Prevalence of Methicillin-Resistant Staphylococcus sp. (MRS) in Different Companion Animals and Determination of Risk Factors for Colonization with MRS
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morris, D.O.; Loeffler, A.; Davis, M.F.; Guardabassi, L.; Weese, J.S. Recommendations for approaches to meticillin-resistant staphylococcal infections of small animals: Diagnosis, therapeutic considerations and preventative measures.: Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Vet. Dermatol. 2017, 28, 304-e69. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [PubMed]
- Shore, A.C.; Coleman, D.C. Staphylococcal cassette chromosome mec: Recent advances and new insights. Int. J. Med. Microbiol. 2013, 303, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Ballhausen, B.; Köck, R.; Kriegeskorte, A. Methicillin resistance in Staphylococcus isolates: The “mec alphabet” with specific consideration of mecC, a mec homolog associated with zoonotic S. aureus lineages. Int. J. Med. Microbiol. 2014, 304, 794–804. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.K.; Prager, M.; Munigala, S.; Wallace, M.A.; Kennedy, C.R.; Bommarito, K.M.; Mazuski, J.E.; Burnham, C.A. Prevalence of qacA/B Genes and Mupirocin Resistance among Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates in the Setting of Chlorhexidine Bathing without Mupirocin. Infect. Control Hosp. Epidemiol. 2016, 37, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). Research Strategy to Address the Knowledge Gaps on the Antimicrobial Resistance Effects of Biocides; European Commission: Brussels, Belgium, 2010; Available online: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_028.pdf (accessed on 23 February 2019).
- Vali, L.; Davies, S.E.; Lai, L.L.; Dave, J.; Amyes, S.G. Frequency of biocide resistance genes, antibiotic resistance and the effect of chlorhexidine exposure on clinical methicillin-resistant Staphylococcus aureus isolates. J. Antimicrob. Chemother. 2008, 61, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Nienhoff, U.; Kadlec, K.; Chaberny, I.F.; Verspohl, J.; Gerlach, G.F.; Kreienbrock, L.; Schwarz, S.; Simon, D.; Nolte, I. Methicillin-resistant Staphylococcus pseudintermedius among dogs admitted to a small animal hospital. Vet. Microbiol. 2011, 150, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Bergström, A.; Gustafsson, C.; Leander, M.; Fredriksson, M.; Grönlund, U.; Trowald-Wigh, G. Occurrence of methicillin-resistant staphylococci in surgically treated dogs and the environment in a Swedish animal hospital. J. Small Anim. Pract. 2012, 53, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Huerta, B.; Maldonado, A.; Ginel, P.J.; Tarradas, C.; Gómez-Gascón, L.; Astorga, R.J.; Luque, I. Risk factors associated with the antimicrobial resistance of staphylococci in canine pyoderma. Vet. Microbiol. 2011, 150, 302–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- Loncaric, I.; Künzel, F.; Klang, A.; Wagner, R.; Licka, T.; Grunert, T.; Feßler, A.T.; Geier-Dömling, D.; Rosengarten, R.; Müller, E.; et al. Carriage of meticillin-resistant staphylococci between humans and animals on a small farm. Vet. Dermatol. 2016, 27, 191-e48. [Google Scholar] [CrossRef] [PubMed]
- Loncaric, I.; Künzel, F.; Licka, T.; Simhofer, H.; Spergser, J.; Rosengarten, R. Identification and characterization of methicillin-resistant Staphylococcus aureus (MRSA) from Austrian companion animals and horses. Vet. Microbiol. 2014, 168, 381–387. [Google Scholar] [CrossRef]
