Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia dealbata and Olea europaea
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Methods, Solvents, and Extraction Efficiency
2.2. Antimicrobial Activity
2.2.1. Olive Leaf Extracts—Solid-Liquid and Ultrasound Extractions
2.2.2. Mimosa Leaf Extracts–Solid-Liquid and Ultrasound Extractions
2.2.3. Olive and Mimosa Leaf Extracts–Soxhlet and Microwave Extractions
2.3. Antioxidant Capacity of Olive and Mimosa Leaves
3. Materials and Methods
3.1. Plant Origin and Sample Collection
3.2. Preparation of Leaf Extracts
3.2.1. Solid-Liquid Extraction
3.2.2. Ultrasound Extraction
3.2.3. Soxhlet Extraction
3.2.4. Microwave-Assisted Extraction
3.3. Prevention of Bacterial Adhesion and Biofilm Formation
3.4. Bacterial Strains and Growth Conditions
3.5. Antibacterial Activity Assessment
3.6. Antioxidant Capacity Assessment
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dixon, R.A. Natural products and plant disease resistance. Nature 2001, 411, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Christenhusz, M.J.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Borges, A.; Abreu, A.; Dias, C.; Saavedra, M.; Borges, F.; Simões, M. New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules 2016, 21, 877. [Google Scholar] [CrossRef] [PubMed]
- Hintz, T.; Matthews, K.K.; Di, R. The use of plant antimicrobial compounds for food preservation. Biomed. Res. Int. 2015, 2015, 246264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 2018, 25, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Bernardini, S.; Tiezzi, A.; Laghezza Masci, V.; Ovidi, E. Natural products for human health: An historical overview of the drug discovery approaches. Nat. Prod. Res. 2018, 32, 1926–1950. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [Green Version]
- Luis, A.; Gil, N.; Amaral, M.E.; Duarte, A. Antioxidant activities of extracts from Acacia melanoxylon, Acacia dealbata and Olea europaea and alkaloids estimation. Int. J. Pharm. Pharm. Sci. 2012, 4, 225–231. [Google Scholar]
- Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health 2017, 10, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Borges, A.; Saavedra, M.J.; Simões, M. Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents. Curr. Med. Chem. 2015, 22, 2590–2614. [Google Scholar] [CrossRef] [Green Version]
- Hasler, C.M. Functional foods: Benefits, concerns and challenges—a position paper from the american council on science and health. J. Nutr. 2002, 132, 3772–3781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thielmann, J.; Kohnen, S.; Hauser, C. Antimicrobial activity of Olea europaea Linne extracts and their applicability as natural food preservative agents. Int. J. Food Microbiol. 2017, 251, 48–66. [Google Scholar] [CrossRef] [PubMed]
- Zamora, R.; Alaiz, M.; Hidalgo, F.J. Influence of cultivar and fruit ripening on olive (Olea europaea) fruit protein content, composition, and antioxidant activity. J. Agric. Food Chem. 2001, 49, 4267–4270. [Google Scholar] [CrossRef] [PubMed]
- Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential health benefits of olive oil and plant polyphenols. Int. J. Mol. Sci. 2018, 19, 686. [Google Scholar] [CrossRef] [Green Version]
