Procedure for the Screening of Eggs and Egg Products to Detect Oxolonic Acid, Ciprofloxacin, Enrofloxacin, and Sarafloxacin Using Micellar Liquid Chromatography
Abstract
:1. Introduction
2. Experimental
2.1. Standards and Reagents
2.2. Preparation of Solutions
2.3. Chromatographic Conditions
2.4. Sample Processing
3. Results and Discussion
3.1. Optimization of the Chromatographic Conditions
3.2. Sample Preparation
3.2.1. Liquid Samples
3.2.2. Solid Samples
3.2.3. General Comments on the Procedure
3.3. Method Validation
3.3.1. Instrumental Calibration Range and Linearity
3.3.2. Ruggedness
3.3.3. Specificity
3.3.4. Method Calibration Range and Sensitivity
3.3.5. Trueness and Precision
3.3.6. Decision Limit and Detection Capability
3.3.7. Stability
3.4. Comparison with Previously Published Methods
3.5. Analysis of Incurred Samples
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Okihashi, M.; Harada, K.; Konishi, Y.; Uchida, K.; Do, M.H.N.; Bui, H.D.T.; Nguyen, T.D.; Nguyen, P.D.; Chau, V.V.; et al. Antibiotic residue monitoring results for pork, chicken, and beef samples in Vietnam in 2012–2013. J. Agric. Food Chem. 2013, 63, 5141–5145. [Google Scholar] [CrossRef] [PubMed]
- Oliphant, C.M.; Green, G.M. Quinolones: A comprehensive review. Am. Fam. Physician 2002, 65, 455–464. [Google Scholar] [PubMed]
- Pruden, A.; Pei, R.T.; Storteboom, H.; Carlson, K.H. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado. Environ. Sci. Technol. 2006, 40, 7445–7450. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Antibiotic-resistant bacteria: Prevalence in food and inactivation by food-compatible compounds and plant extracts. J. Agric. Food Chem. 2015, 63, 3805–3822. [Google Scholar] [CrossRef] [PubMed]
- Goetting, V.; Lee, K.A.; Tell, L.A. Pharmacokinetics of veterinary drugs in laying hens and residues in eggs: A review of the literature. J. Vet. Pharmacol. Ther. 2011, 34, 521–526. [Google Scholar] [CrossRef]
- Terrado-Campos, D.; Tayeb-Cherif, K.; Peris-Vicente, J.; Carda-Broch, S.; Esteve-Romero, J. Determination of oxolinic acid, danofloxacin, ciprofloxacin, and enrofloxacin in porcine and bovine meat by micellar liquid chromatography with fluorescence detection. Food Chem. 2017, 221, 1277–1284. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU). No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. OJEC 2002, L15, 1–72. [Google Scholar]
- European Commision. Regulation (EC). No 470/2009 of the European Parliament and of the Council of 6 May 2009 laying down Community procedures for the establishment of residue limits of pharmacologically active substances in foodstuffs of animal origin, repealing Council Regulation (EEC) No 2377/90 and amending Directive 2001/82/EC of the European Parliament and of the Council and Regulation (EC) No 726/2004 of the European Parliament and of the Council. OJEC 2009, L152, 11–23. [Google Scholar]
- García, I.; Sarabia, L.; Ortiz, M.C.; Aldama, J.M. Usefulness of D-optimal designs and multicriteria optimization in laborious analytical procedures. Application to the extraction of quinolones from eggs. J. Chromatogr. A 2005, 1085, 190–198. [Google Scholar] [CrossRef]
