Acquisition Risk Factors of the SCCmec IX-Methicillin-Resistant Staphylococcus aureus in Swine Production Personnel in Chiang Mai and Lamphun Provinces, Thailand
Abstract
:1. Introduction
2. Results
2.1. MRSA Carriage Rate in Swine Production Personnel and Pig Farms
2.2. Antimicrobial Resistance of MRSA Isolates
2.3. SCCmec Typing
2.4. Risk Factors of MRSA Detection in SPP and a Swine Farm
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Ethics Approval
5.2. Data and Sample Collection
5.3. Bacterial Isolation and Identification
5.4. Antimicrobial Susceptibility Testing
5.5. SCCmec Typing
5.6. Data Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- NeVille-Swensen, M.; Clayton, M. Outpatient management of community-associated methicillin-resistant Staphylococcus aureus skin and soft tissue infection. J. Pediatric Health Care 2011, 25, 308–315. [Google Scholar] [CrossRef]
- Meddles-Torres, C.; Hu, S.; Jurgens, C. Changes in prescriptive practices in skin and soft tissue infections associated with the increased occurrence of community acquired methicillin resistant Staphylococcus aureus. J. Infect. Public Health 2013, 6, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Voss, A.; Loeffen, F.; Bakker, J.; Klaassen, C.; Wulf, M. Methicillin-resistant Staphylococcus aureus in pig farming. Emerg. Infect. Dis. 2005, 11, 1965–1966. [Google Scholar] [CrossRef]
- Armand-Lefevre, L.; Ruimy, R.; Andremont, A. Clonal comparison of Staphylococcus aureus isolates from healthy pig farmers, human controls, and pigs. Emerg. Infect. Dis. 2005, 11, 711–714. [Google Scholar] [CrossRef]
- Wang, X.L.; Li, L.; Li, S.M.; Huang, J.Y.; Fan, Y.P.; Yao, Z.J.; Ye, X.H.; Chen, S.D. Phenotypic and molecular characteristics of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in slaughterhouse pig-related workers and control workers in Guangdong Province, China. Epidemiol. Infect. 2017, 145, 1843–1851. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, M.J.; Bos, M.E.; Duim, B.; Urlings, B.A.; Heres, L.; Wagenaar, J.A.; Heederik, D.J. Livestock-associated MRSA ST398 carriage in pig slaughterhouse workers related to quantitative environmental exposure. Occup. Environ. Med. 2012, 69, 472–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahibzada, S.; Hernandez-Jover, M.; Jordan, D.; Thomson, P.C.; Heller, J. Emergence of highly prevalent CA-MRSA ST93 as an occupational risk in people working on a pig farm in Australia. PLoS ONE 2018, 13, e0195510. [Google Scholar] [CrossRef] [Green Version]
- Anukool, U.; O’Neill, C.E.; Butr-Indr, B.; Hawkey, P.M.; Gaze, W.H.; Wellington, E.M. Meticillin-resistant Staphylococcus aureus in pigs from Thailand. Int. J. Antimicrob. Agents 2011, 38, 86–87. [Google Scholar] [CrossRef]
- Larsen, J.; Imanishi, M.; Hinjoy, S.; Tharavichitkul, P.; Duangsong, K.; Davis, M.F.; Nelson, K.E.; Larsen, A.R.; Skov, R.L. Methicillin-resistant Staphylococcus aureus ST9 in pigs in Thailand. PLoS ONE 2012, 7, e31245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vestergaard, M.; Cavaco, L.M.; Sirichote, P.; Unahalekhaka, A.; Dangsakul, W.; Svendsen, C.A.; Aarestrup, F.M.; Hendriksen, R.S. SCCmec type IX element in methicillin resistant Staphylococcus aureus spa type t337 (CC9) isolated from pigs and pork in Thailand. Front. Microbiol. 2012, 3, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinlapasorn, S.; Lulitanond, A.; Angkititrakul, S.; Chanawong, A.; Wilailuckana, C.; Tavichakorntrakool, R.; Chindawong, K.; Seelaget, C.; Krasaesom, M.; Chartchai, S.; et al. SCCmec IX in meticillin-resistant Staphylococcus aureus and meticillin-resistant coagulase-negative staphylococci from pigs and workers at pig farms in Khon Kaen, Thailand. J. Med. Microbiol. 