- Guinda, Á.; Pérez-Camino, M.C.; Lanzón, A. Supplementation of oils with oleanolic acid from the olive leaf (Olea europaea). Eur. J. Lipid Sci. Technol. 2004, 106, 22–26. [Google Scholar] [CrossRef]
- Brahmi, F.; Mechri, B.; Dabbou, S.; Dhibi, M.; Hammami, M. The efficacy of phenolics compounds with different polarities as antioxidants from olive leaves depending on seasonal variations. Ind. Crops Prod. 2012, 38, 146–152. [Google Scholar] [CrossRef]
- Benavente-García, O.; Castillo, J.; Lorente, J.; Ortuño, A.; Del Rio, J.A. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem. 2000, 68, 457–462. [Google Scholar] [CrossRef]
- Lee, O.-H.; Lee, B.-Y. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresour. Technol. 2010, 101, 3751–3754. [Google Scholar] [CrossRef]
- Zaynab, M.; Fatemeh, B.; Mohammad, F.; MalikeSadat, E. Antioxidant activity of Olea europaea L. extracts from two different regions of Iran. Int. J. Agric. Crop Sci. 2015, 8, 68. [Google Scholar]
- Sudjana, A.N.; D’Orazio, C.; Ryan, V.; Rasool, N.; Ng, J.; Islam, N.; Riley, T.V.; Hammer, K.A. Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int. J. Antimicrob. Agents 2009, 33, 461–463. [Google Scholar] [CrossRef]
- Cruz, R.M.S.; Brito, R.; Smirniotis, P.; Nikolaidou, Z.; Vieira, M.C. Chapter 11—Extraction of bioactive compounds from olive leaves using emerging technologies. In Ingredients Extraction by Physicochemical Methods in Food; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 441–461. [Google Scholar]
- Lins, P.G.; Pugine, S.M.P.; Scatolini, A.M.; de Melo, M.P. In vitro antioxidant activity of olive leaf extract (Olea europaea L.) and its protective effect on oxidative damage in human erythrocytes. Heliyon 2018, 4, e00805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talhaoui, N.; Taamalli, A.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Res. Int. 2015, 77, 92–108. [Google Scholar] [CrossRef]
- de Bock, M.; Thorstensen, E.B.; Derraik, J.G.; Henderson, H.V.; Hofman, P.L.; Cutfield, W.S. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Mol. Nutr. Food Res. 2013, 57, 2079–2085. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.P.; Ferreira, I.C.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 2007, 12, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.M.; Rejmánek, M. Trees and shrubs as invasive alien species—A global review. Divers. Distrib. 2011, 17, 788–809. [Google Scholar] [CrossRef]
- Lorenzo, P.; González, L.; Reigosa, M.J. The genus Acacia as invader: The characteristic case of Acacia dealbata Link in Europe. Ann. For. Sci. 2010, 67, 101. [Google Scholar] [CrossRef] [Green Version]
- Yáñez, R.; Romaní, A.; Garrote, G.; Alonso, J.L.; Parajó, J.C. Processing of Acacia dealbata in aqueous media: First step of a wood biorefinery. Ind. Eng. Chem. Res. 2009, 48, 6618–6626. [Google Scholar] [CrossRef]
- Silva, E.; Fernandes, S.; Bacelar, E.; Sampaio, A. Antimicrobial activity of aqueous, ethanolic and methanolic leaf extracts from Acacia spp. and Eucalyptus nicholii. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Subhan, N.; Burrows, G.E.; Kerr, P.G.; Obied, H.K. Chapter 9—Phytochemistry, ethnomedicine, and pharmacology of Acacia. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 247–326. [Google Scholar]