- Verdon, E.; Couedor, P.; Roudaut, B.; Sanders, P. Multiresidue method for simultaneous determination of ten quinolone antibacterial residues in multimatrix/multispecies animal tissues by liquid chromatography with fluorescence detection: Single laboratory validation study. J. AOAC Int. 2005, 88, 1179–1192. [Google Scholar] [PubMed]
- Huang, J.F.; Lin, B.; Yu, Q.W.; Feng, Y.Q. Determination of fluoroquinolones in eggs using in-tube solid-phase microextraction coupled to high-performance liquid chromatography. Anal. Bioanal. Chem. 2006, 384, 1228–1235. [Google Scholar] [CrossRef] [PubMed]
- Cinquina, A.L.; Roberti, P.; Giannetti, L.; Longo, F.; Draisci, R.; Fagiolo, A.; Brizioli, N.R. Determination of enrofloxacin and its metabolite ciprofloxacin in goat milk by high-performance liquid chromatography with diode array detection. Optimization and validation. J. Chromatogr. A 2003, 987, 221–226. [Google Scholar] [CrossRef]
- Lolo, M.; Pedreira, S.; Fente, C.; Vázquez, B.I.; Franco, C.M.; Cepeda, A. Study of enrofloxacin depletion in the eggs of laying hens using diphasic dialysis extraction/purification and determinative HPLC-MS analysis. J. Agric. Food Chem. 2005, 53, 2849–2852. [Google Scholar] [CrossRef]
- Shim, J.H.; Lee, M.H.; Kim, M.R.; Lee, C.J.; Kim, I.S. Simultaneous measurement of fluoroquinolones in eggs by a combination of supercritical fluid extraction and high pressure chromatography. Biosci. Biotechnol. Bioch. 2003, 67, 1342–1348. [Google Scholar] [CrossRef]
- Kinsella, B.; O’Mahony, J.; Malone, E.; Moloney, M.; Cantwell, H.; Furey, A.; Danaher, M. Current trends in sample preparation for growth promoter and veterinary drug residue analysis. J. Chromatogr. A 2009, 1216, 7977–8015. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Wen, S.; Hou, X.; Zhang, R.; Ma, M. Multiresidue determination of antibiotics in preserved eggs using a QuEChERS-based procedure by ultrahigh-performance liquid chromatography tandem mass spectrometry. Acta Chromatogr. 2018, 30, 9–16. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, J.J.; Cong, J.M.; Cai, Z.X.; Zhang, J.S.; Wang, J.L.; Ren, Y.P. Optimization for quick, easy, cheap, effective, rugged and safe extraction of mycotoxins and veterinary drugs by response surface methodology for application to egg and milk. J. Chromatogr. A 2018, 1532, 20–29. [Google Scholar] [CrossRef]
- He, J.; Song, L.; Zhou, G.; Zhao, L. The rapid analysis of antibiotics in animal meat and egg using a novel SEP method and UPLC–MS/MS. Chromatographia 2017, 80, 1329–1342. [Google Scholar] [CrossRef]
- Wang, K.; Lin, K.; Huang, X.; Chen, M. A simple and fast extraction method for the determination of multiclass antibiotics in eggs using LC-MS/MS. J. Agric. Food Chem. 2018, 65, 5064–5073. [Google Scholar] [CrossRef]
- Chen, D.; Yu, J.; Tao, Y.; Pan, Y.; Xie, S.; Huang, L.; Peng, D.; Wang, X.; Wang, Y.; Liu, Z.; et al. Qualitative screening of veterinary anti-microbial agents in tissues, milk, and eggs of food-producing animals using liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B 2018, 1017–1018, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Kanda, M.; Nakajima, T.; Hayashi, H.; Hashimoto, T.; Kanai, S.; Nagano, C.; Matsushima, Y.; Tateishi, Y.; Yoshikawa, S.; Tsuruoka, Y.; et al. Multi-residue determination of polar veterinary drugs in livestock and fishery products by liquid chromatography/tandem mass spectrometry. J. AOAC Int. 2015, 98, 230–247. [Google Scholar] [CrossRef] [PubMed]
