northern Thailand. J. Vet. Sci. 2014, 15, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-G.; Johnson, T.A.; Su, J.-Q.; Qiao, M.; Guo, G.-X.; Stedtfeld, R.D.; Hashsham, S.A.; Tiedje, J.M. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 2013, 110, 3435–3440. [Google Scholar] [CrossRef]
- Lugsomya, K.; Chatsuwan, T.; Niyomtham, W.; Tummaruk, P.; Hampson, D.J.; Prapasarakul, N. Routine Prophylactic Antimicrobial Use Is Associated with Increased Phenotypic and Genotypic Resistance in Commensal Escherichia coli Isolates Recovered from Healthy Fattening Pigs on Farms in Thailand. Microb. Drug Resist. 2017, 24, 213–233. [Google Scholar] [CrossRef] [PubMed]
- Jans, C.; Merz, A.; Johler, S.; Younan, M.; Tanner, S.A.; Kaindi, D.W.M.; Wangoh, J.; Bonfoh, B.; Meile, L.; Tasara, T. East and West African milk products are reservoirs for human and livestock-associated Staphylococcus aureus. Food Microbiol. 2017, 65, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Llor, C.; Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef]
- Aarestrup, F.M. Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic Clin. Pharmacol. Toxicol. 2005, 96, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.; Farrar, J. Policy: An intergovernmental panel on antimicrobial resistance. Nature 2014, 509, 555–557. [Google Scholar] [CrossRef]
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Antibiotic resistance is the quintessential One Health issue. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 377–380. [Google Scholar] [CrossRef]
- Rushton, J. Anti-microbial use in animals: How to assess the trade-offs. Zoonoses Public Health 2015, 62, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Rushton, J.; Bisdorff, B.; Call, D.; Carrique-Mas, J.; Erlacher-Vindel, E.; Gochez, D.; Lees, P.; McMahon, B.; Matthews, L.; Pelligand, L.; et al. An Analysis of the Animal/Human Interface with A Focus on Low-And Middle-Income Countries: Fleming Fund Project to Tackle Global AMR; The World Organisation for Animal Health: Paris, France, 2016. [Google Scholar]
- Nhung, N.T.; Cuong, N.V.; Thwaites, G.; Carrique-Mas, J. Antimicrobial Usage and Antimicrobial Resistance in Animal Production in Southeast Asia: A Review. Antibiotics 2016, 5, 37. [Google Scholar] [CrossRef] [PubMed]
- World Bank. World Bank Country and Lending Groups–Country Classification; The World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Gilbert, M.; Conchedda, G.; Van Boeckel, T.P.; Cinardi, G.; Linard, C.; Nicolas, G.; Thanapongtharm, W.; D’Aietti, L.; Wint, W.; Newman, S.H.; et al. Income disparities and the global distribution of intensively farmed chicken and pigs. PLoS ONE 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- McGlone, J.J. The future of pork production in the world: Towards sustainable, welfare-positive systems. Animals 2013, 3, 401–415. [Google Scholar] [CrossRef] [PubMed]
- Pig Production and Marketing in Vietnam. Available online: https://www.angrin.tlri.gov.tw/English/2014Swine/p145-152.pdf. (accessed on 9 January 2019).
- Pig Production in Indonesia. 2014. Available online: https://www.angrin.tlri.gov.tw/English/2014Swine/p175-186.pdf. (accessed on 9 January 2019).
- Thanapongtharm, W.; Linard, C.; Chinson, P.; Kasemsuwan, S.; Visser, M.; Gaughan, A.E.; Epprech, M.; Robinson, T.P.; Gilbert, M. Spatial analysis and characteristics of pig farming in Thailand. BMC Vet. Res. 2016, 12, 218. [Google Scholar] [CrossRef] [PubMed]
- Dang, P.K.; Saegerman, C.; Douny, C.; Ton, V.D.; Bo, H.X.; Binh, D.V.; Ngan, H.P.; Scippo, M.L. First survey on the use of antibiotics in pig and poultry production in the Red River Delta region of Vietnam. Food Public Health 2013, 3, 247–256. [Google Scholar]
- Van Boeckel, T.P.; Thanapongtharm, W.; Robinson, T.; D’Aietti, L.; Gilbert, M. Predicting the distribution of intensive poultry farming in Thailand. Agric. Ecosyst. Environ. 2012, 149, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Hidayat, C.; Asmarasari, S.A. Native Chicken Production in Indonesia: A Review. J. Peternak. Indones. 2015, 17, 1–11. [Google Scholar] [CrossRef]
- Ipsos Business Consulting. Thailand’s Poultry Industry; Ipsos Business Consulting: Bangkok, Thailand, 2013. [Google Scholar]
- Wright, T.; Darmawan, B. Indonesia Voluntary Poultry Report; GAIN Report: 1701; United States Department of Agriculture Foreign Agricultural Service: Washington, DC, USA, 2017.