- Seigler, D.S. Phytochemistry of Acacia-sensu lato. Biochem. Syst. Ecol. 2003, 31, 845–873. [Google Scholar] [CrossRef]
- Jæger, D.; O’Leary, M.C.; Weinstein, P.; Møller, B.L.; Semple, S.J. Phytochemistry and bioactivity of Acacia sensu stricto (Fabaceae: Mimosoideae). Phytochem. Rev. 2019, 18, 129–172. [Google Scholar] [CrossRef]
- Korukluoglu, M.; Sahan, Y.; Yigit, A.; Ozer, E.T.; Gücer, S. Antibacterial activity and chemicaL constitutions of Olea europaea L. leaf extracts. J. Food Process. Preserv. 2010, 34, 383–396. [Google Scholar] [CrossRef]
- Putnik, P.; Barba, F.J.; Španić, I.; Zorić, Z.; Dragović-Uzelac, V.; Kovačević, D.B. Green extraction approach for the recovery of polyphenols from Croatian olive leaves (Olea europea). Food Bioprod. Process. 2017, 106, 19–28. [Google Scholar] [CrossRef]
- Altıok, E.; Bayçın, D.; Bayraktar, O.; Ülkü, S. Isolation of polyphenols from the extracts of olive leaves (Olea europaea L.) by adsorption on silk fibroin. Sep. Purif. Technol. 2008, 62, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Lee, O.-H.; Lee, B.-Y.; Lee, J.; Lee, H.-B.; Son, J.-Y.; Park, C.-S.; Shetty, K.; Kim, Y.-C. Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities. Bioresour. Technol. 2009, 100, 6107–6113. [Google Scholar] [CrossRef]
- Guinda, Á.; Castellano, J.M.; Santos-Lozano, J.M.; Delgado-Hervás, T.; Gutiérrez-Adánez, P.; Rada, M. Determination of major bioactive compounds from olive leaf. LWT Food Sci. Technol. 2015, 64, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Markin, D.; Duek, L.; Berdicevsky, I. In vitro antimicrobial activity of olive leaves. Mycoses 2003, 46, 132–136. [Google Scholar] [CrossRef]
- Mehmood, A.; Murtaza, G. Phenolic contents, antimicrobial and antioxidant activity of Olea ferruginea Royle (Oleaceae). BMC Complement. Altern. Med. 2018, 18, 173. [Google Scholar] [CrossRef] [Green Version]
- Shirzad, H.; Niknam, V.; Taheri, M.; Ebrahimzadeh, H. Ultrasound-assisted extraction process of phenolic antioxidants from Olive leaves: A nutraceutical study using RSM and LC–ESI–DAD–MS. J. Food Sci. Technol. 2017, 54, 2361–2371. [Google Scholar] [CrossRef]
- Abbas, S.; Hayat, K.; Karangwa, E.; Bashari, M.; Zhang, X. An overview of ultrasound-assisted food-grade nanoemulsions. Food Eng. Rev. 2013, 5, 139–157. [Google Scholar] [CrossRef]
- Jerman, T.; Trebše, P.; Vodopivec, B.M. Ultrasound-assisted solid liquid extraction (USLE) of olive fruit (Olea europaea) phenolic compounds. Food Chem. 2010, 123, 175–182. [Google Scholar] [CrossRef]
- Paniwnyk, L.; Beaufoy, E.; Lorimer, J.; Mason, T. The extraction of rutin from flower buds of Sophora japonica. Ultrason. Sonochem. 2001, 8, 299–301. [Google Scholar] [CrossRef]
- Ahmad, A.; Alkarkhi, A.F.; Hena, S.; Khim, L.H. Extraction, separation and identification of chemical ingredients of Elephantopus scaber L. using factorial design of experiment. Int. J. Chem. 2009, 1, 36. [Google Scholar] [CrossRef] [Green Version]