- Gajda, A.; Posyniak, A.; Zmudzki, J.; Gbylik, M.; Bladek, T. Determination of (fluoro) quinolones in eggs by liquid chromatography with fluorescence detection and confirmation by liquid chromatography-tandem mass spectrometry. Food Chem. 2012, 135, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, V.; Rubies, A.; Centrich, F.; Companyó, R.; Guiteras, J. Development and validation of a multiclass method for the analysis of antibiotic residues in eggs by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 1443–1451. [Google Scholar] [CrossRef] [PubMed]
- Stoilova, N.A.; Surleva, A.R.; Stoev, G. Simultaneous Determination of Nine Quinolones in Food by Liquid Chromatography with Fluorescence Detection. Food Anal. Methods 2013, 6, 803–813. [Google Scholar] [CrossRef]
- Jiménez, V.; Companyó, R.; Guiteras, J. Analysis of quinolone antibiotics in eggs: Preparation and characterization of a raw material for method validation and quality control. Food Chem. 2012, 134, 1682–1690. [Google Scholar] [CrossRef]
- Cho, H.J.; Yi, H.; Cho, S.M.; Lee, D.G.; Cho, K.; Abd El-Aty, A.M.; Shim, J.H.; Lee, S.H.; Jeong, J.Y.; Shin, H.C. Single-step extraction followed by LC for determination of (fluoro)quinolone drug residues in muscle, eggs, and milk. J. Sep. Sci. 2012, 33, 1034–1043. [Google Scholar] [CrossRef]
- Esteve-Romero, J.; Albiol-Chiva, J.; Peris-Vicente, J. A review on development of analytical methods to determine monitorable drugs in serum and urine by micellar liquid chromatography using direct injection. Anal. Chim. Acta 2016, 926, 1–16. [Google Scholar] [CrossRef]
- Rambla-Alegre, M.; Peris-Vicente, J.; Esteve-Romero, J.; Carda-Broch, S. Analysis of selected veterinary antibiotics in fish by micellar liquid chromatography with fluorescence detection and validation in accordance with regulation 2002/657/EC. Food Chem. 2010, 123, 1294–1302. [Google Scholar] [CrossRef]
- Tayeb-Cherif, K.; Peris-Vicente, J.; Carda-Broch, S.; Esteve-Romero, J. Analysis of danofloxacin, difloxacin, ciprofloxacin and sarafloxacin in honey using micellar liquid chromatography and validation according to the 2002/657/EC decision. Anal. Methods 2015, 7, 6165–6172. [Google Scholar] [CrossRef]
- Tayeb-Cherif, K.; Peris-Vicente, J.; Carda-Broch, S.; Esteve-Romero, J. Use of micellar liquid chromatography to analyze oxolinic acid, flumequine, marbofloxacin and enrofloxacin in honey and validation according to the 2002/657/EC decision. Food Chem. 2016, 202, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Peris-Vicente, J.; Iborra-Millet, J.J.; Albiol-Chiva, J.; Carda-Broch, S.; Esteve-Romero, J. A rapid and reliable assay to determine flumequine, marbofloxacin, difloxacin, and sarafloxacin in commonly consumed meat by micellar liquid chromatography. J. Sci. Food Agric. 2019, 99, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (2002/657/EC). OJEC 2002, L221, 8–36. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002D0657&from=ES (accessed on 20 June 2019).
