Evaluation of the Antifungal Activity of the Licania Rigida Leaf Ethanolic Extract against Biofilms Formed by Candida Sp. Isolates in Acrylic Resin Discs
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Botanical Material Collection and Identification
4.2. Extract Preparation
4.3. Compound Identification by Ultra-High Performance Liquid Chromatography Coupled to a Quadrupole/Time-of-Flight System (UPLC-QTOF)
4.4. Strains Utilized
4.5. Inoculum Preparation for the Sensitivity Test
4.6. Antifungal Sensitivity Test
4.7. Acrylic Resin Disk Preparations
4.8. Solution Preparations for the Biofilm Test
4.9. Evaluation of the Biofilm Formation Capacity in Acrylic Resin Discs
4.10. Biofilm Treatment
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Simões, R.J.; Fonseca, P.; Figueiral, M.H. Infecções por Candida spp. na Cavidade Oral. Odontol. Clín. Cient. (Online) 2013, 12, 19–22. [Google Scholar]
- Peixoto, J.V.; Rocha, M.G.; Nascimento, R.T.L.; Moreira, V.V.; Kashiwabara, T.G.B. Candidíase—uma revisão de literatura. Braz. J. Surg. Clin. Res. 2014, 8, 75–82. [Google Scholar]
- Barbedo, L.S.; Sgarbi, D.B.G. Candidíase. J. Bras. De Doenças Sex. Transm. 2010, 22, 22–38. [Google Scholar]
- Menezes, T.O.A.; Alves, A.C.B.A.; Vieira, J.M.S.; Menezes, S.A.F.; Alves, B.P.; Mendonça, L.C.V. Avaliação in vitro da atividade antifúngica de óleos essenciais e extratos de plantas da região amazônica sobre cepa de Candida albicans. Rev. Odontol. UNESP 2009, 38, 184–191. [Google Scholar]
- Endo, E.H.; Cortez, D.A.; Ueda-Nakamura, T.; Nakamura, C.V.; Dias Filho, B.P. Potent antifungal activity of extracts and pure compound isolated from pomegranate peels and synergism with fluconazole against Candida albicans. Res. Microbiol. 2010, 161, 534–540. [Google Scholar] [CrossRef]
- Tsang, P.W.-K.; Bandara, H.M.H.N.; Fong, W.-P. Purpurin suppresses Candida albicans biofilm formation and hyphal development. PLoS ONE 2012, 7, e50866. [Google Scholar] [CrossRef] [Green Version]
- Finkel, J.S.; Mitchell, A.P. Genetic control of Candida albicans biofilm developement. Nat. Rev. Microbiol 2011, 9, 109–118. [Google Scholar] [CrossRef]
- Chandra, J.; Mukherjee, P.K. Candida biofilms: Development, architecture and resistance. Microbiol Spectr. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Cortegiani, A.; Misseri, G.; Fasciana, T.; Giammanco, A.; Giarratano, A.; Chowdhary, A. Epidemiology, clinical characteristics, resistance, and treatment of infections by Candida auris. J. Intensive Care 2018, 6, 1–13. [Google Scholar] [CrossRef]
- Guimarães, D.O.; Momesso, L.S.; Pupo, M.T. Antibióticos: Importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Química Nova 2010, 33, 667–679. [Google Scholar] [CrossRef] [Green Version]
- Correa, M.P.; Penna, L.A. Dicionário das Plantas l Jteis do Brasil e das Exóticas Cultivadas; Ministério da Agricultura, Instituto Brasileiro de Desenvolvimento Florestal: Brazília, Brasil, 1984; Volume I: 153–154; Volume II: 93, 219, 321, 393–394, 521; Volume III: 365, 486; Volume IV: 200, 326, 332; Volume V: 326, 530, 562; Volume VI: 178.
