Antimicrobial Resistance and Genomic Characterization of OXA-48- and CTX-M-15-Co-Producing Hypervirulent Klebsiella pneumoniae ST23 Recovered from Nosocomial Outbreak
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Antimicrobial Susceptibility Testing (AST) and Phenotypic Detection of ESBL and Carbapenemase Production
4.2. Whole Genome Sequencing (WGS)
4.3. Analysis of WGS Data
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
- WHO. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- CDC. Antibiotic Resistance Threats in the United States; CDC: Atlanta, GA, USA, 2019.
- Bialek-Davenet, S.; Criscuolo, A.; Ailloud, F.; Passet, V.; Jones, L.; Delannoy-Vieillard, A.S.; Garin, B.; Le Hello, S.; Arlet, G.; Nicolas-Chanoine, M.H.; et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg. Infect. Dis. 2014, 20, 1812–1820. [Google Scholar] [CrossRef]
- Shon, A.S.; Bajwa, R.P.; Russo, T.A. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: A new and dangerous breed. Virulence 2013, 4, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Siu, L.K.; Yeh, K.-M.; Lin, J.-C.; Fung, C.-P.; Chang, F.-Y. Klebsiella pneumoniae liver abscess: A new invasive syndrome. Lancet Infect. Dis. 2012, 12, 881–887. [Google Scholar] [CrossRef]
- Lam, M.M.C.; Wyres, K.L.; Duchene, S.; Wick, R.R.; Judd, L.M.; Gan, Y.H.; Hoh, C.H.; Archuleta, S.; Molton, J.S.; Kalimuddin, S.; et al. Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Roulston, K.J.; Bharucha, T.; Turton, J.F.; Hopkins, K.L.; Mack, D.J.F. A case of NDM-carbapenemase-producing hypervirulent Klebsiella pneumoniae sequence type 23 from the UK. JMM Case Rep. 2018, 5, e005130. [Google Scholar] [CrossRef]
- Karlsson, M.; Stanton, R.A.; Ansari, U.; McAllister, G.; Chan, M.Y.; Sula, E.; Grass, J.E.; Duffy, N.; Anacker, M.L.; Witwer, M.L.; et al. Identification of a Carbapenemase-Producing Hypervirulent Klebsiella pneumoniae Isolate in the United States. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Cejas, D.; Fernandez Canigia, L.; Rincon Cruz, G.; Elena, A.X.; Maldonado, I.; Gutkind, G.O.; Radice, M.A. First isolate of KPC-2-producing Klebsiella pneumonaie sequence type 23 from the Americas. J. Clin. Microbiol. 2014, 52, 3483–3485. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.T.; Su, W.Q. Whole genome sequencing of NDM-1-producing serotype K1 ST23 hypervirulent Klebsiella pneumoniae in China. J. Med. Microbiol. 2019, 68, 866–873. [Google Scholar] [CrossRef]
- Lev, A.I.; Astashkin, E.I.; Kislichkina, A.A.; Solovieva, E.V.; Kombarova, T.I.; Korobova, O.V.; Ershova, O.N.; Alexandrova, I.A.; Malikov, V.E.; Bogun, A.G.; et al. Comparative analysis of Klebsiella pneumoniae strains isolated in 2012–2016 that differ by antibiotic resistance genes and virulence genes profiles. Pathog. Glob. Health 2018, 112, 142–151. [Google Scholar] [CrossRef]
- Volozhantsev, N.V.; Kislichkina, A.A.; Mukhina, T.N.; Fursova, N.K. Draft Genome Sequences of Clinical K1-Type Klebsiella pneumoniae Strains Isolated in Russia. Microbiol. Resour. Announc. 2020, 9. [Google Scholar] [CrossRef] [Green Version]
- Livermore, D.M.; Nicolau, D.P.; Hopkins, K.L.; Meunier, D. Carbapenem-Resistant Enterobacterales, Carbapenem Resistant Organisms, Carbapenemase-Producing Enterobacterales, and Carbapenemase-Producing Organisms: Terminology Past its “Sell-By Date” in an Era of New Antibiotics and Regional Carbapenemase Epidemiology. Clin. Infect. Dis. 2020, 71, 1776–1782. [Google Scholar] [CrossRef]