- Wahyono, N.D.; Utami, M.M.D. A Review of the Poultry Meat Production Industry for Food Safety in Indonesia. J. Phys. Conf. Ser. 2018, 953, 12125. [Google Scholar] [CrossRef]
- USAID. Indonesia’s Poultry Value Chain. Costs, Margins, Prices, and Other Issues; United States Agency for International Development: Washington, DC, USA, 2013.
- Preechajarn, S. Poultry and Products Annual Thailand; GAIN Report Number: TH6098; United States Department of Agriculture Foreign Agricultural Service: Washington, DC, USA, 2016.
- Burgos, S.; Hong Hanh, P.T.; Roland-Holst, D.; Burgos, S.A. Characterization of poultry production systems in Vietnam. Int. J. Poult. Sci. 2007, 6, 709–712. [Google Scholar] [CrossRef]
- Orissa International Pte. Ltd. Poultry Sector in South East Asia Iowa Economic Development Authority; Netflix: Los Gatos, CA, USA, 2017. [Google Scholar]
- Souris, M.; Selenic, D.; Khaklang, S.; Ninphanomchai, S.; Minet, G.; Gonzalez, J.P.; Kittayapong, P. Poultry farm vulnerability and risk of avian influenza re-emergence in Thailand. Int. J. Environ. Res. Public Health 2014, 11, 934–951. [Google Scholar] [CrossRef] [PubMed]
- Merino, G.; Barange, M.; Blanchard, J.L.; Harle, J.; Holmes, R.; Allen, I.; Allison, E.H.; Badjeck, M.C.; Dulvy, N.K.; Holt, J.; et al. Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Glob. Environ. Chang. 2012, 22, 795–806. [Google Scholar] [CrossRef]
- Report on the Shrimp Sector Asian Shrimp Trade and Sustainability. Available online: http://cmsdevelopment.sustainablefish.org.s3.amazonaws.com/2016/04/07/Asian%20shrimp_long%20form-05098e04.pdf (accessed on 14 January 2019).
- Halim, D.; Juanri, J. Indonesia’s Aquaculture Industry: Key Sectors for Future Growth; IPsos: Paris, France, 2016. [Google Scholar]
- Belton, B.; Little, D. The Development of Aquaculture in Central Thailand: Domestic Demand versus Export-led Production. J. Agrar. Chang. 2008, 8, 123–143. [Google Scholar] [CrossRef]
- Pongsri, C.; Sukumasavin, N. National Aquaculture Sector Overview. Thailand. National Aquaculture Sector Overview Fact Sheets; The Food and Agriculture Organization: Rome, Italy, 2005. [Google Scholar]
- Marschke, M.; Betcherman, G. Vietnam’s seafood boom: Economic growth with impoverishment? Environ. Dev. Sustain. 2016, 18, 1129–1150. [Google Scholar] [CrossRef]
- Goutard, F.L.; Bordier, M.; Calba, C.; Erlacher-Vindel, E.; Góchez, D.; de Balogh, K.; Benigno, C.; Kalpravidh, W.; Roger, F.; Vong, S. Antimicrobial policy interventions in food animal production in South East Asia. BMJ 2017, 358, j3544. [Google Scholar] [CrossRef]
- Anon FDA to Limit Use of Colistin to Curb Drug Resistance. National Thailand Portal. Available online: http://www.nationmultimedia.com/news/national/30305408 (accessed on 19 January 2019).
- Thamlikitkul, V.; Rattanaumpawan, P.; Boonyasiri, A.; Pumsuwan, V.; Judaeng, T.; Tiengrim, S.; Paveenkittiporn, W.; Rojanasthien, S.; Jaroenpoj, S.; Issaracharnvanich, S. Thailand Antimicrobial Resistance Containment and Prevention Program. J. Glob. Antimicrob. Resist. 2015, 3, 290–294. [Google Scholar] [CrossRef] [PubMed]
- WHO. Critically Important Antimicrobials for Human Medicine–5th Revision 2017; The World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- MOH. National Action Plan on Antimicrobial Resistance Indonesia 2017–2019; Molina Healthcare: Long Beach, CA, USA, 2017. [Google Scholar]
- MARD. National Action Plan for Management of Antibiotic Use ad Control of Antibiotic Resistance in Livestock Production and Aquaculture. Issued in Accordance with Decision No. 2625/QĐ-BNN-TY Dated 21/6/2017 by the Vice Minister of Ministry of MARD; The Ministry of Agriculture and Rural Development: Hanoi, Vietnam, 2017.