- Klejdus, B.; Mikelová, R.; Petrlová, J.; Potěšil, D.; Adam, V.; Stiborová, M.; Hodek, P.; Vacek, J.; Kizek, R.; Kubáň, V. Evaluation of isoflavone aglycon and glycoside distribution in soy plants and soybeans by fast column high-performance liquid chromatography coupled with a diode-array detector. J. Agric. Food Chem. 2005, 53, 5848–5852. [Google Scholar] [CrossRef] [PubMed]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Sun, Y.; Zhao, G.; Liao, X.; Hu, X.; Wu, J.; Wang, Z. Optimization of ultrasound-assisted extraction of anthocyanins in red raspberries and identification of anthocyanins in extract using high-performance liquid chromatography–mass spectrometry. Ultrason. Sonochem. 2007, 14, 767–778. [Google Scholar] [CrossRef] [PubMed]
- De Castro, M.L.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A 2010, 1217, 2383–2389. [Google Scholar] [CrossRef]
- Gallo, M.; Ferracane, R.; Graziani, G.; Ritieni, A.; Fogliano, V. Microwave assisted extraction of phenolic compounds from four different spices. Molecules 2010, 15, 6365–6374. [Google Scholar] [CrossRef]
- Aliabadi, M.A.; Darsanaki, R.K.; Rokhi, M.L.; Nourbakhsh, M.; Raeisi, G. Antimicrobial activity of olive leaf aqueous extract. Ann. Biol. Res. 2012, 3, 4189–4191. [Google Scholar]
- Keskin, D.; Ceyhan, N.; Ugur, A.; Dbeys, A.D. Antimicrobial activity and chemical constitutions of West Anatolian olive (Olea europaea L.) leaves. J. Food Agric. Environ. 2012, 10, 99–102. [Google Scholar]
- Nora, N.B.; Hamid, K.; Snouci, M.; Boumedien, M.; Abdellah, M. Antibacterial activity and phytochemical screening of Olea europaea leaves from Algeria. Open Conf. Proc. J. 2012, 3, 66–69. [Google Scholar] [CrossRef]
- Şahin, S.; İlbay, Z.; Kırbaşlar, Ş.İ. Study on optimum extraction conditions for olive leaf extracts rich in polyphenol and flavonoid. Sep. Sci. Technol. 2015, 50, 1181–1189. [Google Scholar] [CrossRef]
- Debib, A.; Boukhatem, M.N. Phenolic content, antioxidant and antimicrobial activities of “Chemlali” olive leaf (Olea europaea L.) extracts. Int. J. Pharmacol. Phytochem. Ethnomed. 2017, 6, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Klančnik, A.; Piskernik, S.; Jeršek, B.; Možina, S.S. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J. Microbiol. Methods 2010, 81, 121–126. [Google Scholar]
- Vaara, M. Agents that increase the permeability of the outer membrane. Microbiol. Rev. 1992, 56, 395–411. [Google Scholar] [CrossRef]
- Mutai, C.; Bii, C.; Vagias, C.; Abatis, D.; Roussis, V. Antimicrobial activity of Acacia mellifera extracts and lupane triterpenes. J. Ethnopharmacol. 2009, 123, 143–148. [Google Scholar] [CrossRef]
- Eldeen, I.M.S.; Van Staden, J. Antimycobacterial activity of some trees used in South African traditional medicine. S. Afr. J. Bot. 2007, 73, 248–251. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, A.; Mahmood, A.; Qureshi, R.A. Antimicrobial activities of three species of family Mimosaceae. Pak. J. Pharm. Sci. 2012, 25, 203–206. [Google Scholar]
- Palombo, E.A.; Semple, S.J. Antibacterial activity of traditional Australian medicinal plants. J. Ethnopharmacol. 2001, 77, 151–157. [Google Scholar] [CrossRef]
- Chew, Y.L.; Ling Chan, E.W.; Tan, P.L.; Lim, Y.Y.; Stanslas, J.; Goh, J.K. Assessment of phytochemical content, polyphenolic composition, antioxidant and antibacterial activities of Leguminosae medicinal plants in Peninsular Malaysia. BMC Complement. Altern. Med. 2011, 11, 12. [Google Scholar] [CrossRef] [Green Version]