- Sothers, C.A.; Prance, G.T.; & Chase, M.W. Towards a monophyletic Licania: A new generic classification of the polyphyletic Neotropical genus Lic. (Chrysobalanaceae). Kew Bull. 2016, 71, 58. [Google Scholar] [CrossRef]
- Farias, D.F.; Souza, T.M.; Viana, M.P.; Soares, B.M.; Cunha, A.P.; Vasconcelos, I.M.; Carvalho, A.F.U. Antibacterial, antioxidant, and anticholinesterase activities of plant seed extracts from Brazilian Semiarid Region. Biomed. Res. Int. 2013, 2013, 1–9. [Google Scholar] [CrossRef]
- Bárbara, O.; Henriques, O.C.; Azevedo, E.P.C.; Pádua, R.M.; Oliveira, V.L.S.; Oliveira, T.H.C.; Daiane, B.; Ana Carolina, F.D.; Danielle, G.S.; Flávio, A.A.; et al. In vitro TNF-α inhibitory activity of Brazilian plants and anti-inflammatory effect of Stryphnodendron adstringens in an acute arthritis model. Evid. Based Complementary Altern. Med. 2016, 2016, 9872598. [Google Scholar]
- Lingguang, Y.; Peipei, Y.; Hang, F.; Qiang, X.; Ke, L.; Xiang, L.; Liwei, S.; Yujun, L. Response surface methodology optimization of ultrasonic-assisted extraction of acer truncatum leaves for maximal phenolic yield and antioxidant activity. Molecules 2017, 22, 232. [Google Scholar]
- Parra Pessoa, I.; Neto, J.; de Almeida, T.; Farias, D.; Vieira, L.; de Medeiros, J.; Carvalho, A. Polyphenol composition, antioxidant activity and cytotoxicity of seeds from two underexploited wild Licania species: L. rigida and L. Tomentosa. Molecules 2016, 21, 1755. [Google Scholar] [CrossRef] [Green Version]
- Braca, A.; Sortino, C.; Politi, M.; Morelli, I.; Mendez, J. Antioxidant activity of flavonoids from Licania licaniae flora. J. Ethnopharmacol. 2002, 79, 379–381. [Google Scholar] [CrossRef]
- Soares Santos, E.; Oliveira, C.D.; Menezes, I.; do Nascimento, E.P.; Correia, D.; de Alencar, C.D.C.; Kerntopf, M.R. Anti-inflammatory activity of herb products from Licania rigida Benth. Complementary Ther. Med. 2019, 45, 254–261. [Google Scholar] [CrossRef]
- Morais, L.V. Atividade Antimicrobiana e Antioxidante de Licania Rigida e Turnera Ulmifolia. Master’s Thesis, Universidade Federal do Rio Grande do Norte, Natal, Brazil, 2015. [Google Scholar]
- Silva, C.R.; Andrade-Neto, J.B.; Campos, R.S.; Figueiredo, N.S.; Sampaio, L.S.; Magalhães, H.I.; Cavalcanti, B.C.; Gaspar, D.M.; Andrade, G.M.; Lima, I.S.; et al. Synergistic effect of the flavonoid catechin, quercetin, or epigallocatechin gallate with fluconazole induces apoptosis in Candida tropicalis resistant to fluconazole. Antimicrob. Agents Chemother. 2014, 58, 1468–1478. [Google Scholar] [CrossRef] [Green Version]
- Arif, T.; Mandal, T.K.; Dabur, R. Natural products: Anti—fungal agents derived from plants. In Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry; Research Signpost: Thiruvananthapuram, India, 2011; Volume 81, pp. 283–311. [Google Scholar]
- Salas, P.M.; Céliz, G.; Geronazzo, H.; Daz, M.; Resnik, S.L. Antifungal activity and enzymatically—modified flavonoids isolated from citrus species. Food Chem. 2011, 124, 1411–1415. [Google Scholar] [CrossRef]
- Ansari, M.A.; Anurag, A.; Fatima, Z.; Hameed, S. Natural Phenolic Compounds: A potential Antifungal Agent, 3rd ed.; Formatex Research Center: Badajoz, Spain, 2013; p. 1189. ISBN 978-84-9421. [Google Scholar]