- Sommanustweechai, A.; Chanvatik, S.; Sermsinsiri, V.; Sivilaikul, S.; Patcharanarumol, W.; Yeung, S.; Tangcharoensathien, V. Antibiotic distribution channels in Thailand: Results of key-informant interviews, reviews of drug regulations and database searches. Bull. World Health Organ. 2018, 92, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Sommanustweechai, A.; Tangcharoensathien, V.; Malathum, K.; Sumpradit, N.; Kiatying-Angsulee, N.; Janejai, N.; Jaroenpoj, S. Implementing national strategies on antimicrobial resistance in Thailand: Potential challenges and solutions. Public Health 2018, 157, 142–146. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Okihashi, M.; Harada, K.; Konishi, Y.; Uchida, K.; Hoang Ngoc Do, M.; Thi Bui, L.; Nguyen, T.D.; Phan, H.B.; Dang Thien Bui, H.; et al. Detection of antibiotics in chicken eggs obtained from supermarkets in Ho Chi Minh City, Vietnam. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2017, 52, 430–433. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Okihashi, M.; Harada, K.; Konishi, Y.; Uchida, K.; Do, M.H.N.; Bui, H.D.T.; Nguyen, T.D.; Nguyen, P.D.; Van Chau, V.; et al. Antibiotic residue monitoring results for pork, chicken, and beef samples in Vietnam in 2012–2013. J. Agric. Food Chem. 2015, 63, 5141–5145. [Google Scholar] [CrossRef] [PubMed]
- OIE. OIE Annual Report on the Use of Antimicrobial Agents in Animals Better Understanding of the Global Situation; The World Organisation for Animal Health: Paris, France, 2016. [Google Scholar]
- AHPA. Use of Antimicrobial Agents in Veterinary Medicine in Thailand; Animal Health Products Association: Bangkok, Thailand, 2017. [Google Scholar]
- Yusuf, H.; Rukkwamsuk, T.; Idris, S.; Paul, M. Antimicrobial usage surveillance of cattle in Indonesia to address Antimicrobial resistance. In Proceedings of the Advances in Social Science, Education and Humanities Research (ASSEHR), Surabaya, East Java, Indonesia, 1–3 August 2017. [Google Scholar]
- CIVAS; FAO. Document and Characterize Antimicrobial Use in Livestock Use in Livestock Sector; The Food and Agriculture Organization: Rome, Italy, 2017. [Google Scholar]
- Love, D.C.; Tharavichitkul, P.; Arjkumpa, O.; Imanishi, M.; Hinjoy, S.; Nelson, K.; Nachman, K.E. Antimicrobial use and multidrug-resistant Salmonella spp., Escherichia coli, and Enterococcus faecalis in swine from Northern Thailand. Thai J. Vet. Med. 2015, 45, 43–53. [Google Scholar]
- Nhung, N.T.; Van, N.T.B.; Van Cuong, N.; Duong, T.T.Q.; Nhat, T.T.; Hang, T.T.T.; Nhi, N.T.H.; Kiet, B.T.; Hien, V.B.; Ngoc, P.T.; et al. Antimicrobial residues and resistance against critically important antimicrobials in non-typhoidal Salmonella from meat sold at wet markets and supermarkets in Vietnam. Int. J. Food Microbiol. 2018, 2, 301–309. [Google Scholar] [CrossRef]
- Zellweger, R.M.; Carrique-Mas, J.; Limmathurotsakul, D.; Day, N.P.J.; Thwaites, G.E.; Baker, S.; Ashley, E.; de Balogh, K.; Baird, K.; Basnyat, B.; et al. A current perspective on antimicrobial resistance in Southeast Asia. J. Antimicrob. Chemother. 2017, 72, 2963–2972. [Google Scholar] [CrossRef]