- Loncaric, I.; Künzel, F. Sequence type 398 meticillin-resistant Staphylococcus aureus infection in a pet rabbit. Vet. Dermatol. 2013, 24, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Schoenfelder, S.M.; Lange, C.; Eckart, M.; Hennig, S.; Kozytska, S.; Ziebuhr, W. Success through diversity—How Staphylococcus epidermidis establishes as a nosocomial pathogen. Int. J. Med. Microbiol. 2010, 300, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Kern, A.; Perreten, V. Clinical and molecular features of methicillin-resistant, coagulase-negative staphylococci of pets and horses. J. Antimicrob. Chemother. 2013, 68, 1256–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagcigil, F.A.; Moodley, A.; Baptiste, K.E.; Jensen, V.F.; Guardabassi, L. Occurrence, species distribution, antimicrobial resistance and clonality of methicillin- and erythromycin-resistant staphylococci in the nasal cavity of domestic animals. Vet. Microbiol. 2007, 121, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.; Kadlec, K.; Fessler, A.T.; Schwarz, S. Identification and characterization of methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus pettenkoferi from a small animal clinic. Vet. Microbiol. 2013, 167, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Han, J.I.; Yang, C.H.; Park, H.M. Prevalence and risk factors of Staphylococcus spp. carriage among dogs and their owners: A cross-sectional study. Vet. J. 2016, 212, 15–21. [Google Scholar] [CrossRef]
- Davis, J.A.; Jackson, C.R.; Fedorka-Cray, P.J.; Barrett, J.B.; Brousse, J.H.; Gustafson, J.; Kucher, M. Carriage of methicillin-resistant staphylococci by healthy companion animals in the US. Lett. Appl. Microbiol. 2014, 59, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Nemeghaire, S.; Argudín, M.A.; Feßler, A.T.; Hauschild, T.; Schwarz, S.; Butaye, P. The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes. Vet. Microbiol. 2014, 171, 342–356. [Google Scholar] [CrossRef]
- Ruzauskas, M.; Siugzdiniene, R.; Klimiene, I.; Virgailis, M.; Mockeliunas, R.; Vaskeviciute, L.; Zienius, D. Prevalence of methicillin-resistant Staphylococcus haemolyticus in companion animals: A cross-sectional study. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 56. [Google Scholar] [CrossRef] [PubMed]
- Bean, D.C.; Wigmore, S.M.; Wareham, D.W. Draft Genome Sequence of Staphylococcus cohnii subsp. urealyticus Isolated from a Healthy Dog. Genome Announc. 2017, 5, e01628-16. [Google Scholar] [CrossRef] [PubMed]
- Perreten, V.; Kadlec, K.; Schwarz, S.; Grönlund Andersson, U.; Finn, M.; Greko, C.; Moodley, A.; Kania, S.A.; Frank, L.A.; Bemis, D.A.; et al. Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: An international multicentre study. J. Antimicrob. Chemother. 2010, 65, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Faires, M.C.; Traverse, M.; Tater, K.C.; Pearl, D.L.; Weese, J.S. Methicillin-resistant and -susceptible Staphylococcus aureus infections in dogs. Emerg. Infect. Dis. 2010, 16, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, M.S.; Heir, E.; Leegaard, T.; Wiger, K.; Holck, A. Frequency of disinfectant resistance genes and genetic linkage with beta-lactamase transposon Tn552 among clinical staphylococci. Antimicrob. Agents Chemother. 2002, 46, 2797–2803. [Google Scholar] [CrossRef] [PubMed]
- Couto, N.; Belas, A.; Kadlec, K.; Schwarz, S.; Pomba, C. Clonal diversity, virulence patterns and antimicrobial and biocide susceptibility among human, animal and environmental MRSA in Portugal. J. Antimicrob. Chemother. 2015, 70, 2483–2487. [Google Scholar] [CrossRef] [Green Version]
- Bjorland, J.; Steinum, T.; Kvitle, B.; Waage, S.; Sunde, M.; Heir, E. Widespread distribution of disinfectant resistance genes among staphylococci of bovine and caprine origin in Norway. J. Clin. Microbiol. 2005, 43, 4363–4368. [Google Scholar] [CrossRef]
- Weese, J.S.; Lefebvre, S.L. Risk factors for methicillin-resistant Staphylococcus aureus colonization in horses admitted to a veterinary teaching hospital. Can. Vet. J. 2007, 48, 921–926. [Google Scholar]
