The Fate of Bacteriophages in Recirculating Aquaculture Systems (RAS)—Towards Developing Phage Therapy for RAS
Abstract
:1. Introduction
2. Results
2.1. Phages Persist in RAS for Up to Three Weeks
2.2. Attachment of Phages to Filter Pellets Is Dependent on Biofilm
3. Discussion
4. Material and Methods
4.1. Experimental Site
4.2. FCL-2 Phage
4.3. Phage Treatment and Sampling
4.4. Ethics
4.5. Water Quality Monitoring
4.6. Adsorption Tests on Plastic Carrier Media
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martins, C.I.M.; Eding, E.H.; Verdegem, M.C.J.; Heinsbroek, L.T.N.; Schneider, O.; Blancheton, J.P.; d’Orbcastel, E.R.; Verreth, J.A.J. New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquac. Eng. 2010. [Google Scholar] [CrossRef]
- Badiola, M.; Mendiola, D.; Bostock, J. Recirculating aquaculture systems (RAS) analysis: Main issues on management and future challenges. Aquac. Eng. 2012. [Google Scholar] [CrossRef]
- Pulkkinen, K.; Suomalainen, L.R.; Read, A.F.; Ebert, D.; Rintamäki, P.; Valtonen, E.T. Intensive fish farming and the evolution of pathogen virulence: The case of columnaris disease in Finland. Proc. R. Soc. B. Biol. Sci. 2010. [Google Scholar] [CrossRef]
- Kennedy, D.A.; Kurath, G.; Brito, I.L.; Purcell, M.K.; Read, A.F.; Winton, J.R.; Wargo, A.R. Potential drivers of virulence evolution in aquaculture. Evol. Appl. 2016. [Google Scholar] [CrossRef] [PubMed]
- Sundberg, L.R.; Ketola, T.; Laanto, E.; Kinnula, H.; Bamford, J.K.H.; Penttinen, R.; Mappes, J. Intensive aquaculture selects for increased virulence and interference competition in bacteria. Proc. R. Soc. B. Biol. Sci. 2016. [Google Scholar] [CrossRef] [PubMed]
- Delabbio, J.; Murphy, B.R.; Johnson, G.R.; McMullin, S.L. An assessment of biosecurity utilization in the recirculation sector of finfish aquaculture in the United States and Canada. Aquaculture 2004, 242, 165–179. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Tomova, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschmann, A.H. Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.Q.A.; Cabello, F.C.; L’Abée-Lund, T.M.; Tomova, A.; Godfrey, H.P.; Buschmann, A.H.; Sørum, H. Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites. Environ. Microbiol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Muziasari, W.I.; Pitkänen, L.K.; Sørum, H.; Stedtfeld, R.D.; Tiedje, J.M.; Virta, M. The resistome of farmed fish feces contributes to the enrichment of antibiotic resistance genes in sediments below baltic sea fish farms. Front. Microbiol. 2017. [Google Scholar] [CrossRef]
- Kortright, K.E.; Chan, B.K.; Koff, J.L.; Turner, P.E. Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019. [Google Scholar] [CrossRef]
- Watts, G. Phage therapy: Revival of the bygone antimicrobial. Lancet 2017. [Google Scholar] [CrossRef]
- Laanto, E.; Bamford, J.K.H.; Ravantti, J.J.; Sundberg, L.R. The use of phage FCL-2 as an alternative to chemotherapy against columnaris disease in aquaculture. Front. Microbiol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Doss, J.; Culbertson, K.; Hahn, D.; Camacho, J.; Barekzi, N. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 2017, 9, 50. [Google Scholar] [CrossRef]
- Kalatzis, P.; Castillo, D.; Katharios, P.; Middelboe, M. Bacteriophage interactions with marine pathogenic vibrios: implications for phage therapy. Antibiotics 2018, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Laanto, E.; Hoikkala, V.; Ravantti, J.; Sundberg, L.R. Long-term genomic coevolution of host-parasite interaction in the natural environment. Nat. Commun. 2017. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.F.; Bullock, G.L.; Hankins, J.A.; Summerfelt, S.T.; Mathias, J.A. Effects of selected chemo-therapeutants on nitrification in fluidized-sand biofilters for coldwater fish production. Int. J. Recirculation Aquaculture 2000, 1, 61–81. [Google Scholar]