- Cuzon, G.; Ouanich, J.; Gondret, R.; Naas, T.; Nordmann, P. Outbreak of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in France. Antimicrob. Agents Chemother. 2011, 55, 2420–2423. [Google Scholar] [CrossRef] [Green Version]
- Navarro-San Francisco, C.; Mora-Rillo, M.; Romero-Gomez, M.P.; Moreno-Ramos, F.; Rico-Nieto, A.; Ruiz-Carrascoso, G.; Gomez-Gil, R.; Arribas-Lopez, J.R.; Mingorance, J.; Pano-Pardo, J.R. Bacteraemia due to OXA-48-carbapenemase-producing Enterobacteriaceae: A major clinical challenge. Clin. Microbiol. Infect. 2013, 19, E72–E79. [Google Scholar] [CrossRef] [Green Version]
- Balkan, I.I.; Aygun, G.; Aydin, S.; Mutcali, S.I.; Kara, Z.; Kuskucu, M.; Midilli, K.; Semen, V.; Aras, S.; Yemisen, M.; et al. Blood stream infections due to OXA-48-like carbapenemase-producing Enterobacteriaceae: Treatment and survival. Int. J. Infect. Dis. 2014, 26, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.M.; Li, L.H.; Yan, J.J.; Tsao, N.; Liao, T.L.; Tsai, H.C.; Fung, C.P.; Chen, H.J.; Liu, Y.M.; Wang, J.T.; et al. Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J. Bacteriol. 2009, 191, 4492–4501. [Google Scholar] [CrossRef] [Green Version]
- David, S.; Cohen, V.; Reuter, S.; Sheppard, A.E.; Giani, T.; Parkhill, J.; European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) Working Group; ESCMID Study Group for Epidemiological Markers (ESGEM); Rossolini, G.M.; Feil, E.J.; et al. Integrated chromosomal and plasmid sequence analyses reveal diverse modes of carbapenemase gene spread among Klebsiella pneumoniae. Proc. Natl. Acad. Sci. USA 2020, 117, 25043–25054. [Google Scholar] [CrossRef]
- Shen, J.; Lv, L.; Wang, X.; Xiu, Z.; Chen, G. Comparative analysis of CRISPR-Cas systems in Klebsiella genomes. J. Basic Microbiol. 2017, 57, 325–336. [Google Scholar] [CrossRef]
- Van der Zwaluw, K.; de Haan, A.; Pluister, G.N.; Bootsma, H.J.; de Neeling, A.J.; Schouls, L.M. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS ONE 2015, 10, e0123690. [Google Scholar] [CrossRef] [Green Version]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [Green Version]
- Shelenkov, A.; Mikhaylova, Y.; Yanushevich, Y.; Samoilov, A.; Petrova, L.; Fomina, V.; Gusarov, V.; Zamyatin, M.; Shagin, D.; Akimkin, V. Molecular Typing, Characterization of Antimicrobial Resistance, Virulence Profiling and Analysis of Whole-Genome Sequence of Clinical Klebsiella pneumoniae Isolates. Antibiotics 2020, 9, 261. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.H.; McDermott, P.F.; et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Zankari, E.; Allesoe, R.; Joensen, K.G.; Cavaco, L.M.; Lund, O.; Aarestrup, F.M. PointFinder: A novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J. Antimicrob. Chemother. 2017, 72, 2764–2768. [Google Scholar] [CrossRef] [Green Version]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Wick, R.R.; Heinz, E.; Holt, K.E.; Wyres, K.L. Kaptive Web: User-Friendly Capsule and Lipopolysaccharide Serotype Prediction for Klebsiella Genomes. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef] [Green Version]
- Couvin, D.; Bernheim, A.; Toffano-Nioche, C.; Touchon, M.; Michalik, J.; Neron, B.; Rocha, E.P.C.; Vergnaud, G.; Gautheret, D.; Pourcel, C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018, 46, W246–W251. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