- Kothari, V.; Gupta, A.; Naraniwal, M. Comparative study of various methods for extraction of antioxidant and antibacterial compounds from plant seeds. J. Nat. Remedies 2012, 12, 162–173. [Google Scholar]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compost. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Martysiak-Żurowska, D.; Wenta, W. A comparison of ABTS and DPPH methods for assessing the total antioxidant capacity of human milk. Acta Sci. Pol. Technol. Aliment. 2012, 11, 83–89. [Google Scholar] [PubMed]
- Peschel, W.; Sánchez-Rabaneda, F.; Diekmann, W.; Plescher, A.; Gartzía, I.; Jiménez, D.; Lamuela-Raventos, R.; Buxaderas, S.; Codina, C. An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem. 2006, 97, 137–150. [Google Scholar] [CrossRef]
- Abdille, M.H.; Singh, R.; Jayaprakasha, G.; Jena, B. Antioxidant activity of the extracts from Dillenia indica fruits. Food Chem. 2005, 90, 891–896. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Joseph, J.M.; Manian, S. Antioxidant and free radical scavenging activities of Indian Acacias: Acacia leucophloea (Roxb.) Willd., Acacia ferruginea DC., Acacia dealbata Link. and Acacia pennata (L.) Willd. Int. J. Food Prop. 2013, 16, 1717–1729. [Google Scholar] [CrossRef]
- Abaza, L.; Youssef, N.B.; Manai, H.; Haddada, F.M.; Methenni, K.; Zarrouk, M. Chétoui olive leaf extracts: Influence of the solvent type on phenolics and antioxidant activities. Grasas Aceites 2011, 62, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Anokwuru, C.; Anyasor, G.; Ajibaye, O.; Fakoya, O.; Okebugwu, P. Effect of extraction solvents on phenolic, flavonoid and antioxidant activities of three Nigerian medicinal plants. Nat. Sci. 2011, 9, 53–61. [Google Scholar]
- Eloff, J.N. Which extractant should be used for the screening and isolation of antimicrobial components from plants? J. Ethnopharmacol. 1998, 60, 1–8. [Google Scholar] [CrossRef]
- Tung, Y.-T.; Wu, J.-H.; Hsieh, C.-Y.; Chen, P.-S.; Chang, S.-T. Free radical-scavenging phytochemicals of hot water extracts of Acacia confusa leaves detected by an on-line screening method. Food Chem. 2009, 115, 1019–1024. [Google Scholar] [CrossRef]
- Olmo-García, L.; Bajoub, A.; Benlamaalam, S.; Hurtado-Fernández, E.; Bagur-González, M.; Chigr, M.; Mbarki, M.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Establishing the phenolic composition of Olea europaea L. leaves from cultivars grown in Morocco as a crucial step towards their subsequent exploitation. Molecules 2018, 23, 2524. [Google Scholar] [CrossRef] [Green Version]
- Nicolì, F.; Negro, C.; Vergine, M.; Aprile, A.; Nutricati, E.; Sabella, E.; Miceli, A.; Luvisi, A.; De Bellis, L. Evaluation of phytochemical and antioxidant properties of 15 Italian Olea europaea L. cultivar leaves. Molecules 2019, 24, 1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cano, A.; Acosta, M.; Arnao, M. A method to measure antioxidant activity in organic media: Application to lipophilic vitamins. Redox Rep. 2000, 5, 365–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wootton-Beard, P.C.; Moran, A.; Ryan, L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Res. Int. 2011, 44, 217–224. [Google Scholar] [CrossRef]