2015, 64, 1087–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements. Classification of staphylococcal cassette chromosome mec (SCCmec): Guidelines for reporting novel SCCmec elements. Antimicrob. Agents Chemother. 2009, 53, 4961–4967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaya, H.; Hasman, H.; Larsen, J.; Stegger, M.; Johannesen, T.B.; Allesoe, R.L.; Lemvigh, C.K.; Aarestrup, F.M.; Lund, O.; Larsen, A.R. SCCmecFinder, a web-based tool for typing of staphylococcal cassette chromosome mec in Staphylococcus aureus using whole-genome sequence data. mSphere 2018, 3, e00612-17. [Google Scholar] [CrossRef] [Green Version]
- Lakhundi, S.; Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lulitanond, A.; Ito, T.; Li, S.; Han, X.; Ma, X.X.; Engchanil, C.; Chanawong, A.; Wilailuckana, C.; Jiwakanon, N.; Hiramatsu, K. ST9 MRSA strains carrying a variant of type IX SCCmec identified in the Thai community. BMC Infect. Dis. 2013, 13, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patchanee, P.; Tadee, P.; Arjkumpa, O.; Love, D.; Chanachai, K.; Alter, T.; Hinjoy, S.; Tharavichitkul, P. Occurrence and characterization of livestock-associated methicillin-resistant Staphylococcus aureus in pig industries of northern Thailand. J. Vet. Sci. 2014, 15, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Ballhausen, B.; Kahl, B.C.; Kock, R. The clinical impact of livestock-associated methicillin-resistant Staphylococcus aureus of the clonal complex 398 for humans. Vet. Microbiol. 2017, 200, 33–38. [Google Scholar] [CrossRef]
- Angen, O.; Feld, L.; Larsen, J.; Rostgaard, K.; Skov, R.; Madsen, A.M.; Larsen, A.R. Transmission of methicillin-resistant Staphylococcus aureus to human volunteers visiting a swine farm. Appl. Environ. Microbiol. 2017, 83, e01489-17. [Google Scholar] [CrossRef] [Green Version]
- Feld, L.; Bay, H.; Angen, O.; Larsen, A.R.; Madsen, A.M. Survival of LA-MRSA in dust from swine farms. Ann. Work Expo. Health 2018, 62, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Chanchaithong, P.; Perreten, V.; Am-In, N.; Lugsomya, K.; Tummaruk, P.; Prapasarakul, N. Molecular characterization and antimicrobial resistance of livestock-associated methicillin-resistant Staphylococcus aureus isolates from pigs and swine workers in central Thailand. Microb. Drug Resist. 2019, 25, 1382–1389. [Google Scholar] [CrossRef]
- Sun, J.; Li, L.; Liu, B.; Xia, J.; Liao, X.; Liu, Y. Development of aminoglycoside and beta-lactamase resistance among intestinal microbiota of swine treated with lincomycin, chlortetracycline, and amoxicillin. Front. Microbiol. 2014, 5, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinsky, J.L.; Nadimpalli, M.; Wing, S.; Hall, D.; Baron, D.; Price, L.B.; Larsen, J.; Stegger, M.; Stewart, J.; Heaney, C.D. Livestock-associated methicillin and multidrug resistant Staphylococcus aureus is present among industrial, not antibiotic-free livestock operation workers in North Carolina. PLoS ONE 2013, 8, e67641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, A.J.; Witney, A.A.; Gould, K.A.; Moodley, A.; Guardabassi, L.; Voss, A.; Denis, O.; Broens, E.M.; Hinds, J.; Lindsay, J.A. The distribution of mobile genetic elements (MGEs) in MRSA CC398 is associated with both host and country. Genome Biol. Evol. 2011, 3, 1164–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, A.J.; van Wamel, W.; Vandendriessche, S.; Larsen, J.; Denis, O.; Garcia-Graells, C.; Uhlemann, A.C.; Lowy, F.D.; Skov, R.; Lindsay, J.A. Staphylococcus aureus CC398 clade associated with human-to-human transmission. Appl. Environ. Microbiol. 2012, 78, 8845–8848. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Wang, X.; Fan, Y.; Peng, Y.; Li, L.; Li, S.; Huang, J.; Yao, Z.; Chen, S. Genotypic and phenotypic markers of livestock-associated methicillin-resistant Staphylococcus aureus CC9 in humans. Appl. Environ. Microbiol. 2016, 82, 3892–3899. [Google Scholar] [CrossRef] [Green Version]