- Feijao, P.; Yao, H.T.; Fornika, D.; Gardy, J.; Hsiao, W.; Chauve, C.; Chindelevitch, L. MentaLiST—A fast MLST caller for large MLST schemes. Microb. Genom. 2018, 4. [Google Scholar] [CrossRef]
- Nascimento, M.; Sousa, A.; Ramirez, M.; Francisco, A.P.; Carrico, J.A.; Vaz, C. PHYLOViZ 2.0: Providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics 2017, 33, 128–129. [Google Scholar] [CrossRef]
Antibiotic/Combination | MIC, mg/L | ECOFF- Based Category | Clinical Susceptibility Category |
---|---|---|---|
Ampicillin | ≥256 | non-WT 1 | R |
Amoxicillin-clavulanic acid | ≥256/4 | non-WT | R |
Piperacillin-tazobactam | ≥256/4 | non-WT | R |
Cefoxitin | 4 | WT | - |
Cefotaxime | ≥256 | non-WT | R |
Cefotaxime-clavulanic acid | 8/4 | - | - |
Ceftazidime | 64 | non-WT | R |
Ceftazidime-clavulanic acid | 2/4 | - | - |
Ceftazidime-avibactam | 0.25/4 | - | S |
Cefepime | 32 | non-WT | R |
Cefepime-clavulanic acid | 4/4 | - | - |
Aztreonam | 64 | non-WT | R |
Ceftazidime-avibactam | 0.25/4 | WT | S |
Imipenem | 1 | WT | S |
Meropenem | 0.5 | non-WT | S |
Ertapenem | 2 | non-WT | R |
Tobramycin | 8 | non-WT | R |
Gentamicin | 0.5 | WT | S |
Netilmicin | 4 | non-WT | I |
Amikacin | 4 | WT | S |
Ciprofloxacin | 8 | non-WT | R |
Doxycycline | 8 | non-WT | - |
Tigecycline | 0.25 | WT | S |
Chloramphenicol | 16 | - | R |
Colistin | 0.125 | WT | S |
Fosfomycin | 64 | non-WT | R |
Trimethoprim-sulfamethoxazole | ≥256/4864 | non-WT | R |
Gene | Location | Function | Affected Antibiotics |
---|---|---|---|
blaSHV-11 | chromosome | Kp intrinsic penicillinase | Penicillins |
oqxB2 | chromosome | Efflux pump | Quinolones |
oqxA | chromosome | Efflux pump | Quinolones |
fosA | chromosome | Fosfomycin thiol transferase | Fosfomycin |
gyrA (WT) | chromosome | WT quinolone-sensitive catalytic subunit A of DNA gyrase | Quinolones |
parC (WT) | chromosome | WT quinolone-sensitive catalytic subunit A of DNA topoisomerase IV | Quinolones |
ompK36 (N49S, L59V, L191S, F207W, A217S, N218H, D224E, L228V, E232R, T254S) | chromosome | Outer membrane porin | Cephalosporins, carbapenems |
ompK37 (I70M, I128M) | chromosome | Outer membrane porin | Cephalosporins, carbapenems |
blaOXA-48 | IncL/M pl. | Carbapenemase | Penicillins ± inhibitors, carbapenems |
qnrB1 | IncFIIK pl. | Quinolone resistance protein | Quinolones |
tet(A) | IncFIIK pl. | Tetracycline efflux pump | Tetracyclines |
blaCTX-M-15 | IncFIIK pl. | ESBL | Penicillins, cephalosporins, aztreonam |
dfrA14 | IncFIIK pl. | Dihydrofolate reductase | Trimethoprim |
strA | IncFIIK pl. | Aminoglycoside phosphotransferase | Streptomycin |
strB | IncFIIK pl. | Aminoglycoside phosphotransferase | Streptomycin |
blaTEM-1b | IncFIIK pl. | Penicillinase | Penicillins |
sul2 | IncFIIK pl. | Sulfonamide resistant dihydropteroate synthase | Sulfonamides |
catB3::IS26 | IncFIIK pl. | Chloramphenicol acetyltransferase | Chloramphenicol |
aac(6’)Ib-cr | IncFIIK pl. | Aminoglycoside and ciprofloxacin acetyltransferase | Aminoglycosides, ciprofloxacin |
blaOXA-1 | IncFIIK pl. | Penicillinase | Penicillins ± inhibitors |
Gene Cluster—Function | Location |
---|---|