- Tomsone, L.; Kruma, Z.; Galoburda, R. Comparison of different solvents and extraction methods for isolation of phenolic compounds from horseradish roots (Armoracia rusticana). World Acad. Sci. Eng. Technol. 2012, 64, 903–908. [Google Scholar]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Homem, V.; Alves, A.; Santos, L. Microwave-assisted Fenton’s oxidation of amoxicillin. Chem. Eng. J. 2013, 220, 35–44. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Leong, L.; Shui, G. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 2002, 76, 69–75. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J. Agric. Food Chem. 2002, 50, 4976–4982. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compost. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
Plants | Olive | Mimosa | ||||||
---|---|---|---|---|---|---|---|---|
Extraction Technique | Extraction Technique | |||||||
Solvent | Solid-liquid | Ultrasound | Soxhlet | Microwave | Solid-liquid | Ultrasound | Soxhlet | Microwave |
Water | 5.7 ± 0.9 c | 6.2 ± 0.9 c | 12 ± 1.2 d | 11 ± 0.8 d | 8.1 ± 0.8 a | 6.4 ± 1.2 a | 13 ± 1.4 b | 12 ± 1.8 b |
Methanol | 7.2 ± 0.3 c | 6.0 ± 1.1 c | - | - | 7.9 ± 0.4 a | 5.7 ± 1.1 a | - | - |
Ethanol | 4.1 ± 1.3 c | 4.6 ± 0.7 c | - | - | 6.0 ± 2.2 a | 4.2 ± 1.3 a | - | - |
Acetone | 6.8 ± 1.1 c | 7.4 ± 0.3 c | - | - | 5.1 ± 0.8 a | 2.8 ± 0.0 a | - | - |
Dichloromethane | 6.2 ± 1.6 c | 2.8 ± 0.3 b | - | - | 4.1 ± 1.5 a | 3.8 ± 2.1 a | - | - |
Hexane | 0.9 ± 0.1 a | 3.2 ± 1.3 b | - | - | 7.8 ± 2.1 a | 3.7 ± 0.1 a | - | - |
Plants | Solvent | Olive | Mimosa | ||||||
---|---|---|---|---|---|---|---|---|---|
Extraction Technique | Extraction Technique | ||||||||
Solid-Liquid | Ultrasound | Soxhlet | Microwave | Solid-Liquid | Ultrasound | Soxhlet | Microwave | ||
S. aureus | Water | 0.0 ± 0.0 a | 11.3 ± 1.2 c | 14.0 ± 0.8 d | 14.3 ± 1.2 d | 0.0 ± 0.0 a | 10.0 ± 1.8 b | 14.7 ± 0.5 c | 14.3 ± 0.5 c |
Methanol | 16.7 ± 1.2 e | 18.7 ± 1.2 e | - | - | 16.7 ± 1.2 c | 9.3 ± 0.6 b | - | - | |
Ethanol | 25.3 ± 2.3 f | 27.3 ± 2.3 f | - | - | 28.0 ± 2.0 d | 25.3 ± 2.3 d | - | - | |
Acetone | 22.7 ± 1.2 f | 18.7 ± 1.2 e | - | - | 12.0 ± 0.0 b | 15.0 ± 0.0 c | - | - | |
Dichloromethane | 8.7 ± 0.6 b | 0.0 ± 0.0 a | - | - | 0.0 ± 0.0 a | 0.0 ± 0.0 a | - | - | |
Hexane | 11.3 ± 1.2 c | 15.0 ± 1.4 d | - | - | 11.3 ± 1.2 b | 12.0 ± 0.0 b | - | - | |
E. coli | Water | 0.0 ± 0.0 a | 9.3 ± 0.6 b | 11.0 ± 0.0 c | 11.7 ± 0.5 c | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
Methanol | 16.7 ± 1.2 d | 16.7 ± 1.2 d | - | - | 16.7 ± 1.2 d | 16.7 ± 1.2 d | - | - | |
Ethanol | 16.7 ± 1.2 d | 16.7 ± 1.2 d | - | - | 13.3 ± 1.2 c | 16.7 ± 1.2 d | - | - | |
Acetone | 14.7 ± 1.2 c | 14.0 ± 2.0 c | - | - | 10.0 ± 0.0 b | 16.7 ± 1.2 d | - | - | |
Dichloromethane | 0.0 ± 0.0 a | 0.0 ± 0.0 a | - | - | 0.0 ± 0.0 a | 0.0 ± 0.0 a | - | - | |
Hexane | 12.0 ± 2.0 c | 11.3 ± 1.2 c | - | - | 10.0 ± 0.0 b | 12.0 ± 0.0 c | - | - |
Plants | Solvent | Olive | Mimosa | ||||||
---|---|---|---|---|---|---|---|---|---|
Extraction Technique | Extraction Technique | ||||||||
Solid-Liquid | Ultrasound | Soxhlet | Microwave | Solid-Liquid | Ultrasound | Soxhlet | Microwave | ||