- Pyorala, S.; Baptiste, K.E.; Catry, B.; van Duijkeren, E.; Greko, C.; Moreno, M.A.; Pomba, M.C.; Rantala, M.; Ruzauskas, M.; Sanders, P.; et al. Macrolides and lincosamides in cattle and pigs: Use and development of antimicrobial resistance. Vet. J. 2014, 200, 230–239. [Google Scholar] [CrossRef]
- Leclercq, R. Mechanisms of resistance to macrolides and lincosamides: Nature of the resistance elements and their clinical implications. Clin. Infect. Dis. 2002, 34, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Lopes, E.; Conceicao, T.; Poirel, L.; de Lencastre, H.; Aires-de-Sousa, M. Epidemiology and antimicrobial resistance of methicillin-resistant Staphylococcus aureus isolates colonizing pigs with different exposure to antibiotics. PLoS ONE 2019, 14, e0225497. [Google Scholar] [CrossRef] [Green Version]
- Gade, N.D.; Qazi, M.S. Fluoroquinolone therapy in Staphylococcus aureus infections: Where do we stand? J. Lab. Physicians 2013, 5, 109–112. [Google Scholar] [CrossRef]
- Hooper, D.C.; Jacoby, G.A. Mechanisms of drug resistance: Quinolone resistance. Ann. N. Y. Acad. Sci. 2015, 1354, 12–31. [Google Scholar] [CrossRef] [Green Version]
- Yamada, M.; Yoshida, J.; Hatou, S.; Yoshida, T.; Minagawa, Y. Mutations in the quinolone resistance determining region in Staphylococcus epidermidis recovered from conjunctiva and their association with susceptibility to various fluoroquinolones. Br. J. Ophthalmol. 2008, 92, 848–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, Y.; Ito, T.; Ma, X.X.; Watanabe, S.; Kreiswirth, B.N.; Etienne, J.; Hiramatsu, K. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: Rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob. Agents Chemother. 2007, 51, 264–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kock, R.; Harlizius, J.; Bressan, N.; Laerberg, R.; Wieler, L.H.; Witte, W.; Deurenberg, R.H.; Voss, A.; Becker, K.; Friedrich, A.W. Prevalence and molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) among pigs on German farms and import of livestock-related MRSA into hospitals. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 1375–1382. [Google Scholar] [CrossRef] [Green Version]
- Aires-de-Sousa, M. Methicillin-resistant Staphylococcus aureus among animals: Current overview. Clin. Microbiol. Infect. 2017, 23, 373–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marimuthu, K.; Pittet, D.; Harbarth, S. The effect of improved hand hygiene on nosocomial MRSA control. Antimicrob. Resist. Infect. Control 2014, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- van Cleef, B.A.; van Benthem, B.H.; Verkade, E.J.; van Rijen, M.; Kluytmans-van den Bergh, M.F.; Schouls, L.M.; Duim, B.; Wagenaar, J.A.; Graveland, H.; Bos, M.E.; et al. Dynamics of methicillin-resistant Staphylococcus aureus and methicillin-susceptible Staphylococcus aureus carriage in pig farmers: A prospective cohort study. Clin. Microbiol. Infect. 2014, 20, O764–O771. [Google Scholar] [CrossRef] [Green Version]
- Feingold, B.J.; Silbergeld, E.K.; Curriero, F.C.; van Cleef, B.A.; Heck, M.E.; Kluytmans, J.A. Livestock density as risk factor for livestock-associated methicillin-resistant Staphylococcus aureus, The Netherlands. Emerg. Infect. Dis. 2012, 18, 1841–1849. [Google Scholar] [CrossRef]
- Schinasi, L.; Wing, S.; Augustino, K.L.; Ramsey, K.M.; Nobles, D.L.; Richardson, D.B.; Price, L.B.; Aziz, M.; MacDonald, P.D.; Stewart, J.R. A case control study of environmental and occupational exposures associated with methicillin resistant Staphylococcus aureus nasal carriage in patients admitted to a rural tertiary care hospital in a high density swine region. Environ. Health 2014, 13, 54. [Google Scholar] [CrossRef] [Green Version]