- Rico, A.; Phu, T.M.; Satapornvanit, K.; Min, J.; Shahabuddin, A.M.; Henriksson, P.J.G.; Murray, F.J.; Little, D.C.; Dalsgaard, A.; Van den Brink, P.J. Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture 2013, 412–413, 231–243. [Google Scholar] [CrossRef]
- Thi Kim Chi, T.; Clausen, J.; Van, P.; Tersbøl, B.; Dalsgaard, A. Use practices of antimicrobials and other compounds by shrimp and fish farmers in Northern Vietnam. Aquac. Rep. 2017, 7, 40–47. [Google Scholar] [CrossRef]
- Phu, T.M.; Phuong, N.T.; Scippo, M.-L.; Dalsgaard, A. Quality of Antimicrobial Products Used in Striped Catfish (Pangasianodon hypophthalmus) Aquaculture in Vietnam. PLoS ONE 2015, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Holmström, K.; Gräslund, S.; Wahlström, A.; Poungshompoo, S.; Bengtsson, B.-E.; Kautsky, N. Antibiotic use in shrimp farming and implications for environmental impacts and human health. Int. J. Food Sci. Technol. 2003, 38, 255–266. [Google Scholar] [CrossRef]
- Changkaew, K.; Utrarachkiju, F.; Siripanichgon, K.; Nakajima, C.; Suthienkul, O.O.; Suzuki, Y. Characterization of Antibiotic Resistance in Escherichia coli Isolated from Shrimps and Their Environment. J. Food Prot. 2014, 77, 1394–1401. [Google Scholar] [CrossRef] [PubMed]
- Okocha, R.C.; Olatoye, I.O.; Adedeji, O.B. Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Rev. 2018, 39. [Google Scholar] [CrossRef] [PubMed]
- Kitiyodom, S.; Khemtong, S.; Wongtavatchai, J.; Chuanchuen, R. Characterization of antibiotic resistance in Vibrio spp. isolated from farmed marine shrimps (Penaeus monodon). FEMS Microbiol. Ecol. 2010, 72, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Sarter, S.; Kha Nguyen, H.N.; Hung, L.T.; Lazard, J.; Montet, D. Antibiotic resistance in Gram-negative bacteria isolated from farmed catfish. Food Control 2007, 18, 1391–1396. [Google Scholar] [CrossRef]
- Rico, A.; Van den Brink, P.J. Probabilistic risk assessment of veterinary medicines applied to four major aquaculture species produced in Asia. Sci. Total Environ. 2014, 468–469, 630–641. [Google Scholar] [CrossRef] [PubMed]
- Little, D.; Edwards, P. Integrated Livestock-Fish Farming Systems; The Food and Agriculture Organization: Rome, Italy, 2003. [Google Scholar]
- Koeypudsa, W.; Yakupitiyage, A.; Tangtrongpiros, J. The fate of chlortetracycline residues in a simulated chicken-fish integrated farming systems. Aquac. Res. 2005, 36, 570–577. [Google Scholar] [CrossRef]
- Carrique-Mas, J.J.; Rushton, J. Integrated interventions to tackle antimicrobial usage in animal production systems: The ViParc project in Vietnam. Front. Microbiol. 2017, 8, 1062. [Google Scholar] [CrossRef] [PubMed]
- Pan, C. Pork Quarterly Q4 2017. Steady Growth in Production Brings Trade into Sharper Focus; Rabobank: Utrecht, The Netherlands, 2017. [Google Scholar]
- McCracken, C. Pork Quarterly Q2 2018. Uncertainties Threaten Optimism in Global Pork Trade; Rabobank: Utrecht, The Netherlands, 2018. [Google Scholar]
- Economics of Closed Versus Open Broiler Houses in West Java. Available online: https://www.difslive.com/wp-content/uploads/2017/06/Economics-of-closed-broiler-house-versus-open-house-in-West-java-june2017-def.pdf (accessed on 29 January 2019).
- Sherrad, J.; Cordingley, B. Global Animal Protein Outlook 2018; United States Department of Agriculture: Washington, DC, USA, 2017.