- Cavalheiro, M.; Teixeira, M.C. Candida Biofilms: Threats, challenges, and promising strategies. Front. Med. 2018, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Fanning, S.; Mitchell, A.P. Fungal biofilms. PLoS Pathog. 2012, 8, e1002585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panariello, B.H.D.; Klein, M.I.; Mima, E.G.D.O.; Pavarina, A.C. Fluconazole impacts the extracellular matrix of fluconazole-susceptible and -resistant Candida albicans and Candida glabrata biofilms. J. Oral Microbiol. 2018, 10, 1476644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marak, M.B.; Dhanashree, B. Antifungal susceptibility and biofilm production of Candida spp. Isolated from clinical samples. Int. J. Microbiol. 2018, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Tobaldini-Valerio, F.; Bonfim-Mendonça, P.S.; Rosseto, H.C.; Bruschi, M.L.; Henriques, M.; Negri, M.; Silva, S.C.; Svidzinski, T.I.E. Propolis: A potential natural product to fight Candida species infections. Future Microbiol. 2016, 11, 1035–1046. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, M.; Sherry, L.; Rajendran, R.; Edwards, C.A.; Combet, E.; Ramage, G. Utilising polyphenols for the clinical management of Candida albicans biofilms. Int. J. Antimicrob. Agents 2014, 44, 269–273. [Google Scholar] [CrossRef] [Green Version]
- Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species. Front. Microbiol. 2017, 7, 2173. [Google Scholar] [CrossRef] [Green Version]
- Arendrup, M.C.; Patterson, T.F. Multidrug-Resistant Candida: Epidemiology, molecular mechanisms, and treatment. J. Infect. Dis. 2017, 216, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Jain, N.; Kohli, R.; Cook, E.; Gialanella, P.; Chang, T.; Fries, B.C. Biofilm formation by and antifungal susceptibility of Candida isolates from urine. Appl. Environ. Microbiol. 2007, 73, 1697–1703. [Google Scholar] [CrossRef] [Green Version]
- Bizerra, F.C.; Nakamura, C.V.; De Poersch, C.; Estivalet Svidzinski, T.I.; Borsato Quesada, R.M.; Goldenberg, S.; Krieger, M.A.; Yamada-Ogatta, S.F. Characteristics of biofilm formation by Candida tropicalis and antifungal resistance. FEMS Yeast Res. 2008, 8, 442–450. [Google Scholar] [CrossRef] [Green Version]
- Rajasekharan, S.K.; Ramesh, S.; Bakkiyaraj, D. Synergy of flavonoids with HDAC inhibitor: New approach to target Candida tropicalis biofilms. J. Chemother. 2014, 27, 246–249. [Google Scholar] [CrossRef]
- Wang, Y.; Bandara, H.M.H.N.; Mikkelsen, D.; Samaranayake, L.P. Effects of tea extracts on the colonization behaviour of Candida species: Attachment inhibition and biofilm enhancement. J. Med. Microb 2017, 66, 1244–1252. [Google Scholar] [CrossRef]
- Evensen, N.A.; Braun, P.C. The effects of tea polyphenols on Candida albicans: Inhibition of biofilm formation and proteasome inactivation. Can. J. Microbiol. 2009, 55, 1033–1039. [Google Scholar] [CrossRef]
- Matsumoto, M.; Minami, T.; Sasaki, H.; Sobue, S.; Hamada, S.; Ooshima, T. Inhibitory effects of oolong tea extract on caries-inducing properties of mutans streptococci. Caries Res. 1999, 33, 441–445. [Google Scholar] [CrossRef]
- Matos, F.J.A. Farmácias Vivas, 4th ed.; Editora UFC: Fortaleza, Brazil, 2002; pp. 36–40. [Google Scholar]
- Wayne, P.A. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved standard M27-A3; Clinical and Laboratory Standards Institute: Wayne, AL, USA, 2008. [Google Scholar]
- Wayne, P.A. Performace Standards for Antifungal Susceptibility Testing of Yeasts, 1st ed.; CLSI supplemente M60; Clinical and Laboratory Standards Institute: Wayne, AL, USA, 2017. [Google Scholar]
- Berridge, M.V.; Herst, P.M.; Tan, A.S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol. Annu. Rev. 2005, 11, 127–152. [Google Scholar]
- Krom, B.P.; Cohen, J.B.; Feser, G.E.M.; Cihlar, R.L. Optimized candida biofilm microtiter assay. J. Microbiol. Methods 2007, 68, 421–423. [Google Scholar] [CrossRef]
PeakNo. | Rt min | [M-H] Observed | [M-H] Calculated | Product Ions (MS/MS) | Empirical Formula | ppm (Error) | Putative Name | References |
---|---|---|---|---|---|---|---|---|