- Monaco, M.; Pedroni, P.; Sanchini, A.; Bonomini, A.; Indelicato, A.; Pantosti, A. Livestock-associated methicillin-resistant Staphylococcus aureus responsible for human colonization and infection in an area of Italy with high density of pig farming. BMC Infect. Dis. 2013, 13, 258. [Google Scholar] [CrossRef] [Green Version]
- Anker, J.C.H.; Koch, A.; Ethelberg, S.; Molbak, K.; Larsen, J.; Jepsen, M.R. Distance to pig farms as risk factor for community-onset livestock-associated MRSA CC398 infection in persons without known contact to pig farms-A nationwide study. Zoonoses Public Health 2018, 65, 352–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, H.C.; Molbak, K.; Reese, C.; Aarestrup, F.M.; Selchau, M.; Sorum, M.; Skov, R.L. Pigs as source of methicillin-resistant Staphylococcus aureus CC398 infections in humans, Denmark. Emerg. Infect. Dis. 2008, 14, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.C.; Gebreyes, W.A.; Abley, M.J.; Harper, A.L.; Forshey, B.M.; Male, M.J.; Martin, H.W.; Molla, B.Z.; Sreevatsan, S.; Thakur, S.; et al. Methicillin-resistant Staphylococcus aureus in pigs and farm workers on conventional and antibiotic-free swine farms in the USA. PLoS ONE 2013, 8, e63704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorensen, A.I.V.; Jensen, V.F.; Boklund, A.; Halasa, T.; Christensen, H.; Toft, N. Risk factors for the occurrence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in Danish pig herds. Prev. Vet. Med. 2018, 159, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Yano, T.; Premashthira, S.; Dejyong, T.; Tangtrongsup, S.; Salman, M.D. The effectiveness of a foot and mouth disease outbreak control programme in Thailand 2008–2015: Case studies and lessons learned. Vet. Sci. 2018, 5, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vikram, A.; Bomberger, J.M.; Bibby, K.J. Efflux as a glutaraldehyde resistance mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2015, 59, 3433–3440. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Wang, M.; Mo, T.; Liu, M.; Biville, F.; Zhu, D.; Jia, R.; Chen, S.; Zhao, X.; Yang, Q.; et al. Role of LptD in resistance to glutaraldehyde and pathogenicity in Riemerella anatipestifer. Front. Microbiol. 2019, 10, 1443. [Google Scholar] [CrossRef]
- Kampf, G. Antibiotic resistance can be enhanced in gram-positive species by some biocidal agents used for disinfection. Antibiotics 2019, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Kumari, D.N.; Keer, V.; Hawkey, P.M.; Parnell, P.; Joseph, N.; Richardson, J.F.; Cookson, B. Comparison and application of ribosome spacer DNA amplicon polymorphisms and pulsed-field gel electrophoresis for differentiation of methicillin-resistant Staphylococcus aureus strains. J. Clin. Microbiol. 1997, 35, 881–885. [Google Scholar] [CrossRef] [Green Version]
- Al-Talib, H.; Yean, C.Y.; Al-Khateeb, A.; Hassan, H.; Singh, K.K.; Al-Jashamy, K.; Ravichandran, M. A pentaplex PCR assay for the rapid detection of methicillin-resistant Staphylococcus aureus and Panton-Valentine Leucocidin. BMC Microbiol. 2009, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Hedin, G. Rapid screening and identification of methicillin-resistant Staphylococcus aureus from clinical samples by selective-broth and real-time PCR assay. J. Clin. Microbiol. 2003, 41, 2894–2899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Doornum, G.J.; Guldemeester, J.; Osterhaus, A.D.; Niesters, H.G. Diagnosing herpesvirus infections by real-time amplification and rapid culture. J. Clin. Microbiol. 2003, 41, 576–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.R-project.org/ (accessed on 30 January 2019).