- Harris, D.C. Quantitative Chemical Analysis, 7th ed.; W.H. Freeman and Company: New York, NY, USA, 2007. [Google Scholar]
- Erner, J.; Miller, J.H. Method Validation in Pharmaceutical Analysis. A guide of Best Practice; Wiley-VCH GmbH & Co: Weinheim, Germany, 2005. [Google Scholar]
- Garrido-Cano, I.; García-García, A.; Peris-Vicente, J.; Ochoa-Aranda, E.; Esteve-Romero, J. A method to quantify several tyrosine kinase inhibitors in plasma by micellar liquid chromatography and validation according to the European Medicines Agency guidelines. Talanta 2015, 144, 1287–1295. [Google Scholar] [CrossRef]
- Mosca, F.; Hidalgo, G.I.; Villasante, J.; Imajano, M.P. Continuous or batch solid-to-liquid extraction of antioxidant compounds from seeds of sterculia apetala plant and kinetic release study. Molecules 2018, 23, 1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peris-Vicente, J.; Esteve-Romero, J.; Carda-Broch, S. Validation of analytical methods based on chromatographic techniques: An overview. Anal. Sep. Sci. 2015, 5, 1757–1808. [Google Scholar] [CrossRef]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 6th ed.; Pearson Education Limited: London, UK, 2010. [Google Scholar]
Parameter | OXO | CIPRO | ENRO | SARA | Acceptance Criteria |
---|---|---|---|---|---|
tR (min) (RSD, %) | 5.48 ± 0.05 (0.9) | 16.08 ± 0.14 (0.9) | 18.79 ± 0.17 (0.9) | 5.48 ± 0.05 (0.9) | 16.08 ± 0.14 (0.9) |
RSD of peak area, % | 0.6 | 0.9 | 0.5 | 0.7 | <1.0 |
RSD of peak width at half-maximum height, % | 0.5 | 0.8 | 0.7 | 0.9 | <1.0 |
Retention factor | 4.48 | 15.08 | 17.79 | 21.3 | >2.0 |
Efficiency | 2172 | 2842 | 2584 | 2158 | >2000 |
Asymmetry | 1.4 | 1.2 | 1.2 | 0.9 | 0.8–1.6 |
Resolution with the next eluted quinolone | High | 1.9 | 2.4 | - | >1.5 |
Parameter | OXO | CIPRO | ENRO | SARA |
---|---|---|---|---|
Slope ± SD | 1353 ± 5 | 16,970 ± 30 | 8240 ± 20 | 10,760 ± 80 |
y-Intercept ± SD a | −7 ± 4 | 18 ± 8 | 6 ± 4 | −12 ± 16 |
r2 b | 0.9991 | 0.9994 | 0.9997 | 0.9992 |
RRSD (%) c | 1.3 | 0.8 | 0.6 | 0.9 |
Maximum εR/sy/x d | 1.2 | 0.8 | 0.5 | 1.1 |
Maximum CD2 e | 0.8 | 0.4 | 0.3 | 0.8 |
LOD (μg/L) | 10 | 2 | 2 | 5 |
LOQ (μg/L) | 30 | 5 | 5 | 15 |
MLOD (μg/kg) | 50 | 10 | 10 | 25 |
MLOQ (μg/kg) | 150 | 25 | 25 | 75 |
Method calibration range (mg/kg) | 0.15–1.0 | 0.025–1.0 | 0.025–1.0 | 0.075–1.0 |
Sample | OXO | ENRO | CIPRO | SARA |
---|---|---|---|---|
Fresh egg yolk | +7.5/6.2/7.0 | −6.9/7.1/6.8 | −10.7/9.3/9.2 | −9.3/8.9/10.6 |