S. aureus | Water | 0.0 ± 0.0 a | 9.3 ± 0.0 b | 11.0 ± 0.0 c | 10.8 ± 0.5 c | 0.0 ± 0.0 a | 10.0 ± 1.8 b | 10.3 ± 0.5 b | 9.3 ± 1.2 b |
Methanol | 0.0 ± 0.0 a | 0.0 ± 0.0 a | - | - | 0.0 ± 0.0 a | 0.0 ± 0.0 a | - | - | |
Ethanol | 10.7 ± 0.6 c | 10.6 ± 0.4 c | - | - | 10.1 ± 0.8 b | 10.2 ± 1.0 b | - | - | |
Acetone | 0.0 ± 0.0 a | 9.3 ± 0.6 b | - | - | 0.0 ± 0.0 a | 0.0 ± 0.0 a | - | - | |
Dichloromethane | 0.0 ± 0.0 a | 0.0 ± 0.0 a | - | - | 0.0 ± 0.0 a | 0.0 ± 0.0 a | - | - | |
Hexane | 0.0 ± 0.0 a | 0.0 ± 0.0 a | - | - | 0.0 ± 0.0 a | 0.0 ± 0.0 a | - | - | |
E. coli | Water | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 10.0 ± 1.4 b | 9.7 ± 0.9 b | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
Methanol | 0.0 ± 0.0 a | 0.0 ± 0.0 a | - | - | 0.0 ± 0.0 a | 0.0 ± 0.0 a | - | - | |
Ethanol | 11.0 ± 0.2 b | 10.5 ± 0.8 b | - | - | 9.3 ± 0.8 b | 9.7 ± 0.6 b | - | - | |
Acetone | 0.0 ± 0.0 a | 10.6 ± 0.6 b | - | - | 0.0 ± 0.0 a | 0.0 ± 0.0 a | - | - | |
Dichloromethane | 0.0 ± 0.0 a | 0.0 ± 0.0 a | - | - | 0.0 ± 0.0 a | 0.0 ± 0.0 a | - | - | |
Hexane | 0.0 ± 0.0 a | 0.0 ± 0.0 a | - | - | 0.0 ± 0.0 a | 0.0 ± 0.0 a | - | - |
Plants | Solvent | Olive | Mimosa | ||||||
---|---|---|---|---|---|---|---|---|---|
Extraction Technique | Extraction Technique | ||||||||
Solid-Liquid | Ultrasound | Soxhlet | Microwave | Solid-Liquid | Ultrasound | Soxhlet | Microwave | ||
DPPH | Water | 687 ± 6.9 | 678 ± 4.0 | 739 ± 5.5 | 741 ± 10.8 | 766 ± 8.9 | 757 ± 4.2 | 699 ± 12 | 595 ± 2.1 |
Methanol | 167 ± 2.8 | 107 ± 7.9 | - | - | 740 ± 6.9 | 731 ± 4.8 | - | - | |
Ethanol | 403 ± 5.7 | 372 ± 11 | - | - | 312 ± 8.8 | 477 ± 138 | - | - | |
Acetone | 735 ± 7.9 | 539 ± 13 | - | - | 783 ± 4.7 | 770 ± 6.6 | - | - | |
Dichloromethane | 561 ± 11 | 450 ± 3.4 | - | - | 226 ± 12 | 44.4 ± 4.5 | - | - | |
Hexane | 323 ± 2.9 | 310 ± 6.9 | - | - | 84.4 ± 6.0 | 134 ± 8.7 | - | - | |
ABTS | Water | 415 ± 5.9 | 459 ± 12 | 450 ± 6.9 | 482 ± 9.7 | 357 ± 5.9 | 387 ± 5.5 | 339 ± 9.1 | 387 ± 9.8 |
Methanol | 46.1 ± 6.9 | 184 ± 12 | - | - | 475 ± 4.3 | 451 ± 6.6 | - | - | |
Ethanol | 210 ± 6.8 | 209 ± 11 | - | - | 514 ± 6.9 | 534 ± 15 | - | - | |
Acetone | 608 ± 4.4 | 719 ± 5.9 | - | - | 608 ± 5.9 | 608 ± 7.9 | - | - | |
Dichloromethane | 518 ± 5.1 | 527 ± 4.9 | - | - | 539 ± 13 | 502 ± 11 | - | - | |
Hexane | 383 ± 2.9 | 569 ± 11 | - | - | 393 ± 7.5 | 465 ± 5.9 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borges, A.; José, H.; Homem, V.; Simões, M. Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia dealbata and Olea europaea. Antibiotics 2020, 9, 48. https://doi.org/10.3390/antibiotics9020048
Borges A, José H, Homem V, Simões M. Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia dealbata and Olea europaea. Antibiotics. 2020; 9(2):48. https://doi.org/10.3390/antibiotics9020048
Chicago/Turabian StyleBorges, Anabela, Helena José, Vera Homem, and Manuel Simões. 2020. "Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia dealbata and Olea europaea" Antibiotics 9, no. 2: 48. https://doi.org/10.3390/antibiotics9020048
APA StyleBorges, A., José, H., Homem, V., & Simões, M. (2020). Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia dealbata and Olea europaea. Antibiotics, 9(2), 48. https://doi.org/10.3390/antibiotics9020048