- Schar, D.; Sommanustweechai, A.; Laxminarayan, R.; Tangcharoensathien, V. Surveillance of antimicrobial consumption in animal production sectors of low- and middle-income countries: Optimizing use and addressing antimicrobial resistance. PLoS Med. 2018, 15, e1002521. [Google Scholar] [CrossRef] [PubMed]
- Van Cuong, N.; Nhung, N.T.; Nghia, N.H.; Mai Hoa, N.T.; Trung, N.V.; Thwaites, G.; Carrique-Mas, J. Antimicrobial Consumption in Medicated Feeds in Vietnamese Pig and Poultry Production. Ecohealth 2016, 13, 490–498. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Nguyen, H.M.; Nguyen, C.V.; Nguyen, T.V.; Thwaites, G.; Ngo, H.T.; Baker, S.; Carrique-Mas, J.; Nguyen, M.T.; Thai, H.Q.; et al. Use of colistin and other critical antimicrobials on pig and chicken farms in southern Vietnam and its association with resistance in commensal Escherichia coli bacteria. Appl. Environ. Microbiol. 2016, 82, 3727–3735. [Google Scholar] [CrossRef]
- Mills, G. Ban must be enforced on preventive antibiotics. Vet. Rec. 2018, 183, 612 LP-612. [Google Scholar]
- Karavolias, J.; Salois, M.J.; Baker, K.T.; Watkins, K. Raised without antibiotics: Impact on animal welfare and implications for food policy. Transl. Anim. Sci. 2018, 2, 337–348. [Google Scholar] [CrossRef]
- Macan-Markar, M. Shakeup in Thai poultry industry as human health fears grow. Nikkei Asian Rev. 2017. [Google Scholar]
- Maron, D.F.; Smith, T.J.S.; Nachman, K.E. Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Global. Health 2013, 16, 48. [Google Scholar] [CrossRef] [PubMed]
- Ben Lagha, A.; Haas, B.; Gottschalk, M.; Grenier, D. Antimicrobial potential of bacteriocins in poultry and swine production. Vet. Res. 2017, 48. [Google Scholar] [CrossRef] [PubMed]
- Buller, H.; Hinchcliffe, S.; Hockenhull, J.; Barrett, D.; Reyher, K.; Butterworth, A.; Heath, C. Systematic Review and Social Research to Further Understanding of Current Practice in the Context of Using Antimicrobials in Livestock Farming and to Inform Appropriate Interventions to Reduce Antimicrobial Resistance within the Livestock Sector; Department for Environment Food and Rural Affairs: London, UK, 2015. [Google Scholar]
- Coyne, L.A.; Latham, S.M.; Williams, N.J.; Dawson, S.; Donald, I.J.; Pearson, R.B.; Smith, R.F.; Pinchbeck, G.L. Understanding the culture of antimicrobial prescribing in agriculture: A qualitative study of UK pig veterinary surgeons. J. Antimicrob. Chemother. 2016, 71, 3300–3312. [Google Scholar] [CrossRef] [PubMed]
- AgersoØ, Y.; Aarestrup, F.M. Voluntary ban on cephalosporin use in Danish pig production has effectively reduced extended-spectrum cephalosporinase-producing Escherichia coli in slaughter pigs. J. Antimicrob. Chemother. 2013, 68, 569–572. [Google Scholar] [CrossRef] [PubMed]
- De Briyne, N.; Atkinson, J.; Borriello, S.P.; Pokludov, L. Antibiotics used most commonly to treat animals in Europe. Vet. Rec. 2014, 175, 325. [Google Scholar] [CrossRef]
- BPC. British Poultry Council Antibiotic Stewardship Report; Botswana Power Corporation: Palapye, Botswana, 2017. [Google Scholar]
- Merrett, G.L.B.; Bloom, G.; Wilkinson, A.; MacGregor, H. Towards the just and sustainable use of antibiotics. J. Pharm. Policy Pract. 2016, 9, 31. [Google Scholar] [CrossRef]
- Bebell, L.M.; Muiru, A.N. Antibiotic use and emerging resistance: How can resource-limited countries turn the tide? Glob. Heart 2014, 9, 347–358. [Google Scholar] [CrossRef]
- Bavestrello, L.; Cabello, A.; Casanova, D. Impact of regulatory measures in the trends of community consumption of antibiotics in Chile. Rev. Med. Chile 2002, 130, 1265–1277. [Google Scholar] [CrossRef]
- Mao, W.; Vu, H.; Xie, Z.; Chen, W.; Tang, S. Systematic review on irrational use of medicines in China and Vietnam. PLoS ONE 2015, 10, e0117710. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.; Goodman, C. Performance of retail pharmacies in low- and middle-income Asian settings: A systematic review. Health Policy Plan. 2016, 31, 940–953. [Google Scholar] [CrossRef] [PubMed]
- Nga, D.T.T.; Chuc, N.T.K.; Hoa, N.P.; Hoa, N.Q.; Nguyen, N.T.T.; Loan, H.T.; Toan, T.K.; Phuc, H.D.; Horby, P.; Van Yen, N.; et al. Antibiotic sales in rural and urban pharmacies in northern Vietnam: An observational study. BMC Pharmacol. Toxicol. 2014, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- WHO. The Selection and Use of Essential Medicines Report of the WHO Expert Committee on Selection and Use of Essential Medicines, 2017 (including the 20th WHO Model List of Essential Medicines and the 6th WHO Model List of Essential Medicines for Children) (March 2017); The World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- OIE. Responsible and Prudent Use of Antimicrobial Agents in Veterinary Medicine; The World Organisation for Animal Health: Paris, France, 2016. [Google Scholar]