+6.5/6.1/7.2 | −4.0/5.2/4.7 | −7.8/8.2/7.9 | −8.5/10.5/9.5 | |
+4.2/4.8/5.3 | −2.9/4.8/6.0 | −6.5/7.3/6.5 | −4.2/6.2/6.5 | |
Fresh egg white | +7.3/6.9/6.7 | −7.0/6.5/8.0 | −9.9/9.6/9.0 | −8.9/8.5/8.7 |
+5.2/6.2/7.6 | −4.9/6.0/7.2 | −7.5/6.8/7.2 | −7.8/7.0/6.8 | |
+5.0/5.9/7.1 | −2.6/3.9/4.4 | −5.9/6.8/6.4 | −5.5/6.0/6.9 | |
Boiled egg yolk | +9.5/8.0/9.8 | −9.8/8.5/8.9 | −14.2/13.3/12.5 | −13.8/14.0/12.9 |
+7.9/7.1/8.0 | −7.2/6.8/7.0 | −9.5/8.3/7.7 | −10.0/12.2/11.8 | |
+6.8/4.9/6.4 | −5.6/7.2/6.8 | −6.9/7.1/5.8 | −7.5/8.5/7.2 | |
Boiled egg white | +9.2/7.4/8.7 | −9.4/9.0/10.2 | −13.8/13.4/14.0 | 13.2/11.4/13.9 |
+7.0/6.8/8.1 | −6.9/5.9/6.8 | −10.5/9.2/8.9 | −9.7/10.2/11.0 | |
+4.9/5.0/5.8 | −4.8/4.3/5.2 | −7.5/8.0/8.6 | −7.0/6.5/7.3 | |
Pasteurized egg yolk | +6.9/7.2/7.5 | −6.5/7.2/7.5 | −9.7/8.5/7.9 | −8.9/9.3/9.8 |
+5.0/4.8/5.9 | −4.3/6.8/7.0 | −7.9/7.5/8.0 | −7.5/6.7/7.0 | |
+3.9/4.0/4.9 | −3.0/4.9/5.0 | −6.2/6.0/6.5 | −5.2/6.5/5.8 | |
Pasteurized egg white | +6.8/6.8/7.2 | −7.0/6.9/7.2 | −9.2/7.8/8.2 | −8.6/9.0/9.4 |
+5.8/6.1/6.0 | −5.0/6.2/6.3 | −8.2/7.4/7.8 | −7.2/7.3/6.9 | |
+4.0/3.8/3.6 | −3.4/4.2/4.7 | −6.1/6.4/6.9 | −4.9/5.2/5.7 | |
Powdered egg yolk | +9.5/8.2/8.4 | −10.9/9.9/10.6 | −13.5/12.8/11.9 | −12.9/10.0/10.9 |
+7.5/7.0/6.5 | −8.0/8.2/7.9 | −11.0/9.9/10.5 | −9.4/8.5/8.1 | |
+5.2/5.0/5.8 | −5.9/5.8/6.0 | −7.3/7.5/7.2 | −7.3/7.0/7.4 | |
Powdered egg white | +9.8/8.5/8.9 | −8.2/7.9/8.5 | −13.6/12.1/12.8 | −12.9/11.5/12.0 |
+7.1/6.8/7.2 | −6.7/7.1/8.0 | −8.8/9.2/8.7 | −8.3/8.0/7.5 | |
+5.4/4.8/5.3 | −4.2/6.3/6.7 | −5.8/6.8/7.0 | −5.0/6.3/5.2 | |
Powdered whole egg | +9.2/8.0/7.8 | −9.9/10.2/10.8 | −12.8/11.7/10.3 | −12.6/10.6/9.8 |
+7.8/6.9/7.0 | −8.3/8.5/8.0 | −10.5/9.8/9.1 | −9.2/8.7/7.9 | |
+5.6/5.8/5.3 | −6.1/6.4/6.0 | −6.9/7.4/8.0 | −7.2/6.5/7.0 | |
Omelet | +8.9/7.6/9.0 | −11.0/10.8/11.6 | −14.0/13.2/12.9 | −13.6/10.3/12.5 |
+6.8/8.5/7.5 | −7.8/8.0/7.5 | −10.9/10.3/9.5 | −9.7/8.2/9.0 | |
+5.0/6.2/6.8 | −5.8/6.5/5.8 | −7.0/8.5/7.8 | −7.8/6.9/7.5 |
Sample | OXO | ENRO | CIPRO | SARA |
---|---|---|---|---|
Fresh egg yolk | 56 | 12 | 12 | 30 |
Fresh egg white | 57 | 11 | 12 | 29 |
Boiled egg yolk | 61 | 12 | 13 | 33 |
Boiled egg white | 60 | 13 | 13 | 33 |
Pasteurized egg yolk | 58 | 13 | 12 | 28 |
Pasteurized egg white | 57 | 12 | 12 | 29 |
Powdered egg yolk | 63 | 13 | 13 | 34 |
Powdered egg white | 62 | 12 | 13 | 33 |
Powdered whole egg | 64 | 13 | 12 | 35 |
Omelet | 63 | 13 | 14 | 34 |