1 | 1.99 | 609.1260 | 609.1244 | 305.0717, 441.0822, 423.0754 | C15H14O7 | 2.6 | (epi) gallocatechin Dimer (Epigalocatechin) | [14] |
2 | 2.26 | 305.0655 | 305.0661 | 137.0216, 167.0338, 179.0385 | C15H14O7 | 2.0 | (L)-Epigalocatechin | [14] |
3 | 2.78 | 305.0602 | 305.0661 | 137.0216, 167.0338, 179.0385 | C15H14O7 | 19.3 | Gallocatechin | [14] |
4 | 3.81 | 479.0828 | 479.0826 | 271.0225, 316.0199 | C21H19O13 | 0.4 | Myricetin-O-hexoside | [15] |
5 | 4.22 | 463.0879 | 463.0877 | 316.0143 | C21H20O12 | 0.4 | Myricitrin | [15] |
6 | 4.71 | 447.0913 | 447.0927 | 255.0283, 271.0165 | C21H20O11 | 3.1 | Quercetin-O-rhamnoside | [15] |
7 | 5.26 | 351.0147 | 351.0141 | 151.0035, 203.9725, 271.0602 | C18 H7 O8 | 1.7 | Not identified | - |
8 | 7.29 | 363.0135 | 363.0141 | 267.0294, 268.0337, 283.0612, 347.9891 | C19H7O8 | 1.7 | Not identified | - |
9 | 10.12 | 397.1346 | 397.1346 | 125.0241, 183.0080, 277.2179, 311.1738 | C15H25O12 | 3.5 | Not identified | - |
10 | 10.41 | 397.1363 | 397.1346 | 183.0066, 235.0800, 277.2123, 325.1740 | C15H25O12 | 4.3 | Not identified | - |
11 | 11.14 | 277.2164 | 277.2168 | 183.0114, 184.0016, 253.1086 | C18H29O2 | 1.4 | Not identified | - |
12 | 11.36 | 277.2170 | 277.2168 | 183.0114, 184.0264, 253.1031 | C18H29O2 | 0.7 | Not identified | - |
Strains | EEFLr | Fluconazole |
---|---|---|
C. albicans URM5900 | ≥ 1024 µg/mL | 16 µg/mL |
C. krusei URM5712 | 256 µg/mL | 64 µg/mL |
C. tropicalis URM5732 | ≥ 1024 µg/mL | 64 µg/mL |
C. albicans ATCC90028 | 256 µg/mL | 1 µg/mL |
C. krusei INCQS40042 | ≥ 1024 µg/mL | 64 µg/mL |
C. albicans INCQS40006 | ≥ 1024 µg/mL | 64 µg/mL |
C. krusei URM4263 | 32 µg/mL | 64 µg/mL |
C. krusei URM6352 | 64 µg/mL | 64 µg/mL |
C. krusei URM584O | 32 µg/mL | 32 µg/mL |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Freitas, M.A.; Silva Alves, A.I.; Andrade, J.C.; Leite-Andrade, M.C.; Lucas dos Santos, A.T.; Felix de Oliveira, T.; dos Santos, F.d.A.G.; Silva Buonafina, M.D.; Melo Coutinho, H.D.; Alencar de Menezes, I.R.; et al. Evaluation of the Antifungal Activity of the Licania Rigida Leaf Ethanolic Extract against Biofilms Formed by Candida Sp. Isolates in Acrylic Resin Discs. Antibiotics 2019, 8, 250. https://doi.org/10.3390/antibiotics8040250
de Freitas MA, Silva Alves AI, Andrade JC, Leite-Andrade MC, Lucas dos Santos AT, Felix de Oliveira T, dos Santos FdAG, Silva Buonafina MD, Melo Coutinho HD, Alencar de Menezes IR, et al. Evaluation of the Antifungal Activity of the Licania Rigida Leaf Ethanolic Extract against Biofilms Formed by Candida Sp. Isolates in Acrylic Resin Discs. Antibiotics. 2019; 8(4):250. https://doi.org/10.3390/antibiotics8040250
Chicago/Turabian Stylede Freitas, Maria Audilene, Adryelle Idalina Silva Alves, Jacqueline Cosmo Andrade, Melyna Chaves Leite-Andrade, Antonia Thassya Lucas dos Santos, Tatiana Felix de Oliveira, Franz de Assis G. dos Santos, Maria Daniela Silva Buonafina, Henrique Douglas Melo Coutinho, Irwin Rose Alencar de Menezes, and et al. 2019. "Evaluation of the Antifungal Activity of the Licania Rigida Leaf Ethanolic Extract against Biofilms Formed by Candida Sp. Isolates in Acrylic Resin Discs" Antibiotics 8, no. 4: 250. https://doi.org/10.3390/antibiotics8040250
APA Stylede Freitas, M. A., Silva Alves, A. I., Andrade, J. C., Leite-Andrade, M. C., Lucas dos Santos, A. T., Felix de Oliveira, T., dos Santos, F. d. A. G., Silva Buonafina, M. D., Melo Coutinho, H. D., Alencar de Menezes, I. R., Bezerra Morais-Braga, M. F., & Pereira Neves, R. (2019). Evaluation of the Antifungal Activity of the Licania Rigida Leaf Ethanolic Extract against Biofilms Formed by Candida Sp. Isolates in Acrylic Resin Discs. Antibiotics, 8(4), 250. https://doi.org/10.3390/antibiotics8040250