- Redding, L.E.; Cubas-Delgado, F.; Sammel, M.D.; Smith, G.; Galligan, D.T.; Levy, M.Z.; Hennessy, S. Comparison of two methods for collecting antibiotic use data on small dairy farms. Prev. Vet. Med. 2014, 114, 213–222. [Google Scholar] [CrossRef]
- Bowling, A. Mode of questionnaire administration can have serious effects on data quality. J. Public Health 2005, 27, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Foddy, W.; Mantle, J. Constructing Questions for Interviews and Questionnaires—Theory and practice in social research. Physiotherapy 1994, 80, 382. [Google Scholar] [CrossRef]
- O’Cathain, A.; Thomas, K.J. Any other comments? Open questions on questionnaires—A bane or a bonus to research? BMC Med. Res. Methodol. 2004, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- OECD. OECD Data: Meat Consumption; The Organisation for Economic Co-operation and Development: Paris, France, 2018. [Google Scholar]
- Coyne, L.A.; Latham, S.M.; Dawson, S.; Donald, I.J.; Pearson, R.B.; Smith, R.F.; Williams, N.J.; Pinchbeck, G.L. Antimicrobial use practices, attitudes and responsibilities in UK farm animal veterinary surgeons. Prev. Vet. Med. 2018, 161, 115–126. [Google Scholar] [CrossRef] [PubMed]
- UK 5 Year Antimicrobial Resistance (AMR) Strategy. Action Plan for the Responsible Use of Medicines in Agriculture Alliance (RUMA) and Its Individual Members. Available online: https://www.ruma.org.uk/wp-content/uploads/2015/08/2015-04RUMA-Action-Plan-for-implementing-the-UK-5-Year-AMR-stra.pdf (accessed on 11 January 2019).
- Trongjit, S.; Angkititrakul, S.; Tuttle, R.E.; Poungseree, J.; Padungtod, P.; Chuanchuen, R. Prevalence and antimicrobial resistance in Salmonella enterica isolated from broiler chickens, pigs and meat products in Thailand–Cambodia border provinces. Microbiol. Immunol. 2017, 61, 23–33. [Google Scholar] [CrossRef]
- World Bank. Drug-Resistant Infections: A Threat to Our Economic Future; World Bank Report: Washington, DC, USA, 2016. [Google Scholar]
- Nurtini, S.; Muzayyanah, F.; Mujtahidah, A.; Haryadi, T.; Hakim, A. Performance of Broiler Farmer in Partnerships System at Surakarta, Indonesia. J. Adv. Agric. Technol. 2017, 4, 192–195. [Google Scholar] [CrossRef]
Indonesia | Thailand | Vietnam | |
---|---|---|---|
Population (million) | 264 | 69 | 93.6 |
GDP in (billions US$) | 932 | 455 | 220.4 |
GDP per capita (US$) | 3530 | 6594 | 2355 |
% of the population residing in urban areas | 55% | 50% | 34% |
% of population employed in the agricultural sector | 31% | 49% | 35% |
Average meat consumption per capita | 2.3 kg (pork) | 10.4 kg (pork) | 30.4 kg (pork) |
7 kg (poultry) | 14.5 kg (poultry) | 13 kg (poultry) | |
1.8 kg (beef and veal) | 1.7 kg (beef and veal) | 9.9 kg (beef and veal) | |
0.4 kg (sheep) | 0 kg (sheep) | 0.1 kg (sheep) | |
Average fish consumption per capita | 47.1 kg | 33.7 kg * | 27 kg |
Indonesia | Thailand | Vietnam | |
---|---|---|---|
National pig herd | 8 million | 9.5 million | 27 million |
Number of pigs per person | 0.03 | 0.14 | 0.29 |
Average farm size | Small herd sizes—around 80% of the national herd are housed on farms with <20 sows | Larger herd size—small production is identified as <500 breeding sows | Much smaller herd size—majority of sow herds have <100 sows |
Structure of industry | Predominantly smallholder production | Predominantly large integrated production | Small and medium commercial production More intensive and larger scale production in the south when compared with the north |
Pig housing characteristics | Mainly indoor open housing systems | Mainly intensive indoor closed housing systems | Mainly indoor but open housing systems |
Market | Domestic consumption except for export to Singapore from one integrated producer | Predominantly domestic consumption and some export of live pigs and chilled/frozen pork to neighboring Asian countries | Pig meat is for domestic consumption |