Antimicrobial Resistance Profiles | No. of MRSA Isolates | Percentage (%) | |
---|---|---|---|
I. | P-TE-CIP-DA-C-FOS-CN-KZ-E-SXT | 1 | 1.69 |
II. | P-TE-CIP-DA-C-FOS-CN-KZ-E | 5 | 8.47 |
III. | P-TE-CIP-DA-C-CN-KZ-E-SXT | 2 | 3.39 |
IV. | P-TE-CIP-DA-C-FOS-CN-KZ | 1 | 1.69 |
V. | P-TE-CIP-DA-C-FOS-CN-E | 4 | 6.78 |
VI. | P-TE-CIP-DA-C-CN-KZ-E | 2 | 3.39 |
VII. | P-TE-CIP-DA-C-CN-E-SXT | 1 | 1.69 |
VIII. | P-TE-CIP-DA-CN-KZ-E | 9 | 15.25 |
IX. | P-TE-CIP-C-CN-KZ-E | 1 | 1.69 |
X. | P-TE-CIP-DA-C-FOS-CN | 5 | 8.47 |
XI. | P-TE-CIP-DA-C-FOS-KZ | 6 | 10.17 |
XII. | P-TE-CIP-DA-C-CN-KZ | 5 | 8.47 |
XIII. | P-TE-CIP-DA-C-CN-E | 1 | 1.69 |
XIV. | P-TE-CIP-DA-C-FOS | 3 | 5.08 |
XV. | P-TE-DA-FOS-KZ-E | 2 | 3.39 |
XVI. | P-TE-DA-FOS-E | 7 | 11.86 |
XVII. | P-CIP-CN-KZ | 1 | 1.69 |
XVIII. | P-CIP-KZ | 2 | 3.39 |
XIX. | P-DA-FOS | 1 | 1.69 |
Total | 59 | 100 |
Characteristics | Number | MRSA-Positive | p-Value |
---|---|---|---|
General information | |||
Age (years) | 35.43 (19–70) | 32.77 | 0.749 |
Gender | 0.306 | ||
Male | 113 (56%) | 7 (6%) | |
Female | 89 (44%) | 9 (10%) | |
Education | 0.031 * | ||
None | 30 (15%) | 7 (23%) | |
Primary school | 33 (17%) | 0 (0%) | |
Grade 9 | 19 (10%) | 2 (10%) | |
High school | 20 (10%) | 1 (5%) | |
Diploma | 11 (6%) | 0 (0%) | |
Bachelor’s degree | 73 (37%) | 5 (7%) | |
Postgraduate | 13 (6%) | 1 (8%) | |
Occupation and pig contact frequency | |||
Role of SPP in farms | 0.211 | ||
Farm owner | 30 (15%) | 4 (13%) | |
Farm worker | 100 (50%) | 2 (9%) | |
Veterinarian/animal husbandman | 17 (8%) | 9 (2%) | |
Veterinary/animal sciences students | 55 (27%) | 1(12%) | |
Experience of working with pigs (months) | 9.28 (0–36) | 6.23 | 0.091 |
Direct contact with pigs | 1.000 | ||
Yes | 187 (94%) | 15 (8%) | |
No | 12 (6%) | 1 (8%) | |
Frequency of contact with pigs | 0.013 * | ||
High (≥24 days/month) | 102 (57%) | 15 (14%) | |
Medium (9–23 days/month) | 14 (8%) | 0 (0%) | |
Low (≤8 days/month) | 62 (35%) | 1 (2%) | |
Number of working hours in a day (hours) | 5.99 (1–15) | 7.33 | 0.047 * |
Number of working hours in a week (hours) | 34.15 (1–105) | 50.27 | 0.004 ** |
Number of working days in a week (days) | 5.24 (1–7) | 6.87 | 0.003 ** |
Raise livestock other than pigs | 0.026 * | ||
Yes | 46 (23) | 0 (0%) | |
No | 153 (77) | 16 (10%) | |
Personal hygiene | |||
Hand washing | 1.000 | ||
Yes | 193 (96%) | 16 (8%) | |
No | 9 (4%) | 0 (0%) | |
Changing clothes before leaving the farm | 0.019 * | ||
Yes | 130 (64%) | 6 (5%) | |
No | 72 (36%) | 10 (14%) | |
Shower after work | 0.005 ** | ||
Yes | 162 (80%) | 8 (5%) | |
No | 40 (10%) | 8 (20%) | |
Eating during work | 0.190 | ||
Yes | 164 (81%) | 5 (7%) | |
No | 38 (19%) | 11 (17%) | |
Cleaning the equipment | 1.000 | ||
Yes | 183 (91%) | 15 (8%) | |
No | 18 (9%) | 1 (6%) | |
History of medication | |||
Antimicrobial drugs use in the previous year | 0.436 | ||