- Vincze, S.; Brandenburg, A.G.; Espelage, W.; Stamm, I.; Wieler, L.H.; Kopp, P.A.; Lübke-Becker, A.; Walther, B. Risk factors for MRSA infection in companion animals: Results from a case-control study within Germany. Int. J. Med. Microbiol. 2014, 304, 787–793. [Google Scholar] [CrossRef]
- Loncaric, I.; Kübber-Heiss, A.; Posautz, A.; Stalder, G.L.; Hoffmann, D.; Rosengarten, R.; Walzer, C. Characterization of methicillin-resistant Staphylococcus spp. carrying the mecC gene, isolated from wildlife. J. Antimicrob. Chemother. 2013, 68, 2222–2225. [Google Scholar] [CrossRef]
- Loncaric, I.; Kübber-Heiss, A.; Posautz, A.; Ruppitsch, W.; Lepuschitz, S.; Schauer, B.; Feßler, A.T.; Krametter-Frötscher, R.; Harrison, E.M.; Holmes, M.A.; et al. Characterization of mecC gene-carrying coagulase-negative Staphylococcus spp. isolated from various animals. Vet. Microbiol. 2019, 230, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Forth Informational Supplement; M100-27; CLSI: Wayne, PA, USA, 2017. [Google Scholar]
- Schauer, B.; Krametter-Frotscher, R.; Knauer, R.; Ehricht, R.; Monecke, S.; Fessler, A.T.; Schwarz, S.; Grunert, T.; Spergser, J.; Loncaric, I. Diversity of methicillin-resistant Staphylococcus aureus (MRSA) isolated from Austrian ruminants and New World camelids. Vet. Microbiol. 2019, 215, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.M.; Martins, K.B.; Silva, V.R.; Mondelli, A.L.; Cunha, M.L. Correlation of phenotypic tests with the presence of the blaZ gene for detection of beta-lactamase. Braz. J. Microbiol. 2017, 48, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Martineau, F.; Picard, F.J.; Lansac, N.; Ménard, C.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2000, 44, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Kehrenberg, C.; Schwarz, S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob. Agents Chemother. 2006, 50, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Schnellmann, C.; Gerber, V.; Rossano, A.; Jaquier, V.; Panchaud, Y.; Doherr, M.G.; Thomann, A.; Straub, R.; Perreten, V. Presence of new mecA and mph(C) variants conferring antibiotic resistance in Staphylococcus spp. isolated from the skin of horses before and after clinic admission. J. Clin. Microbiol. 2006, 44, 4444–4454. [Google Scholar] [CrossRef] [PubMed]
- Hauschild, T.; Vuković, D.; Dakić, I.; Ježek, P.; Djukić, S.; Dimitrijević, V.; Stepanović, S.; Schwarz, S. Aminoglycoside resistance in members of the Staphylococcus sciuri group. Microb. Drug Resist. 2007, 13, 77–84. [Google Scholar] [CrossRef]
- Argudín, M.A.; Tenhagen, B.A.; Fetsch, A.; Sachsenröder, J.; Käsbohrer, A.; Schroeter, A.; Hammerl, J.A.; Hertwig, S.; Helmuth, R.; Bräunig, J.; et al. Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from nonhuman sources. Appl. Environ. Microbiol. 2011, 77, 3052–3060. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; AgersŁ, Y.; Ahrens, P.; Jørgensen, J.C.; Madsen, M.; Jensen, L.B. Antimicrobial susceptibility and presence of resistance genes in staphylococci from poultry. Vet. Microbiol. 2000, 74, 353–364. [Google Scholar] [CrossRef]
- Dale, G.; Langen, H.; Page, M.; Then, R.; Stüber, D. Cloning and Charakterization of a Novel, Plasmid-Encoded Trimethoprim-Resistant Dihydrofolate Reductase from Staphylococcus haemolyticus MUR313. Antimicrob. Agents Chemother. 1995, 39, 1920–1924. [Google Scholar] [CrossRef] [PubMed]
- Mellmann, A.; Becker, K.; von Eiff, C.; Keckevoet, U.; Schumann, P.; Harmsen, D. Sequencing and staphylococci identification. Emerg. Infect. Dis. 2006, 12, 333–336. [Google Scholar] [CrossRef] [PubMed]
ID | Species | SCCmec | dru Type | Non β-lactam Phenotype ** | Non b-lactam Resistant Genes | QAC Genes *** |
---|---|---|---|---|---|---|