Economic importance and stability | Small domestic market due to the large Islamic population (only 13% of population consume pork) | Thailand has experienced fluctuating pig prices due to an oversupply in 2017 and 2018, DLD stabilized prices at a higher rate in summer 2018 | Vietnam has experienced falling pig prices since early 2017, which has resulted in significant contraction in the industry (30% of smaller farms have gone out of business) |
References | [33] | [34] | [32,35] |
Number of Farms in Sample | Thailand | Vietnam | |
---|---|---|---|
11 | 40 | ||
Median number of pigs | Sows and boars | 635 | 5.5 |
Piglets (pre-weaning) | 1550 | 20 | |
Feeding pigs (post-weaning) | 3100 | 40 | |
Type of production system | Farrow to finish farms | 85% | 55% |
Breeding only farms | 5% | 18% | |
Fattening only farms | 10% | 27% | |
Median percentage of annual income from pigs | 50% | 75% |
Indonesia | Thailand | Vietnam | |
---|---|---|---|
National broiler flock | 3.5 billion | 1.1 billion | 323 million |
Number of broilers per person | 13.26 | 15.94 | 3.45 |
Average farm size | Smaller flock sizes with most being 5000–20,000 | Large scale production with an average of 70,000 birds in a flock | Average flock sizes <2000 birds |
Structure of industry | Commercial integrated production companies producing broilers on small contract farms | Commercial integrated production on large farms Mixture of company farms and some on contract farms | Smallholder and small commercial systems |
Broiler housing characteristics | Mainly open housing systems | Mainly closed and automatically ventilated housing | Mainly open housing systems |
Market | Broiler meat is for domestic consumption | Thailand has an important export market for broiler meat | Limited export market from larger integrated production |
Economic importance and stability | Economic growth in the industry | Economic growth in broiler production in Thailand after recovery from Highly Pathogenic Avian Influenza (HPAI) outbreak | Some economic instability historically to the effects of HPAI. However, there is now growth in the sector. |
References | [39,40,41] | [38,42] | [43,44] |
Indonesia | Thailand | Vietnam | |
---|---|---|---|
Total Production in Metric Tons of Live Weight | 547,934 in 2012 | 376,339 in 2013 | 806,960 in 2013 |
Export Volume in Metric Tons of Live Weight | ~270,000 in 2012 | ~330,000 in 2013 | 600,000 in 2013 |
Dominant aquaculture sectors | Brackish water—Shrimp and milkfish. Freshwater—Tilapia, catfish, carp, and grouper. | Brackish water—Whiteleg shrimp, green mussel, blood cockle, and oyster. Freshwater—Nile tilapia and catfish. | Brackish water—Whiteleg shrimp and tiger shrimp Freshwater—Pangasuis catfish |
Structure of the industry | 80% of the industry is small-scale extensive and semi-intensive cage, net, and pond systems. In addition, there is an emerging intensive cage and net systems sector. | Improved extensive, semi-intensive, and intensive net and cage systems. Intensive systems are dominant for shrimp production for export. | Improved extensive, semi-intensive, and intensive net and cage systems |
Market | 38% of aquatic production is produced for export and there is a large and rapidly growing export market. | 88% of aquaculture products are for the export market. | Shrimp farming accounted for 94% of Vietnam’s export market is 2014. Pangasuis catfish contribute toward both the domestic and export market. |
Economic importance and stability | Indonesia has made large-scale investments in intensive white leg shrimp farming and exports over half of shrimp produced. The export value > $1 billion. | EMS had a devastating effect on the shrimp sector in Thailand from 2011 through 2014 with high mortality rates. Economic recovery is ongoing. | Aquaculture is very important to Vietnam’s economy and contributed 10% toward the country’s GDP. However, Vietnam has suffered significant losses due to EMS. |
References | [47,48] | [47,49,50] | [47,51] |
Thailand | Vietnam | |||
---|---|---|---|---|
Volunteered responses | No. | Percentage | No. | Percentage |
Improves farm profitability | 7 | 41.2% | 24 | 32.0% |
Reduces mortality | 5 | 29.4% | 21 | 28.0% |
Increases pig herd productivity | 2 | 11.8% | 15 | 20.0% |
Antimicrobials are not expensive | 1 | 5.9% | 12 | 16.0% |
Reduces culling rates | 1 | 5.9% | 0 | 0.0% |
Reduces morbidity | 1 | 5.9% | 3 | 4.0% |
% of Antimicrobial Products Reported to Be Used Routinely on Farms | Thailand | Vietnam | |
---|---|---|---|
Route of administration | Parenteral | 56% | 80% |
In-feed | 40% | 19% | |
Indication for use | Treatment | 60% | 84% |