Yes | 133 (66%) | 4 (6%) | |
No | 68 (34%) | 12 (9%) | |
Type of antimicrobial drugs | 0.739 | ||
Amoxicillin | 27 (57%) | 1 (4%) | |
Amoxicillin/Clavulanic acid | 1 (2%) | 0 (0%) | |
Cloxacillin | 4 (8%) | 0 (0%) | |
Oxytetracycline | 1 (2%) | 0 (0%) | |
Other | 15 (31%) | 2 (13%) | |
Received drugs by | |||
Prescription | 0.397 | ||
Yes | 34 (39%) | 1 (3%) | |
No | 53 (61%) | 5 (9%) | |
Self-buying from drugstores | 0.339 | ||
Yes | 24 (27%) | 3 (12%) | |
No | 64 (73%) | 3 (5%) | |
Other ways | 1.000 | ||
Yes | 4 (4%) | 0 (0%) | |
No | 84 (96%) | 6 (7%) |
Characteristics | Number | MRSA-Positive | p-Value |
---|---|---|---|
General information | |||
No. of staff | |||
Veterinarian | 0.13 (0–1) | 0.20 | 0.649 |
Animal Husbandman | 0.16 (0–4) | 1.40 | 0.050 |
Owner | 1.22 (0–5) | 0.80 | 0.278 |
Worker | 5.22 (0–79) | 19.40 | 0.024 * |
Other (Housekeepers) | 0.91 (0–12) | 2.80 | 0.064 |
Total no. of staff | 8.09 (0–96) | 24.60 | 0.028 * |
No. of pigs | |||
Suckling pigs | 36.01 (0–500) | 20.00 | 0.549 |
Nursery pigs | 367.00 (4–6038) | 1421.60 | 0.0288 * |
Starter pigs | 88.61 (0–400) | 130.00 | 0.434 |
Grower pigs | 76.44 (0–400) | 120.00 | 0.412 |
Finisher pigs | 507.35 (0–9000) | 1928.00 | 0.051 |
Boars | 8.00 (0–92) | 22.40 | 0.060 |
Sows | 287.26 (4–4671) | 1044.20 | 0.044 |
Total no. of pigs | 1370.87 (20–19,801) | 4686.20 | 0.036 * |
Farm management | |||
Regular water quality check | 0.048 * | ||
Yes | 18 (78%) | 2 (11%) | |
No | 5 (22%) | 3 (60%) | |
Method for vehicle disinfection | 0.045 * | ||
Disinfection pond | 2 (9%) | 0 (0%) | |
Disinfectant spraying house | 10 (43%) | 3 (38%) | |
Other (Disinfectant spraying machine) | 8 (35%) | 2 (67%) | |
None | 3 (13%) | 0 (0%) | |
Methods for personal disinfection | 0.002 ** | ||
Bathroom | 2 (10%) | 1 (100%) | |
Boot disinfecting bath | 1 (5%) | 0 (0%) | |
More than 1 method | 10 (50%) | 2 (100%) | |
Other (i.e., changing boots) | 2 (10%) | 0 (0%) | |
None | 5 (25%) | 0 (0%) | |
History of disease outbreak | |||
Disease outbreak in the previous year | 0.155 | ||
Yes | 12 (52%) | 1 (8%) | |
No | 11 (48%) | 4 (36%) | |
Duration since the outbreak started until ended (months) | 3.19 (1–8) | 8 | 0.024 * |
Antimicrobial use | |||
Penicillin | 0.554 | ||
Yes | 18 (82%) | 4 (22%) | |
No | 4 (18%) | 0 (0%) | |
Tetracycline | 0.046 * | ||
Yes | 6 (27%) | 3 (50%) | |
No | 16 (73%) | 1 (6%) | |
Macrolide | 0.096 | ||
Yes | 12 (54%) | 4 (33%) | |
No | 10 (46%) | 0 (0%) | |
Aminoglycoside | 1.000 | ||
Yes | 8 (36%) | 1 (12%) | |
No | 14 (64%) | 3 (23%) | |
Fluoroquinolone | 0.616 | ||
Yes | 13 (59%) | 3 (23%) | |
No | 9 (41%) | 1 (11%) | |
Cephalosporin | 1.000 | ||
Yes | 1 (4%) | 0 (0%) | |
No | 21 (96%) | 4 (19%) | |
Trimethoprim-sulfamethoxazole | 0.338 | ||
Yes | 2 (9%) | 1 (50%) | |
No | 20 (91%) | 3 (15%) | |
Colistin | 1.000 | ||