Allantoinase cluster—Metabolism of allantoin: allA(1), allB(1), allC(2), allD(1), allR(1), allS(1), arcC(1), fdrA(1), gcl(2), glxK(1), glxR(1), hyi(1), ybbW(1), ybbY(1), ylbE(1), ylbF(1), KP1 1364(1), KP1 1371(1) | chromosome |
Type III fimbrial gene cluster—Mannose-resistant Klebsiella-like (type III) fimbria production and biofilm formation: mrkA(1), mrkB(1), mrkC(1), mrkD(1), mrkF(1), mrkH(1), mrkI(2), mrkJ(1) | chromosome |
Microcin E492 cluster—Bacteriocin production: mceA(1), mceB(1), mceC(1), mceD(2), mceE(1), mceG(2), mceH(1), mceI(2), mceJ(2) | chromosome |
Colibactin cluster—Toxin production: clbA(2), clbB(2), clbC(2), clbD(2), clbE(2), clbF(2), clbG(2), clbH(3), clbI(2), clbJ(5 ins.), clbK(3), clbL(2), clbM(2), clbN(2), clbO(2), clbP(2), clbQ(2), clbR(2) | chromosome |
Yersiniabactin cluster—Iron acquisition system: ybtA(2), ybtE(2), ybtP(2), ybtQ(2), ybtS(2), ybtU(2), ybtX(2), fyuA(2), irp1(6) | chromosome |
Iron uptake cluster kfuABC—Iron acquisition system: kfuA(1), kfuB(1), kfuC(1) | chromosome |
Aerobactin cluster—Iron acquisition system: iucA(1), iucB(1), iucC(1), iucD(1) | IncHI1B/FIB plasmid |
Iron uptake (salmochelin) cluster iroBCDN—Iron acquisition system: iroB(1), iroC(4), iroD(1), iroN(1) | IncHI1B/FIB plasmid |
rmpA/rmpA2—Regulators of mucoid phenotype: rmpA(2), rmpA2(8 frameshift) | IncHI1B/FIB plasmid |
pbrABCR cluster—Lead resistance: pbrA(4), pbrBC(1), pbrR(1) | IncHI1B/FIB plasmid |
pcoABCDERS cluster—Copper resistance: pcoA(1), pcoB(1), pcoC(1), pcoD(1), pcoE(4), pcoR(1), pcoS(1) | IncHI1B/FIB plasmid |
silCERS cluster—Silver resistance: silC(1), silE(1), silR(1), silS(1) | IncHI1B/FIB plasmid |
terABCDEWXYZ cluster—Tellurite resistance: terA(2), terB(2), terC(2), terD(2), terE(2), terW(2), terX(2), terY(2), terZ(2) | IncHI1B/FIB plasmid |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaidullina, E.; Shelenkov, A.; Yanushevich, Y.; Mikhaylova, Y.; Shagin, D.; Alexandrova, I.; Ershova, O.; Akimkin, V.; Kozlov, R.; Edelstein, M. Antimicrobial Resistance and Genomic Characterization of OXA-48- and CTX-M-15-Co-Producing Hypervirulent Klebsiella pneumoniae ST23 Recovered from Nosocomial Outbreak. Antibiotics 2020, 9, 862. https://doi.org/10.3390/antibiotics9120862
Shaidullina E, Shelenkov A, Yanushevich Y, Mikhaylova Y, Shagin D, Alexandrova I, Ershova O, Akimkin V, Kozlov R, Edelstein M. Antimicrobial Resistance and Genomic Characterization of OXA-48- and CTX-M-15-Co-Producing Hypervirulent Klebsiella pneumoniae ST23 Recovered from Nosocomial Outbreak. Antibiotics. 2020; 9(12):862. https://doi.org/10.3390/antibiotics9120862
Chicago/Turabian StyleShaidullina, Elvira, Andrey Shelenkov, Yuri Yanushevich, Yulia Mikhaylova, Dmitriy Shagin, Irina Alexandrova, Olga Ershova, Vasiliy Akimkin, Roman Kozlov, and Mikhail Edelstein. 2020. "Antimicrobial Resistance and Genomic Characterization of OXA-48- and CTX-M-15-Co-Producing Hypervirulent Klebsiella pneumoniae ST23 Recovered from Nosocomial Outbreak" Antibiotics 9, no. 12: 862. https://doi.org/10.3390/antibiotics9120862
APA StyleShaidullina, E., Shelenkov, A., Yanushevich, Y., Mikhaylova, Y., Shagin, D., Alexandrova, I., Ershova, O., Akimkin, V., Kozlov, R., & Edelstein, M. (2020). Antimicrobial Resistance and Genomic Characterization of OXA-48- and CTX-M-15-Co-Producing Hypervirulent Klebsiella pneumoniae ST23 Recovered from Nosocomial Outbreak. Antibiotics, 9(12), 862. https://doi.org/10.3390/antibiotics9120862