Prevention | 29% | 10% | |
Combination of treatment and prevention | 11% | 7% | |
Combination of two or more antimicrobials | 9% | 47% |
No. | Percentage | Quotations | |
---|---|---|---|
Increased productivity | 108 | 33% | ‘Accelerate chicken growth.’ ‘Very good for chicken body weight.’ ‘Stable body weight with rising tendencies.’ |
Healthier chickens | 97 | 29% | ‘Reduce mortality.’ ‘Mortality rates can be reduced.’ |
Reduced mortality | 84 | 25% | ‘Chickens will be healthy if medicated with the right antibiotics.’ |
For disease prevention | 66 | 20% | ‘Prevent disease.’ |
Treating disease | 37 | 11% | ‘If chickens are sick, have not found any substitute for antibiotics.’ |
Indonesia | Thailand | Vietnam | |
---|---|---|---|
Production system | Small-medium commercial broiler production | Small-medium commercial pig production | Small-medium commercial pig production |
Number of farms in sample | 419 | 11 | 40 |
Location of sample farms | Central Java province (n = 75) West Kalimantan province (n = 293) Lampung province (n = 51) | Central region of Thailand—greater Bangkok | South—Dong Nai province (n = 20) North—Nam Dinh province (n = 20) |
Number of farm visits for data collection | 1 | 1 | 2 |
Collection of quantitative antimicrobial use data | Farmers asked to describe routine antimicrobial use Farmer recall of retrospective data over the last 2 broiler cycles | Farmers asked to describe routine antimicrobial use Farmer recall of retrospective data over the last pig cycle | Farmers asked to describe routine antimicrobial use Collection of on-farm antimicrobial use data over a six-week period through farmer’s retaining antimicrobial packaging (questionnaire conducted over two visits) |
Economic antimicrobial use and productivity data | Farmer recall of retrospective data over the last 12 months | Farmer recall of retrospective data over the last 12 months | Collection of data over a six-week period (questionnaire conducted over two visits) |
Qualitative data on farmer attitudes | Likert scale and open questions | Likert scale and open questions | Likert scale and open questions |
Time of data collection | September 2018 | October 2018 | January–March 2018 |
Case study collaborators | FAO regional office, Directorate General of Livestock and Animal Health Services (DGLAHS) and Center for Indonesian Veterinary Analytical Studies (CIVAS) | National Institute for Veterinary Research (NIVR) | Chulalongkorn University |
Priority Area | Key Findings and Recommendations for Policy Development and Implementation from the Development of a Framework to Characterize the Antimicrobial Use/AMR Complex in Livestock Systems in Indonesia, Vietnam, and Thailand |
---|---|
Study methodology to characterize antimicrobial use |
|
Antimicrobial use |
|
The economics of antimicrobial use |
|
Antimicrobial use and resistance policy for livestock |
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coyne, L.; Arief, R.; Benigno, C.; Giang, V.N.; Huong, L.Q.; Jeamsripong, S.; Kalpravidh, W.; McGrane, J.; Padungtod, P.; Patrick, I.; et al. Characterizing Antimicrobial Use in the Livestock Sector in Three South East Asian Countries (Indonesia, Thailand, and Vietnam). Antibiotics 2019, 8, 33. https://doi.org/10.3390/antibiotics8010033
Coyne L, Arief R, Benigno C, Giang VN, Huong LQ, Jeamsripong S, Kalpravidh W, McGrane J, Padungtod P, Patrick I, et al. Characterizing Antimicrobial Use in the Livestock Sector in Three South East Asian Countries (Indonesia, Thailand, and Vietnam). Antibiotics. 2019; 8(1):33. https://doi.org/10.3390/antibiotics8010033
Chicago/Turabian StyleCoyne, Lucy, Riana Arief, Carolyn Benigno, Vo Ngan Giang, Luu Quynh Huong, Saharuetai Jeamsripong, Wantanee Kalpravidh, James McGrane, Pawin Padungtod, Ian Patrick, and et al. 2019. "Characterizing Antimicrobial Use in the Livestock Sector in Three South East Asian Countries (Indonesia, Thailand, and Vietnam)" Antibiotics 8, no. 1: 33. https://doi.org/10.3390/antibiotics8010033
APA StyleCoyne, L., Arief, R., Benigno, C., Giang, V. N., Huong, L. Q., Jeamsripong, S., Kalpravidh, W., McGrane, J., Padungtod, P., Patrick, I., Schoonman, L., Setyawan, E., Harja Sukarno, A., Srisamran, J., Ngoc, P. T., & Rushton, J. (2019). Characterizing Antimicrobial Use in the Livestock Sector in Three South East Asian Countries (Indonesia, Thailand, and Vietnam). Antibiotics, 8(1), 33. https://doi.org/10.3390/antibiotics8010033