- Almeida, G.M.F.; Laanto, E.; Ashrafi, R.; Sundberg, L.R. Bacteriophage adherence to mucus mediates preventive protection against pathogenic bacteria. mBio 2019. [Google Scholar] [CrossRef]
- Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006. [Google Scholar] [CrossRef]
- Watts, J.E.M.; Schreier, H.J.; Lanska, L.; Hale, M.S. The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Mar. Drugs. 2017, 15, 158. [Google Scholar] [CrossRef]
- Rørbo, N.; Rønneseth, A.; Kalatzis, P.G.; Rasmussen, B.B.; Engell-Sørensen, K.; Kleppen, H.P.; Wergeland, H.I.; Gram, L.; Middelboe, M. Exploring the effect of phage therapy in preventing Vibrio anguillarum infections in cod and turbot larvae. Antibiot 2018, 7, 42. [Google Scholar] [CrossRef]
- Silva, Y.J.; Costa, L.; Pereira, C.; Mateus, C.; Cunha, Â.; Calado, R.; Gomes, N.C.M.; Pardo, M.A.; Hernandez, I.; Almeida, A. Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production. PLoS ONE 2014. [Google Scholar] [CrossRef] [PubMed]
- Culot, A.; Grosset, N.; Gautier, M. Overcoming the challenges of phage therapy for industrial aquaculture: A review. Aquaculture 2019. [Google Scholar] [CrossRef]
- Barr, J.J.; Auro, R.; Furlan, M.; Whiteson, K.L.; Erb, M.L.; Pogliano, J.; Stotland, A.; Wolkowicz, R.; Cutting, A.S.; Doran, K.S.; et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl. Acad. Sci. USA 2013. [Google Scholar] [CrossRef] [PubMed]
- Bartelme, R.P.; McLellan, S.L.; Newton, R.J. Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing archaea and comammox nitrospira. Front. Microbiol. 2017, 8, 101. [Google Scholar] [CrossRef]
- Schreier, H.J.; Mirzoyan, N.; Saito, K. Microbial diversity of biological filters in recirculating aquaculture systems. Curr. Opin. Biotechn. 2010, 21, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, I.W.; Hughes, K.A.; Skillman, L.C.; Tait, K. The interaction of phage and biofilms. FEMS Microbiol. Lett. 2004. [Google Scholar] [CrossRef]
- Lindholm-Lehto, P.C.; Vielma, J. Controlling of geosmin and 2-methylisoborneol induced off-flavours in recirculating aquaculture system farmed fish—A review. Aquac. Res. 2019. [Google Scholar] [CrossRef]
- Jonns, J.A.; Brooks, P.R.; Exley, P.; Poole, S.; Kurtböke, D.İ. Streptophage-mediated control of off-flavour taint producing streptomycetes isolated from barramundi ponds. Synth. Syst. Biotechnol. 2017. [Google Scholar] [CrossRef]
- Laanto, E.; Sundberg, L.-R.; Bamford, J.K.H. Phage specificity of the freshwater fish pathogen flavobacterium columnare. Appl. Environ. Microbiol. 2011. [Google Scholar] [CrossRef]
Parameter | Control Units | Phage-Treated Units |
---|---|---|
TAN (mg·L−1) | 1.31 ± 0.11 | 1.20 ± 0.23 |
NO2-N (mg·L−1) | 0.53 ± 0.01 | 0.57 ± 0.05 |
NO3-N (mg·L−1) | 42.4 ± 0.2 | 43.1 ± 1.2 |
pH | 7.2 ± 0.0 | 7.2 ± 0.0 |
T (°C) | 15.5 ± 0.3 | 15.2 ± 0.3 |
O2 (mg·L−1) | 7.3 ± 1.0 | 8.7 ± 0.9 |
TOC (mg·L−1) | 14.4 ± 4.6 | 17.6 ± 4.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, G.M.F.; Mäkelä, K.; Laanto, E.; Pulkkinen, J.; Vielma, J.; Sundberg, L.-R. The Fate of Bacteriophages in Recirculating Aquaculture Systems (RAS)—Towards Developing Phage Therapy for RAS. Antibiotics 2019, 8, 192. https://doi.org/10.3390/antibiotics8040192
Almeida GMF, Mäkelä K, Laanto E, Pulkkinen J, Vielma J, Sundberg L-R. The Fate of Bacteriophages in Recirculating Aquaculture Systems (RAS)—Towards Developing Phage Therapy for RAS. Antibiotics. 2019; 8(4):192. https://doi.org/10.3390/antibiotics8040192
Chicago/Turabian StyleAlmeida, Gabriel M.F., Kati Mäkelä, Elina Laanto, Jani Pulkkinen, Jouni Vielma, and Lotta-Riina Sundberg. 2019. "The Fate of Bacteriophages in Recirculating Aquaculture Systems (RAS)—Towards Developing Phage Therapy for RAS" Antibiotics 8, no. 4: 192. https://doi.org/10.3390/antibiotics8040192
APA StyleAlmeida, G. M. F., Mäkelä, K., Laanto, E., Pulkkinen, J., Vielma, J., & Sundberg, L. -R. (2019). The Fate of Bacteriophages in Recirculating Aquaculture Systems (RAS)—Towards Developing Phage Therapy for RAS. Antibiotics, 8(4), 192. https://doi.org/10.3390/antibiotics8040192