Yes | 4 (18%) | 1 (25%) | |
No | 18 (82%) | 3 (17%) |
Primers | Sequence (5′→3′) | Target | Amplicon Size (bp) | References |
---|---|---|---|---|
16S rRNA-F | GCAAGCGTTATCCGGATTT | 16S rRNA | 597 | [50] |
16S rRNA-R | CTTAATGATGGCAACTAAGC | |||
nuc-F | GCGATTGATGGTGATACGGTT | nuc | 270 | [51] |
nuc-R | AGCCAAGCCTTGACGAACTAAAGC | |||
mecA-F | GCAATCGCTAAAGAACTAAG | mecA | 222 | |
mecA-R | GGGACCAACATAACCTAATA | |||
PhHV-F | GGGCGAATCACAGATTGAATC | PhHV-1 | 89 | [52] |
PhHV-R | GCGGTTCCAAACGTACCAA |
Primers | Sequence (5′→3′) | Target | Amplicon Size (bp) | References |
---|---|---|---|---|
MPCR1 (amplify ccr types with mecA) | [32] | |||
mA1 | TGCTATCCACCCTCAAACAGG | mecA | 286 | |
mA2 | AACGTTGTAACCACCCCAAGA | |||
α1 | AACCTATATCATCAATCAGTACGT | ccrA1-ccrB1 | 695 | |
α2 | TAAAGGCATCAATGCACAAACACT | ccrA2-ccrB2 | 937 | |
α3 | AGCTCAAAAGCAAGCAATAGAAT | ccrA3-ccrB3 | 1791 | |
βc | ATTGCCTTGATAATAGCCITCT | |||
α4.2 | GTATCAATGCACCAGAACTT | ccrA4-ccrB4 | 1287 | |
β4.2 | TTGCGACTCTCTTGGCGTTT | |||
γR | CCTTTATAGACTGGATTATTCAAAATAT | ccrC | 518 | |
γF | CGTCTATTACAAGATGTTAAGGATAAT | |||
MPCR2 (amplify mec classes) | [32] | |||
mI6 | CATAACTTCCCATTCTGCAGATG | mecA-mecI mecA-IS1272 mecA-IS431 | 1963 2827 804 | |
IS7 | ATGCTTAATGATAGCATCCGAATG | |||
IS2 | TGAGGTTATTCAGATATTTCGATGT | |||
mI7 | ATATACCAAACCCGACAACTACA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rongsanam, P.; Yano, T.; Yokart, W.; Yamsakul, P.; Sutammeng, S.; Udpaun, R.; Pichpol, D.; Tamdee, D.; Anukool, U. Acquisition Risk Factors of the SCCmec IX-Methicillin-Resistant Staphylococcus aureus in Swine Production Personnel in Chiang Mai and Lamphun Provinces, Thailand. Antibiotics 2020, 9, 651. https://doi.org/10.3390/antibiotics9100651
Rongsanam P, Yano T, Yokart W, Yamsakul P, Sutammeng S, Udpaun R, Pichpol D, Tamdee D, Anukool U. Acquisition Risk Factors of the SCCmec IX-Methicillin-Resistant Staphylococcus aureus in Swine Production Personnel in Chiang Mai and Lamphun Provinces, Thailand. Antibiotics. 2020; 9(10):651. https://doi.org/10.3390/antibiotics9100651
Chicago/Turabian StyleRongsanam, Peerapat, Terdsak Yano, Wuttipong Yokart, Panuwat Yamsakul, Suweera Sutammeng, Ratchadaporn Udpaun, Duangporn Pichpol, Decha Tamdee, and Usanee Anukool. 2020. "Acquisition Risk Factors of the SCCmec IX-Methicillin-Resistant Staphylococcus aureus in Swine Production Personnel in Chiang Mai and Lamphun Provinces, Thailand" Antibiotics 9, no. 10: 651. https://doi.org/10.3390/antibiotics9100651
APA StyleRongsanam, P., Yano, T., Yokart, W., Yamsakul, P., Sutammeng, S., Udpaun, R., Pichpol, D., Tamdee, D., & Anukool, U. (2020). Acquisition Risk Factors of the SCCmec IX-Methicillin-Resistant Staphylococcus aureus in Swine Production Personnel in Chiang Mai and Lamphun Provinces, Thailand. Antibiotics, 9(10), 651. https://doi.org/10.3390/antibiotics9100651