Reference | Sample Treatment (Volume of Organic Solvent) | Organic Solvent in Mobile Phase (%) | Instrument | LOQ (μg/kg) | Trueness (%) | Precision (RSD, %) | Run Time (min) |
---|---|---|---|---|---|---|---|
This paper | Dilution or STLE (very low) | 1-propanol and TEA (8) | HPLC-FLD | 50 | 85–110 | <14 | 25 |
10 | STLE+LLE+SPE (high) | Acetonitrile (10) | HPLC-FLD | 8 | 87 | 5 | 13 |
12 | STLE (low) | Methanol (70) | SPME-HPLC-FLD | 8 | 89–106 | 7 | 20 |
18 | QuEChERS™ (low) | Acetonitrile (up to 95%) | UPLC-MS-MS | 0.2 | 78–105 | 8 | 11 |
19 | STLE+protein precipitation+SPE (medium) | Methanol (up to 100%) | UPLC-MS-MS | 5 | 59–98 | 17 | 12 |
20 | STLE (low) | Acetonitrile (up to 90%) | HPLC-MS | 1.5 | 78–110 | 15 | 20 |
23 | STLE+LLE (medium) | Acetonitrile (up to 25%) | HPLC-FLD | 30 | 89 | 15 | 25 |
25 | STLE+SPE (medium) | Acetonitrile (up to 35%) | HPLC-MS | 25 | 88–121 | 22 | 26 |
27 | STLE+LLE (medium) | Acetonitrile (up to 40%) | HPLC-FLD | 25 | 86–107 | 14 | 20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peris-Vicente, J.; García-Ferrer, D.; Mishra, P.; Albiol-Chiva, J.; Durgbanshi, A.; Carda-Broch, S.; Bose, D.; Esteve-Romero, J. Procedure for the Screening of Eggs and Egg Products to Detect Oxolonic Acid, Ciprofloxacin, Enrofloxacin, and Sarafloxacin Using Micellar Liquid Chromatography. Antibiotics 2019, 8, 226. https://doi.org/10.3390/antibiotics8040226
Peris-Vicente J, García-Ferrer D, Mishra P, Albiol-Chiva J, Durgbanshi A, Carda-Broch S, Bose D, Esteve-Romero J. Procedure for the Screening of Eggs and Egg Products to Detect Oxolonic Acid, Ciprofloxacin, Enrofloxacin, and Sarafloxacin Using Micellar Liquid Chromatography. Antibiotics. 2019; 8(4):226. https://doi.org/10.3390/antibiotics8040226
Chicago/Turabian StylePeris-Vicente, Juan, Daniel García-Ferrer, Pooja Mishra, Jaume Albiol-Chiva, Abhilasha Durgbanshi, Samuel Carda-Broch, Devasish Bose, and Josep Esteve-Romero. 2019. "Procedure for the Screening of Eggs and Egg Products to Detect Oxolonic Acid, Ciprofloxacin, Enrofloxacin, and Sarafloxacin Using Micellar Liquid Chromatography" Antibiotics 8, no. 4: 226. https://doi.org/10.3390/antibiotics8040226
APA StylePeris-Vicente, J., García-Ferrer, D., Mishra, P., Albiol-Chiva, J., Durgbanshi, A., Carda-Broch, S., Bose, D., & Esteve-Romero, J. (2019). Procedure for the Screening of Eggs and Egg Products to Detect Oxolonic Acid, Ciprofloxacin, Enrofloxacin, and Sarafloxacin Using Micellar Liquid Chromatography. Antibiotics, 8(4), 226. https://doi.org/10.3390/antibiotics8040226