A 36 | S. epidermidis | nt * | dt10a | CIP, AMK, GEN, ERY, CLI | dfrA, erm(C) | qacA/B |
A 39 | S. epidermidis | IV | dt10a | CIP, TET, ERY, CLI | dfrA, erm(C) | qacA/B |
A 40 | S. epidermidis | IV | dt10a | TET, ERY, CLI | dfrA, erm(C), tet(K) | |
A 41 | S. pseudintermedius | II–III | dt9a | CIP, AMK, GEN, ERY, CLI, SXT | aacA-aphD, erm(B), dfrG | |
A 50 | S. epidermidis | nt | dt11a | AMK, GEN, TET, ERY, SXT | msr(A), aacA-aphD, tet(K) drfG, aac(6′)-Ie | smr |
A 57 | S. sciuri | II | dt8b | AMK, GEN, ERY | dfrA, msr(A), aacA-aph, aac(6′)-Ie | |
A 63 | S. warneri | IV | dt10a | ERY, SXT | dfrA, msr(A) | |
A 68 | S. epidermidis | nt | nt | dfrA, aacA-aphD, erm(C) | qacA/B | |
A 72 | S. pseudintermedius | II–III | dt9a | CIP, AMK, GEN, TET, ERY, CLI, SXT | aacA-aphD, tet(K), erm(B), dfrG, aac(6′)-Ie | |
A 73 | S. warneri | IV | dt10a | ERY | msr(A) | smr |
A 112 | S. epidermidis | IV | dt10a | dfrA | ||
A 127 | S. warneri | IV | dt10a | ERY | dfrA, msr(A) | qacA/B, smr |
A 141 | S. cohnii | nt | dt11a | ERY, SXT | msr(A) | |
B 7 | S. lentus | V | dt10a | CIP, GEN, TET, ERY, SXT | aacA-aphD, tet(K), aac(6′)-Ie | |
B 23 | S. epidermidis | nt | nt | CIP, ERY, CLI, SXT | dfrA, erm(C) | |
B 25 | S. epidermidis | IV | dt8b | ERY, CLI | dfrA, erm(C) | qacA/B |
B 27 | S. epidermidis | nt | dt8b | CIP, TET, ERY, CLI | dfrA, msr(A), tet(K) | |
B 37 | S. epidermidis | nt | dt10a | CIP, AMK, GEN, TET, ERY, CLI, SXT | dfrA, aacA-aphD, erm(C), aac(6′)-Ie | qacA/B, smr |
B 49 | S. fleurettii | nt | nt | TET, CHL | tet(K), catpC221 | |
B 50 | S. haemolyticus | nt | dt11c | CIP, AMK, GEN, ERY, CLI, SXT | msr(A), aacA-aphD, erm(C), aac(6′)-Ie | |
C 10 | S. epidermidis | nt | dt10a | ERY, CHL, SXT | dfrA, catpC221 | qacA/B |
162 | S. hominis | I | dt7ah | ERY, CLI, CHL, SXT | erm(C), fusC, catpC221 | smr |
166 | S. hominis | I | dt9a | ERY | msr(A) | qacA/B |
Risk Factor | p Value |
---|---|
Species (dog, cat, rabbit, guinea pig) | 0.664 |
Breed | 0.833 |
Age | 0.182 |
Gender | 0.06 |
Husbandry conditions (indoor/outdoor) | 0.502 |
Recent veterinary health care hospitalization (during the last 6 months) | 0.046 |
Pretreatment with antimicrobial substances (during the last 6 months) | 0.096 |
Close contact | 0.2 |
Owner’s health care profession | 0.223 |
Origin and health status of animals | 0.993 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loncaric, I.; Tichy, A.; Handler, S.; Szostak, M.P.; Tickert, M.; Diab-Elschahawi, M.; Spergser, J.; Künzel, F. Prevalence of Methicillin-Resistant Staphylococcus sp. (MRS) in Different Companion Animals and Determination of Risk Factors for Colonization with MRS. Antibiotics 2019, 8, 36. https://doi.org/10.3390/antibiotics8020036
Loncaric I, Tichy A, Handler S, Szostak MP, Tickert M, Diab-Elschahawi M, Spergser J, Künzel F. Prevalence of Methicillin-Resistant Staphylococcus sp. (MRS) in Different Companion Animals and Determination of Risk Factors for Colonization with MRS. Antibiotics. 2019; 8(2):36. https://doi.org/10.3390/antibiotics8020036
Chicago/Turabian StyleLoncaric, Igor, Alexander Tichy, Silvia Handler, Michael P. Szostak, Mareike Tickert, Magda Diab-Elschahawi, Joachim Spergser, and Frank Künzel. 2019. "Prevalence of Methicillin-Resistant Staphylococcus sp. (MRS) in Different Companion Animals and Determination of Risk Factors for Colonization with MRS" Antibiotics 8, no. 2: 36. https://doi.org/10.3390/antibiotics8020036
APA StyleLoncaric, I., Tichy, A., Handler, S., Szostak, M. P., Tickert, M., Diab-Elschahawi, M., Spergser, J., & Künzel, F. (2019). Prevalence of Methicillin-Resistant Staphylococcus sp. (MRS) in Different Companion Animals and Determination of Risk Factors for Colonization with MRS. Antibiotics, 8(2), 36. https://doi.org/10.3390/antibiotics8020036